

EPICS SCA Clients on the .net x64 platform

C. Timossi and H. Nishimura, LBNL, Berkeley, CA 94720, U.S.A

Work supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098

Control experts don't care 64-bit.

Control systems are fine on 32-bit!

However, some of us are already on 64.

Scientific Computing.
Server-side Computing.
Computer Games.

64-bit PC is not expensive.

Moving to 64-bit!

- Merits
 - Wider Memory Space
 - Faster Execution Speed

Accelerator physicists do Model-based controls using your system!

Scientific Computing on .NET

- C# provides reasonable performance
 - H. Nishimura and T. Scarvie.
 "Particle Tracking and Simulation on the .NET Framework", EPAC 2006

Performance of Particle Tracking on AMD Athlon 4800+

Compiler	Test1	Test2	Test3
C++ /32	0.263 sec	0.294 sec	0.197 sec
C++/64	0.247 sec	0.223 sec	0.145 sec
C#	0.220 sec	0.386 sec	0.153 sec

Test 1. 10,000 turns of a particle in 5-dim phase space.

Test 2. 1,000 turns of a particle in 6-dim phase space.

Test 3. 100 turns of a linear DA map.

EPICS must support 64-bit

 It is difficult to mix 32-bit and 64-bit routines on 64-bit PCs.

64-bit apps cannot call 32-bit routines without using a kind of IPC.

64-bit EPICS access makes sense!

Porting CA to 64

- CA is a Portable C++ Library
 - Only a little work required on Windows to recompile for 64-bit by using Visual C++
- Athlon Dual Core gave a Timing Problem
 - Trouble posted on a web.
 - Posted as a patch for gamers by AMD!

Gamers have power on the market.

CA.dll for 64-bit Windows is ready!

SCA.NET for 64-bit

- There was absolutely nothing to do!
 SCA.NET for 32-bit also works for 64-bit.
- The Secret is "Any CPU" build option.

Binaries built for "Any CPU" run natively on Any CPU.

Prepare

32-bit CA.dll on 32-bit Windows

64-bit CA.dll on 64-bit Windows

Inside SCA.NET

[DIIImport("ca.dII")]
unsafe public static extern
char * ca_message(uint ca_status);

The CPU is not explicitly assigned.

ca.dll can be 32-bit, 64-bit,

or even ca.so on Linux!

EPICS .NET Apps are Portable!

- An SCA.NET client on .NET runs on both 32-bit and 64-bit Windows if built for "Any CPU".
 - EPICS CA itself is CPU dependent.
 - Libraries from third parties
 - May be for "Any CPU"
 - May be CPU-dependent.

Third Party Libraries

- Many Commercial Libraries and Tools
- Many Open-Source Libraries and Tools
 - Source Forge
 - CodePlex at <u>www.codeplex.com</u>
- Our Favorites
 - ZedGraph for Plot/Chart, ZedGraph.org
 - SourceGrid for string grids, www.devage.com
- We have not yet chosen any instrumentation component library.

Example

	#															_ O X
Bend	AC.	TAM	OF	AC A	M .	OD	AC	AM		Sgew	AC	ъM		ChicH	AC	AM
SR01C B	896.815	897.470	SR01C OF1		2000	ROIC ODI	103.071	103.160		SR01C SOSF1	-1.915	-1.906		SR04U HCM1	-47.750	-47.919
SR04C BSC P	296.551	296.385	SR01C OF2		Janes	ROIC OD2	102.820	102 932		SROZC SOSDI	-1.773	-1.779	- Janeary	SR0411 HCM2	-1.832	-1.779
SROSC BSC P	298.597	298.431	SR02C OF1		2000	RO2C OD1	102.377	102.443		SR03C SOSD1	2.982	2.987		RO4U HCM3	-47.750	-47.821
SR12C BSC P	298.459	298.238	SR02C QF2		Second .	RO2C QD2	102.897	102.982		SR03C SQSF1	-4.495	-4.491	T .	SROGU HEM1	23.875	23.809
OFA	AC	AM	SR03C QF1	92.643 92	. 680 SI	RO3C QD1	103.051	103.087	Г	SR03C SQSF2	-4.668	-4.672		SROGU HEM2	-10.169	-10.366
SROIC OFA	517.604	517.016	SR03C QF2	91.929 91	. 999 📗 SI	RO3C QD2	101.287	101.327		SR03C SQSD2	3.938	3.944	5	R11U HCM2	6.511	11.725
SR04C OFA	525.436	525.525	SR04C QF1	92.208 92	. 144 S	RO4C QD1	103.586	103.565		SR04C SQSD1	-2.039	-2.031		ChicV	AC	AM
SROSC OFA	522.711	523.016	SR04C QF2	92.292 92	. 227 S	RO4C QD2	102.824	102.845		SR05C SQSD1	3.608	3,615		RO4U VCM1	0.000	-0.042
SR12C OFA	519.448	519.897	SR05C QF1		Spencer 1	ROSC QD1	104.854	104.918		SR05C SQSF1	0.000	-8.002	Second .	RO4U VCM2	1.122	1.587
			SR05C QF2		2000	ROSC QD2	102.591	102.653	3	SR05C SQSF2	0.056	0.060		RO4U VCM3	0.000	-0.039
QDA	AC	AM	SR06C QF1		Second 1	ROGC QD1	102.796	102.784	_	SR05C SQSD2	-2.846	-2.853	T 5	SROGU VCM2	-1.591	-1.856
SR04C QDA1 SR04C QDA2	77.655 83.047	77.656 83.040	SR06C QF2		2000	ROGC QD2	103.778	103.769	1	SROCC SQSD1	-2.958	-2.971		SR11U VCM2	3.238	2.887
SROSC ODA1	81.694	81.745	SR07C QF1		2000	RO7C QD1	103.155	103.223	-	SROGC SQSF1	8.008	-8.011		ChicV	AC	AM
SROSC ODA2	74.813	74.854	SR07C QF2 SR08C QF1		2000	R07C QD2 R08C OD1	102.320 100.742	102.330	-	SR06C SQSF2 SR06C SQSD2	-1.129 0.495	-1.133 0.505	-	RO4U HCM2M	24 210	24 216
SR12C ODB1	77, 221	77.249	SROSC QF1		- Second	ROSC OD2	100.742	102.651		SROTC SQSD2	-0.473	-0.482	- Second	RO4U HEM2M	5.010	5.018
SR12C ODA2	81.533	81.604	SR09C OF1		20000	ROSC QD2	103.702	103.760	-	SRO7C SOSF1	-0.061	-0.074	- Janeary	RO4U HCM2M	0.000	0.000
	7.6	_	SR09C OF2		- Janear	RO9C OD2	102.431	102.506		SRO7C SOSF2	-19.735	-19.780	NAME OF TAXABLE PARTY.	ROGU HEM2M	18,000	18,000
Sext	AC 270 440	AM -	SR10C OF1		20000	RIOC ODI	103.665	103.748		SRO7C SOSD2	-3.425	-3.433	5	SROGU HEM2M	20.000	20.002
SR01C SF SR01C SD	373.140 249.811	249.660	SR10C QF2		- Second	R10C OD2	102.291	102.377		SROSC SOSD1	-2.259	-2.259				
3 SRULC SD		***	SR11C QF1	92.298 92	. 342 SI	R11C QD1	102.696	102.759		SR09C SQSF1	1.667	1.674				
TrimQ	AC	AM	SR11C QF2	92.636 92	. 692 SI	R11C QD2	102.543	102.608		SR10C SQSD1	1.924	1.931				
SR01C SF	373.140	370.546	SR12C QF1	91.446 91	. 939 🗀 SI	R12C QD1	101.321	101.270		SR11C SQSF1	-5.204	-5.223				
SR01C SD	249.811	249.660	SR12C QF2	91.910 91	. 922 SI	R12C QD2	101.486	101.422	Г	SR12C SQSD1	-1.338	-1.343				
HCM	SR01	SR02	SR03	SR04	SRO!	5	SR06	SR07		SR08	SR09	S	R10	SR11		SR12
HCM1		0.219	1.074	-0.219	-2.0	38 1	8.985	-0.270	Г	0.306	0.490	-0	. 581	-18.53	1	0.599
HCM2	0.191	-0.007	-0.089	-2.119	-1.1	29	0.149	0.995		1.487	-0.253	0	. 974	1.90	2	0.504
HESD1	0.032	0.348	0.588	0.346	11.5	14	0.808	-0.354		0.557	0.074	-0	. 693	-0.70	1 -	0.722
HDSE1	0.287	0.578	0.514	0.496	-16.41	2 -1	1.741	0.357		-0.101	0.370	0	. 395	-0.16	6 -	0.818
HESF2	0.011	-0.531	0.521	0.689	-9.9!	77	0.784	0.238		-0.435	0.104	0	. 094	0.45	3 -	1.371
HCSD2	-0.070	-0.729	1.257	-0.223	-1.4	57 -	0.831	0.139		0.073	0.543	-0	. 321	0.34	3 🗀 -	1.105
HDMS	0.024	0.765	0.612	0.778	0.70	- 56	1.037	-1.682		-0.065	0.008	-0	. 207	-0.85	7	0.704
HCM4	1.208	-0.499	0.374	1.056	1.88	32	1.067	1.556		-0.483	-0.024	-15	. 933	0.92	8	
VCM	SR01	SR02	SR03	SR04	SRO	5 <u> </u>	SR06	SR07		SR08	SR09	s	R10	SRIL		SR12
WCM1	ſ	1.405	-2.195	0.126	-0.88	14	2.370	-2.002	Г	-2.397	-0.327	-0	. 683	0.99	4	0.536
VCM2	-0.043	-0.609	-1.069	0.709	0.14	7	0.068	-2.587		-0.605	-0.731		. 957	-0.68	3	0.198
VCSD1	3.816	2.854	3.097	-0.154	1.88	38	2.330	2.009		1.151	1.218	3	. 573	2.34	7	0.360
VCSD2	2.401	0.820	1.023	2.587	3.05	55	3.565	1.508		1.318	1.988		.456	3.29	9	2.515
VCM3	-0.209	-0.587	0.435	-1.120	-1.6	1 -	1.245	0.142		0.030	-0.344	-0	. 256	-0.96	0 -	2.599
VCM4	-0.012	-2.383	2.625	1.637	-0.39	90 🗀 -	0.841	-1.879		1.149	0.550	0	. 190	-3.68	3	

32-bit Apps on 64-bit Windows

- 64-bit Windows has WOW64
 - 32-bit Apps can run seamlessly on WOW64
 - (16-bit apps don't run at all anymore)
 - CLR loads 32-bit DLLs for 32-bit apps (not 64-bit DLLs).
 - If system-oriented, it may not run.
- .NET Apps can be built for x86, x64, ia64..
 - If built for x86, it runs in 32-bit mode on 64.
 - If built for x64, it runs only on x64.

.NET Today

- .NET 3.0 is coming
 - On top of .NET 2.0 as fancy options.
 - "Native" on Windows Vista
- Third Party Libraries
 - Becoming Managed
 - Becoming .NET 2.0 compatible.

Therefore becoming portable!

Conclusion

 Controls systems must support 64-bit on the client side for scientists.

By porting CA to 64-bit on Windows, SCA.NET client can run on 64 without any change.