

Embedding a TANGO device into a digital BPM

- Global Orbit Feedback
- Digital BPM
- porting of TANGO to ARM processor
- results with the embedded device

Global Orbit Feedback

- goal: equip Elettra storage ring with a fast digital feedback system to improve orbit stability
- requirements:
 - 10 kHz sampling rate
 - sub-micron resolution
 - dump disturbances up to 150 Hz
 - suppress mains disturbances up to 300 Hz

Digital BPM

- analogue BPM electronics replaced by state-of-art digital one:
- Instrumentation Technologies "Libera Electron"

Digital BPM

- meet resolution requirements
- digital processing done in FPGA
- beam position data available at 3 different rates:
 - turn-by-turn (single shot buffer reading)
 - 10 Hz
 - 10 kHz

Digital BPM

Libera is equipped with single board computer:

- Intel Xscale XA255 ARM processor
- Linux operating system
- Ethernet interface
- Device management
- Extraction of "slow" data (single-shot and 10 Hz)

TANGO device for Libera

- First developed at Soleil.
- Based on:

Instrumentation Technologies CSPI library

- Runs on external host
- CSPI library extracts data via TCP/IP socket and multicast over UDP

TANGO device for Libera

- network bandwidth is wasted
- "intermediate server" just for Tango device: deployment and troubleshooting more difficult
- full source code available for Tango
- full source code available for omniORB, CORBA library used by TANGO (C++ version)
- develop embedded version of the TANGO device

porting omniORB to ARM

main difficulties to overcome due to:

- building with a cross-compiler
 - the first stage of compilation builds the IDL compiler
 - the second stage uses the IDL compiler to generate stubs and skeleton classes
 - the third stage compiles core, stubs and skeleton classes

Embedding a TANGO device into a digital BPM

PCaPAC Newport News October 24-27, 2006

porting omniORB to ARM

IDL sources	CORBA service s				i386 binary ARM binary
					C++ source
arm- gcc	IDL	CORBA stubs	CORBA core		IDL source
		ar g	m- cc	omni ORB	

omniORB building process

Embedding a TANGO device into a digital BPM

PCaPAC Newport News October 24-27, 2006

porting omniORB to ARM

IDL sources	CORBA service s				i386 binary ARM binary
					C++ source
arm- gcc	IDL	CORBA stubs	CORBA core		IDL source
		ar g	m- cc	omni ORB	

omniORB building process

Embedding a TANGO device into a digital BPM

PCaPAC Newport News October 24-27, 2006

porting omniORB to ARM

	CORBA				i386 binary
sources	service s				ARM binary
					C++ source
arm- gcc	IDL	CORBA stubs	CORBA core		IDL source
copy IDL binaries from "native" build tree		arm- gcc		omni ORB	
omniORB building process					
Giulio Gaio, Sincrotrone T	rieste S.C.p.A.				

porting omniORB to ARM

main difficulties to overcome due to:

- mixed "endianess" of ARM
 - ARM is little-endian (like i386)
 - "double" data on ARM is big-endian !
 - this "weird" case not handled by omniORB:

result: mangled numbers when exchanging data between different platforms

porting omniORB to ARM

endianess problem solved by patching omniORB core:

Thanks to Duncan Grisby!

 last manual intervention: patch by hand (using ar) one of the omniORB library objects to overcome some deficiencies of the arm-ld linker

Giulio Gaio, Sincrotrone Trieste S.C.p.A.

PCaPAC Newport News

October 24-27, 2006

porting TANGO to ARM

- extra step: regenerate CORBA stubs and skeletons with patched omniORB for handling doubles correctly
- followed standard build procedure with minor Makefile adaptations
- TANGO executables must be linked as fully static executables (problem under investigation)

PCaPAC Newport News

October 24-27, 2006

embedded TANGO Device

- Compilation of the Soleil designed TANGO Device for Libera for the ARM single board computer done in a very short time
- Uses the "embedded" version of the CSPI library and the newly compiled TANGO and omniORB libraries
- We had to adjust some thread management code to cope with differences of the environment and CSPI behaviour

embedded TANGO device

- no problems or bugs due to TANGO or omniORB
- deployed on tens of devices at Soleil and Elettra (96)
- easier mangement
- dramatic cut of network bandwidth

performances

- performances are limited only by the TCP/IP stack of the Libera single board computer
- 8 ms for reading a single BPM position
- less than 50 ms for reading the whole orbit on both planes (182 positions)

Embedding a TANGO device into a digital BPM

we can exploit all TANGO tools

- - × Attribute: state 7 1 2 3 4 5 6 8 \bigcirc **S1** \cap \cap **S2** 0 \$3 C \mathbf{C} \$4 **S5** \cap **S6** C **S7** 0 \cap **S8** 0 \bigcirc C 59 0 C \bigcirc S10 \mathbf{C} 0 \bigcirc S11 \bigcirc S12 LowGap S2.1: O LowGap S7.1: LowGap S2.2: O LowGap S7.2: Show Logs

Embedding a TANGO device into a digital BPM

TANGO on ARM...

As a by-product of the BPM project we now have TANGO for ARM:

http://www.elettra.trieste.it/~tango/downloads.html

Lots of gadgets are ready for learning to dance!

