

24-27 October 2006
 Jefferson Lab

 Newport News, VA, USA

 PROCEEDINGS

 JLAB-ACO-07-628

 Editors: M. Bickley and P. Chevtsov

 ii

 CONTENTS

Preface …………………………………………………………………. viii
PCaPAC 2006 schedule and some workshop photos …..………….… x

 CONTRIBUTED PAPERS

TANGO Control System Status ………………………………....…… 3
 J.-M. Chaize

The New Control System for the Future Low-Emittance Light
Source PETRA-3 at DESY: From Conceptual Design Work to
Realization ……………………………………………………………… 7
 R. Bacher

Status of the SCSS Prototype Accelerator and Control system …….. 11
 T. Ohata, T. Fukui, T. Hirono, N. Hosoda, T. Masuda, T. Matsushita,
 T. Ohshima, M. Takeuchi, R.Tanaka, A. Yamashita, M. Kitamura,
 H. Maesaka, and Y. Otake

Migrating the STAR Slow Controls System to PC’s ……………….... 15
 J. Fujita, Y. Gorbunov, M. Cherney, W. Waggoner, J. Burns,
 M. Brnicky, and R. Thomen

Using the Common Device Interface in TINE ………………………… 17
 P. Duval and H. Wu

The Interconnection of TINE and STARS …………………………… 20
 T. Kosuge, P. Duval, Y. Nagatani, and K. Nigorikawa

Embedding a TANGO Device into a Digital BPM …………………… 23
 C. Scafuri, V. Forchi, G. Gaio, and N. Leclercq

Control System for the FFAG Complex in KURRI ………………….. 26
 M. Tanigaki, K. Takamiya, H. Yoshino, N. Abe, T. Takeshita,
 Y. Mori, K. Mishima, S. Shiroya, Y. Kijima, and M. Ikeda

Operational Experience with Synchrotron Light Interferometers
for CEBAF Experimental Beam Lines ……………………………….. 30
 P. Chevtsov

 iii

Beyond PCs: Accelerator Controls on Programmable Logic ……..… 33
 M. Plesko, K. Zagar, and A. Hasanovic

Mono for Cross-Platform Control System Environment ……..……... 37
 H. Nishimura and C. Timossi

A Configurable Interlock System for RF-Stations at XFEL ………... 39
 M. Penno, T. Grevsmuehl, H. Leich, A. Kretzschmann, W. Koehler,
 B. Petrosyan, G. Trowitzsch, and R. Wenndorff

Magnetic Field Mapping (MFM) System for Super Conducting
Cyclotron (SCC) in VECC ……….…………………………………… 40
 S. Pal, A. Roy, T. Bhattacharjee, N. Chaddha,
 R. B. Bhole, and S. Dasgupta

MCS-8 Eight Axis Embedded Motion Control System ……..……….. 43
 G. Jansa, R. Gajsek, and M. Kobal

MicroIOC: PC and Control System Longevity ………………..……... 49
 A. Podborsek, D. Golob, A. Hasanovic, I. Kriznar,
 R. Sabjan, and M. Plesko

Ethernet-based Fieldbus Functionality for Neutron Scattering
Experiments with PROFINET IO ……..…………………………….... 53
 H. Kleines, S. Detert, F. Suxdorf, and M. Drochner

EPICS SCA Clients on the .NET x64 Platform ……..…………...…... 56
 C. Timossi and H. Nishimura

A Tutorial on Project Management ……..………………………...…... 58
 J. Kamenik, P. Kolaric, M. Plesko, and I. Verstovsek

Standardisation of the PSI Accelerator Control System ………...…... 61
 D. Anicic, T. Korhonen, A.C. Mezger, and D. Vermeulen

Status of ISAC Control System ……..………………………..…...…... 63
 C. Payne

First Operation with SPARC Control System …………………...…... 66
 M. Bellaveglia, G. Di Pirro, D. Filippetto, E. Pace,
 L. Catani, and A. Cianchi

 iv

EPICS ArchiveViewer Project Status ……..………………..…...…... 69
 S. Chevtsov

Device Address Redirection as a Tool in the TINE
Control System ……………………………...………………..…...…... 72
 S. Herb and P. Duval

Web GUI for the TANGO Control System ……..…………..…...…... 75
 L. Zambon and M. Lonza

A Communication Protocol for a Distributed Control
System with LabVIEW ……..………………………………..…...…... 78
 L. Catani

User Requirements for the PETRA-3 Control System
at DESY ……………………………...………………..….………..…... 82
 M. Bieler, A. Brinkmann, and U. Zobjack

Off-Line Analysis Goes On-Line! ……..……………………..…...…... 84
 M. Lomperski

A Users Perspective …………..… ……..……………………..…...…... 86
 I. Carlino

A Prototype of a Beam Steering Assistant Tool for
Accelerator Operations ……..…………..………………………...…... 90
 M. Bickley and P. Chevtsov

Applications of Interest: A Relational Database Approach
to Managing Control System Software Applications …….....…...…... 93
 D. Quock, N. Arnold, D. Dohan, J. Anderson, and D. Clemons

Accelerator Management with Web-based GIS ……….………...…... 96
 A. Yamashita, Y. Ishizawa, T. Ohata, and M. Takeuchi

Status of the CEBAF Control System at JLAB ……………….....…... 99
 M. Bickley

Control System Studio (CSS) …………………………..………...…... 102
 M. Clausen, J. Hatje, and M. Möller

 v

Automatically Configured Control System Using Compact
PCI System ……..…………..……………………………...……...…...... 105
 Y. Furukawa and T. Ohata

The Common Firmware Programming Interface for
Fieldbus Related Projects at PETRA III ………………...……...…....... 108
 P. Bartkewicz and S. Herb

UI-Oriented Approach for Building Modular Control
Programs in VEPP-5 Control System …………………...……...…....... 111
 D. Bolkhovityanov

A Device Server Generator for Control Systems ………..……......…... 114
 J. Wilgen and P. Duval

LivEPICS – An EPICS Linux Live CD for Small
Applications, Training and Fly Tests ………..……………..…...…...... 116
 M. Giacchini and G. Bassato

Fault-tolerant EPICS Directory Service ………..…….…………...…... 117
 I. Habjan, K. Zagar, and M. Sekoranja

Java Device API and CosyBeans in the GSI
Controls System ………..…………………………………….….....…... 120
 G. Froehlich, K. Hoeppner, U. Krause, V.R.W. Schaa,
 I. Kriznar, M. Plesko, and J. Bobnar

PC-based Innovations in the VEPP-4 Obsolete
Control System ………..…….…………………………………..……... 123
 V. Kaplin, S. Karnaev, O. Meshkov, I. Morozov,
 O. Plotnikova, V. Smaluk, and A. Zhuravlev

Building and Deploying Loosely Coupled Console
Applications ………..…….………………………………………..…..... 126
 A. Labudda

RF System High Power Amplifier Software Conversion
at Jefferson Lab………..…….……………………………………….... 129
 G. Lahti, H. Dong, and T. Seeberger

 vi

Advantages of the Program-Based Logbook Submission
GUI at Jefferson Lab …..…….……………………….……………...... 131
 T. McGuckin

Management in Temperature of RF Cavities of VEPP-4M
Electron-Positron Facility …………………….……………………..... 134
 E. Miginskaya, I. Morozov, V. Tsukanov, and A. Volkov

SNS IOCs Use of Relational Database to Supply
Configuration File …..…….……………………….………….……...... 136
 J.D. Purcell, W. Blokland, A. Liyu, J. Patton,
 T. Pelaia, and A. Zhukov

Control System Using FL-net for Communication
Between Different PLC ……………………….……………………..... 139
 A. Osanai

Compact Monitoring and Control System with
Event Simulating ……………….…………….……………………...... 142
 V. Vinogradov

New High-Performance Modular Computer System
Architectures for Control Network Applications …………...……..... 145
 V. Vinogradov

The ACOP Family of Beans ………………….……………………...... 149
 P. Duval, H. Wu, and I. Kriznar

ACS – An Open Source Control System Infrastructure …...….…..... 152
 K. Zagar, G. Chiozzi, M. Sekoranja, H. Sommer, M. Plesko,
 B. Jeram, A. Caproni, R. Cirami, and P. Di Marcantonio

 APPENDICES

List of Participants …...……..……………………………………….... 155
Author Index ….……………..……………………………………….... 162

 vii

 PREFACE

 The 6-th international PCaPAC (Personal Computers and Particle Accelerator
Controls) workshop was hosted by Jefferson Lab, Newport News, Virginia, USA,
from October 24-27, 2006. The workshop was attended by about eighty participants
who represented accelerator control system developers of twenty four research
institutes and centers from ten countries.
 The main objectives of the conference were to discuss the most important issues of
the use of PCs and modern IT technologies for controls of accelerators and to give
scientists, engineers, and technicians a forum to exchange ideas on control
problems and their solutions.
 The workshop consisted of plenary sessions and poster sessions. No parallel
sessions were held. Seventy seven oral and poster presentations were made during
the conference, on the basis of which more than fifty papers were submitted by the
authors and included in these Proceedings.
 Many people contributed to the success of the workshop. Members of the Local
Organizing Committee are listed below. M. Hightower, C. Lockwood, R. Bizot, and
N. Vermeire from Jefferson Lab Director’s office did a fabulous job in organizing
and coordinating of all our efforts. Special mentions go to S. Kyte and her team
for the development and support of the official PCaPAC 2006 web site, F. Dylla for
his remarkable talk at the workshop dinner about vacuum and its importance for
science and technology, C. Watson for his very nice presentation of supercomputing
research at Jefferson Lab, D. Neal for his wonderful talk about “living on the web”,
M. Plesko and L. Catani for their excellent PCaPAC 2006 summary talk, S. Suring
and his fantastic music band for providing a very comfortable atmosphere during
the workshop dinner, N. Okay for his great moderation of a user discussion session,
M. Epps for his help during the Jefferson Lab tour, and G. Adams for his beautiful
conference photos. We thank Jefferson Lab’s Associate Director for Accelerators S.
Chattopadhyay for his support of the PCaPAC over two years and Jefferson Lab’s
Chief Operating Officer M. Dallas for his help in the organization of the workshop.
 We gratefully acknowledge grants from the MathWorks Inc. and the Computer
Sciences Corporation, which allowed us to provide financial support for PCaPAC
participants from Russia and India as well as for students from local Colleges.
 Finally, we thank those who participated at the workshop and contributed papers.
 The printed version of the PCaPAC 2006 Proceedings is published at Jefferson Lab
according to the decision of the PCaPAC International Program Committee of
October 26, 2006.
 The next PCaPAC workshop will be held in Slovenia or Italy in the fall of 2008.

 M. Bickley, P. Chevtsov

 viii

PCaPAC International Program Committee

Reinhard Bacher, DESY, Germany
Matthew Bickley, Jefferson Lab, USA
Luciano Catani, INFN, Italy
Ron Chestnut, SLAC, USA
Pavel Chevtsov, Jefferson Lab, USA
Philip Duval, DESY, Germany
Tadahiko Katoh, KEK, Japan
In Soo Koo, POSTECH, Korea
Ajith Kumar, NSC, India
Shin-ichi Kurokawa, Japan
Alexander Lukyantsev, IHEP, Russia
Hiroshi Nishimura, LBL, USA
Mark Plesko, JSI, Slovenia
Deborah Quock, ANL, USA
BeiBei Shao, Tsinghua University, China
Ryotara Tanaka, Spring8, Japan
Ernest Williams, SNS, USA

PCaPAC 2006 Local Organizing Committee

Matthew Bickley - Chair
Pavel Chevtsov
Andrew Hutton
Karen White
Theo Larrieu
Cela Callaghan
Diane Sarrazin

 ix

 PCaPAC 2006 Schedule

 x

Monday, October 23

5:30 - 7:30 Evening Registration & Welcome Reception

Tuesday, October 24

8:00 - 9:00 Morning Registration

9:00 - 9:30 Opening Ceremony

9:30 - 10:00 "TANGO control system status”
 J.-M. Chaize (ESRF, France)
10:00 - 10:30 "The new control system for future low-emittance light
 source PETRA 3 at DESY: from conceptual design work
 to realization”
 R. Bacher (DESY, Germany)

10:30 - 11:00 Coffee Break

11:00 - 11:20 "Status of the SCSS Prototype Accelerator and Control

 System"
 T. Ohata (JASRI/Spring8, Japan)

11:20 - 11:40 "Migrating the STAR Slow Controls System to PCs"
 J. Fujita (Creighton Univ, USA)
11:40 - 12:00 "Using the common device interface in TINE"
 P. Duval (DESY, Germany)

12:00 - 1:30 Lunch Break

1:30 - 1:50 "The interconnection of TINE and STARS"
 T. Kosuge (KEK, Japan)
1:50 - 2:10 "Embedding a TANGO device into a digital BPM"
 G. Gaio (ELETTRA, Italy)
2:10 - 2:30 "Control system for the FFAG complex in KURRI"
 M. Tanigaki (Kyoto Univ., Japan)
2:30 - 2:50 "Operational experience with synchrotron light

interferometers for CEBAF experimental beam lines”
 P.Chevtsov (JLab, USA)

2:50 - 3:30 Coffee Break

3:30 - 3:50 "Beyond PCs: Accelerator Controls on Programmable

Logic”
 M. Plesko (Cosylab, Slovenia)

 xi

3:50 - 4:10 "Mono for cross-platform control system environment"
 H. Nishimura (LBNL, USA)
4:10 - 4:30 "A configurable Interlock system for RF stations at XFEL"
 M. Penno (DESY, Germany)
4:30 - 4:50 "PC-based magnetic field mapping for superconducting

cyclotron (SCC) at VECC"
 S. Pal (VECC, India)

4:50 - 5:10 "MCS-8 eight axis embedded motion control system"
 R.Gajsek (Cosylab, Slovenia)

5:10 - 5:30 "Ethernet based embedded system for FEL diagnostics and
controls"

 J.Yan (JLab, USA)
5:30 - 7:00 TINE meeting

Wednesday, October 25

9:00 - 9:20 "Virtual machines for EPICS softioc management"

G.Lawson (SNS, USA)
9:20 - 9:40 "MicroIOC: PC and control system longevity"

A.Podborsek (Cosylab, Slovenia)
9:40 - 10:00 "Beam line control at EMBL Hamburg"
 U. Ristau (EMBL, Germany)
10:00 - 10:20 "DAQ based high level software applications using

MATLAB"
 R. Kammering (DESY, Germany)

10:20 - 11:00 Coffee Break

11:00 - 11:20 "Ethernet based fieldbus functionality for neutron

scattering experiments with PROFINET IO"
H. Kleines (FZ Juelich, Germany)

11:20 - 12:00 "XML Tutorial"
 D. Quock (ANL, USA)

12:00 - 1:30 Lunch Break

1:30 - 1:50 "EPICS SCA Clients on .NET x64"
 H. Nishimura (LBNL, USA)
1:50 - 2:30 "The Project Management Tutorial"

M. Plesko (Cosylab, Slovenia)

"Posters in Pills" Session

2:30 - 2:35 "Standardization of the PSI accelerator control systems"

A.Mezger (PSI, Switzerland)

 xii

2:35 - 2:40 "Status of ISAC Control System"
Ch. Payne (TRIUMF, Canada)

2:40 - 2:45 "First operation with SPARC control system"
G. Di Pirro (INFN, Italy)

2:45 - 2:50 "EPICS ArchiveViewer Project Status"
S. Chevtsov (SLAC, USA)

2:50 - 2:55 "Device Address Redirection as a Tool in the TINE Control
System"

 S. Herb (DESY, Germany)
2:55 - 3:00 "Web GUIs for the TANGO control system"

L. Zambon (ELETTRA, Italy)
3:00 - 3:05 "A Communication Protocol for a Distributed Control

System with LabVIEW"
L. Catani (INFN, Italy)

3:05 - 3:20 Coffee Break

3:20 - 5:00 Poster Session

6:00 - 7:00 Networking Reception and Mariner's Museum visit
7:00 - 8:00 Conference Dinner and talk by Dr. Fred Dylla, JLab's Chief

Technology Officer and Free Electron Laser project
Program Manager "From a Spark in Vacuum to Sparking
the Vacuum”

Thursday, October 26

9:00 - 9:20 "User requirements for the PETRA3 control system at

DESY"
M. Bieler (DESY, Germany)

9:20 - 9:40 "Off-line analysis goes on-line! "
M. Lomperski (DESY, Germany)

9:40 - 10:00 "Control systems design a user's perspective"
I.Carlino (JLab, USA)

10:00 - 10:30 USER'S PERPECTIVES - DISCUSSION

10:30 - 11:00 Coffee Break

11:00 - 11:20 "A prototype of a beam steering assistant tool for

accelerator operations"
 P. Chevtsov (JLab, USA)

11:20 - 11:40 "Application of interest: a relational database approach to
managing control system software applications"

 D. Quock (ANL, USA)

 xiii

11:40 - 12:00 "Accelerator management with web-based GIS"
A. Yamashita, T. Ohata (Spring-8, Japan)

12:00 - 1:30 Lunch Break

1:30 - 1:50 "GIS at Jefferson Lab"

T. Larrieu (JLab, USA)
1:50 - 2:20 "Status of the CEBAF control system at JLAB"

M. Bickley (JLab, USA)
2:20 - 3:00 "Supercomputing research at Jefferson Lab"

C. Watson (JLab, USA)

3:00 - 3:30 Coffee Break

3:30 - 5:00 Jefferson Lab Tour
5:30 - 7:30 IPC Meeting, CEBAF Center, L102/L104

Friday, October 27

9:00 - 9:30 "Control system studio"

M. Clausen (DESY, Germany)
9:30 - 10:30 “Living on the Web”

D. Neal (Computer Sciences Corporation)

10:30 - 11:00 Coffee Break

11:00 - 12:00 Summary, Isamu Abe Prize, Closing
 M. Bickley, L. Catani, M. Plesko, P. Chevtsov

 xiv

 Participants of the 6-th PCaPAC International Workshop at Jefferson
 Lab’s CEBAF Center (photo Greg Adams).

 xv

 The PCaPAC 2006 Isamu Abe prize winners Sergei Chevtsov,
 on the left, and Jianxun Yan, on the right, with workshop
 chairman Matthew Bickley, center (photo Greg Adams).

 xvi

 CONTRIBUTED PAPERS

TANGO CONTROL SYSTEM STATUS

J. M. Chaize on behalf of the TANGO teams of ESRF1, SOLEIL2, ELETTRA3 and ALBA4

Abstract
 TANGO, is a control system framework based on
CORBA, it provides distributed objects and distributed
services. It can be scaled from controlling a large
accelerator complex or a beam line until a small
embedded system.
 For several years TANGO is being developed as an open
source project on Sourceforge by 4 European light
sources - ESRF and Soleil in France, Elettra in Italy and
Alba in Spain. Over the last year improvements have been
made to the TANGO core, web interface, code generator
tool and numerous classes has been developed within the
4 core institutes and by other groups around the world.
The main highlight of the last year has been the
successful commissioning of Soleil. Other highlights
include the increasing number of groups using TANGO
and the first embedded TANGO device servers now
running on a Libera beam position monitor. This talk will
briefly present TANGO and then provide an overview of
the new developments in TANGO since the last PCaPAC
meeting.

HOW IT WORKS
 TANGO [1] is an object oriented distributed control
system using CORBA developed in a collaborative open
source organization by 4 European light sources. It
defines a protocol to interact with objects distributed over
an heterogeneous network in a so called “software bus”.

Much more than a simple software bus, TANGO is now a
mature system integrating a large set of tools and utilities
necessary to operate a large instrument like an accelerator
complex or a simple experiment in a laboratory.

It includes a database server for configuration, a set of
tools to administrate and configure it with associated Java

GUIs. A History Database system is available to archive
all the physical signals of a control system.

A set of binding allows physicists to work with their
favorite tools such as Matlab, Labview, IgorPro or Python
to interact with equipment devices.

Many utility classes, servers and their associated GUIs
are available to do scanning, alarm system, web interface,
etc…

A code generator allows to generate the frame of any
server necessary to integrate new hardware in a control
system.

Concerning the GUI, a set of generic tools allows to
monitor and control all hardware device of the control
system.

Specific Java, QT or Python application can be easily
written thanks to the corresponding application toolkits. A
synopsis edition and animation tool allows to write
beautiful synopsis without writing a single line of
code.

Recently, two bridges have been written to allow

interoperability with EPICS systems. Now, Tango can be
used as a object oriented layer above EPICS. In the other
way, an EPICS system can also integrate a TANGO
server. These 2 bridges open the door to a possible larger
integration of these 2 complementary systems.

Another recent progress is the possibility to embed a
TANGO server directly in a small acquisition system or
in a Field Programmable Gate Array (FPGA). This
possibility allows the suppression of one computing layer
and open the door of ubiquitous computing for control.

THE COLLABORATION
The collaboration started in 2002 and extended in 2004
and 2005 has shown its efficiency. The 4 collaborating
institutes are sharing a CVS repository at Sourceforge[2].
ESRF and ELETTRA are in operation for more than 10
years and use TANGO for their modernization program.
At the opposite, SOLEIL and ALBA are both in

1 http://www.esrf.fr
2 http://www.synchrotron-soleil.fr

3 http://www.elettra.trieste.fr
4 http://www.cells.es

*chaize@esrf.fr

3

http://www.omg.org/

construction phase and use TANGO in a coherent way for
Beam lines and accelerator. The collaboration covers a
large range of needs.
 The responsibility of each institute has been attributed
naturally depending of the needs

ESRF, is in charge of the following items:

• Core libraries in C++ and Java.
• Class generator (pogo)
• Database server and browser (Jive)
• Administration tool (Astor)
• Java application toolkit (ATK)
• Synopsis editor (Jdraw)
• Windows setup program.

SOLEIL is in charge of:

• Scada interface
• History database
• Java panels
• Industrial I/O classes
• Many utility classes
• Matlab and labview bindings
• Logging system

ELETTRA is in charge of:

• Database clustering
• Web interface
• Alarm system
• Qt/C++ toolkit (Qtango)
• Porting servers on ARM processor
• Archive events for History Database

And ALBA is in charge of:
• Python server
• Industrial I/O Abstract classes
• Motor control classes
• Motor/Counter device pool
• New web site

The successes
 In several domains, several institutes are working
together and bring their knowledge and experience.
 A typical example is the integration of the Digital BPM
Libera [3].
 SOLEIL has written the device server for Linux. On
the proposal of ELETTRA, ESRF has ported the TANGO
libraries for ARM processor. ALBA has written a
management tool. ELETTRA has embedded the server in
the controller with active help of SOLEIL and ESRF.
Now, the four institutes are using the same digital bpm
software chain.
 Some other narrow collaborative developments can be
highlighted:

• Database server clustering and redundancy
• History Database
• Application toolkit and GUIs
• And many other cases.

In all these common field the collaborative development
in an open source strategy is a success and TANGO can
now be considered as a complete and operational system.

What can be improved
 However, there are some fields where things can be
improved.
 A typical case is the device servers development. With
the time, a huge number of hardware has been interfaced
and numerous devices servers have been written in all the
institutes and by various TANGO users in other labs. (e.g.
CEA [4]).
 It becomes more and more difficult to benefit from this
large basis because there is no easy way to identify, find
and classify what is existing and if it may fit to your
need. Some database, search machine or classification
needs to be setup.
 The use of the abstract interfaces defined and agreed by
everybody is not used enough. It could largely improve
the coherence of the different hardware interfaces.
Concerning the visibility of TANGO. Each institute has
its own web site. It does not ease the overview of what’s
happening. We have started to implement a common web
site [5]. The filling of it is in progress.
 Lastly, there is a large number of different tools which
needs to be learn and known. The integration of all the
tools in an unique workbench such as Eclipse[6] would be
a good way to have an unified interface.

ENLARGING THE COLLABORATION
 Thanks to the download facility, TANGO is now used
outside the 4 collaborating institutes. TANGO is used in
some schools and universities and in some other
laboratories.
 We aim to enlarge the community because we thing that
more user we are, more rapidly the system will grow and
be stable.
 The last collaboration meeting held in Grenoble in
September has been organized jointly with the ISAC
meeting. 11 institutes and 35 people attended to the
meeting and shown their interest to TANGO. We
discussed the vision of the future and we noticed a
common view among the participants.
 We agreed to notice that such a big meeting was not the
best place to take technical decisions. We would like to
continue innovative development without being slowed
by too much inertia. However a control is necessary to
avoid possible forking or divergence between a large
number of collaborative institutes. In consequence we
agreed on new rules for decision making.

We setup a management board composed of 4 people.
Each institute nominates one member. This management
board is in charge of taking decisions concerning the
general strategy and the core libraries. They communicate
regularly by cyber meeting and maintain together the
tasklist. In case of divergence, a vote will be done.

In addition of that, we have defined a certain number of
working groups working on particular items.

4

• History database
• Java Application toolkit
• Industrial I/O servers
• Web site
• Embedded systems
• Etc…

Working group can be setup on a temporary basis for a
common development as it has been the case recently for
the digital BPM software.
 Each working group is taking care of its domain and
regularly communicate by cyber meetings. They are all
composed by members of different institutes.
 Plenary meetings will be organized twice a year in a
rotating manner in each institute. It will be the occasion
for each working group to report on their activities.

 FUTURE DEVELOPMENTS
Even if today TANGO can be considered as a mature
system and is stable, active development continues in
each institutes to improve and extend its features. The key
subjects are the following:

• Merge the 4 web sites in one single http://tango-
controls.org. This site has already been created it
will be filled up soon.

• Split the documentation in several books and
write down more tutorials and code examples.

• Write a distributed naming service in order to
decrease load and dependency on database
server.

• Complete all the present tools with new features,
allow the code generator to generate Python
servers.

• Writing numerous abstract classes for widely
used devices such as CCD, Industrial I/O, motors
...

• Associate each abstract class with a Java panel.
• Improve the identification, the finding and the

packaging of the device server classes available
by reinforcing the standardization of the
documentation.

• Embedding a TANGO server in FPGAs.
• Work on an Eclipse workbench to integrate all

the development and deployment tools in one
single interface.

• Last but not least, there is a permanent work of
developing new device servers for interfacing
new hardware and extend the catalog of
supported devices.

ACHIEVEMENTS

Soleil is running
The main achievement of this last year is the successful

commissioning of the SOLEIL light source [7]. It is the
first light source where both the accelerator complex and
the 6 first beam lines are fully controlled by TANGO.

This represents 7 instances of TANGO today. 12 in
medium term.

The accelerator control system is running about 150
TANGO device servers exporting more than 8000 devices
running on 105 hosts (mainly Windows based Compact
PCI crates). The Graphical User interfaces are made with
a Java based SCADA including ATK widgets. A large
part of the control room GUIs has been easily developed
by the operator staff themselves thanks to the high
modularity of the provided tools.

From the early beginning of the commissioning,
TANGO has been providing to the physicists a full range
of utility (GUIs, archiving tools, online display of signals
etc…) allowing them working efficiently. On the
beamline side, the TANGO scan server and associated
GUI together with a sequencer named Passerelle allows
the users to pilot their experiment.

ESRF and ELETTRA: A careful migration
At ESRF and ELETTRA, TANGO has been step by

step and smoothly integrated to the former control system
while it was operating 24 hours a day. A set of gateways
allows the interoperability of the TANGO control system
with the former RPC based control system which were
built on the same distributed paradigm.

ESRF achievements and projects
This last year, the Machine control systems runs 350

TANGO servers for 1500 devices while the former RPC
system is still controlling 6000 devices. The entire
vacuum system, the linac, the interlock system, the alarm
system and the PSS have been fully converted to
TANGO. Many other instruments are now progressively
interfaced to TANGO.

The control room runs a mix of old Motif RPC and
Java/TANGO applications. The interoperability is such
that any new refurbishment done with TANGO integrates
easily to the all.

The beamline are step by step converted to accept
TANGO. Today half of them are running some TANGO
servers. Servers for key equipments such as CCD
detectors, stepper motors or counters are being developed.
They will migrate soon on a large number of beamlines.

ELETTRA achievements and projects
 At Elettra, several fundamental installations (injector
pulsed magnets, RF master oscillator, most of the BPMs)
are now fully under Tango control and 140 device servers
are currently in operation.
 The Global Orbit Feedback project [8] currently under
development is completely Tango based.
 Elettra is developing two important new projects: the
new booster injector [9], which is going to replace the
current linac based injector, and FERMI@Elettra [10], a
single-pass free electron laser covering the 100 nm to 10
nm wavelength region and capable of delivering femto-
second light pulses.
The controls of both these new accelerators will be
completely based on Tango.

5

ALBA status
The civil works have started and the commissioning of

the storage ring is foreseen for 2009. TANGO will control
both the accelerator complex and the 20 beamlines. For
one year, Alba has been participating actively to the
collaboration and is developing multiple device servers
for a set of industrial I/O. ALBA takes in charge Python
server library and a key project named “device pool” This
software allows to dynamically instantiate TANGO
objects for motors and counters and does the link with
dedicated hardware. This project may have a large impact
for the beamline control of all the 4 institutes.

References
[1] J.M. Chaize and all. “Tango Control System
 Framework” PCaPAC2005 Hayama, Japan

[2] Sourceforge project for Tango,
http://sourceforge.net/projects/tango-cs

[3] http://www.i-tech.si/products-libera.html
[4] http://www-drecam.cea.fr/scm/lions/python-tango-
lions.php
[5] http://tango-controls.org
[6] http://www.eclipse.org
[7] A. Buteau and all “Status of Soleil control systems”
 EPAC 2006, Edimburgh June 2006
[8] D. Bulfone et al. "Design of a Fast Global Orbit

Feedback System for the Elettra Storage Ring",
ICALEPCS 2005, Geneva, October 2005.

[9] L. Battistello et al. "The Control System of the Elettra
 Booster Injector", ICALEPCS 2005, Geneva,
 October 2005.
[10] C.J. Bocchetta et al. "FERMI@Elettra: A Seeded
 Harmonic Cascade FEL for EUV and Soft X-Rays",
 FEL 2005, Stanford, August 2005

6

THE NEW CONTROL SYSTEM FOR THE FUTURE LOW-EMITTANCE

LIGHT SOURCE PETRA 3 AT DESY:

FROM CONCEPTUAL DESIGN WORK TO REALIZATION

Reinhard Bacher, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Abstract
At DESY, the existing high-energy physics booster

synchrotron PETRA 2 will be transformed into a 3rd-

generation light source (PETRA 3). In addition, the

technical systems and components of the pre-accelerators

LINAC 2 and DESY 2 will be improved. Within the

scope of this project, the control system and the front-end

electronics will be upgraded. Key elements of the

conceptual design and the current project status will be

presented.

INTRODUCTION

For more than two years, DESY has been changing its

scientific profile from a predominantly high-energy

physics laboratory to a unique synchrotron light research

centre. This change has been manifest in several

decisions, namely (1) to switch off the proton-lepton

collider HERA 2 and to transform its booster PETRA 2

into a synchrotron light source (PETRA 3), (2) to upgrade

the former Tesla Test Facility (TTF) into a user facility

(FLASH), and (3) to participate in the European project

of a linear-accelerator-driven hard X-ray free electron

laser (XFEL) located at the DESY site. In addition to

these facilities, DESY also operates the 2
nd

-generation

synchrotron light source DORIS 3.

The future facility PETRA 3 will be a high-brilliance

3
rd

-generation light source [1]. The design values for the

new storage ring will be 6 GeV for the particle energy and

100 mA for the current. The transverse particle beam

emittance is expected to be 1 nmrad. Thirteen undulator

beam lines operated by HASYLAB (Hamburger

Synchrotronstrahlungslabor) and EMBL (European

Molecular Biology Laboratory) will provide photons for

various experiments (X-ray diffraction and imaging, high-

energy resolution spectroscopy, material science, X-ray

absorption and resonant scattering as well as structural

biology).

At the end of July 2007, operation of HERA 2 will be

terminated and all other proton facilities at DESY will be

shut down. In the following year, PETRA will be

upgraded while the electron or positron pre-accelerators

LINAC 2 and DESY 2 continue supplying DORIS III

with particles. In order to improve the technical systems

and components of LINAC 2 and DESY 2 the pre-

accelerators will interrupt service for 6 months beginning

2008, as the re-commissioning of LINAC II and DESY II

is scheduled for summer 2008 and the initial

commissioning of PETRA 3 for autumn 2008. User beam

operation is expected to start in January 2009.

Within the scope of the PETRA 3 project, the control

systems and the front-end electronics of LINAC 2, DESY

2 and PETRA will be upgraded almost simultaneously.

Therefore, a reasonable balance between continued use of

proven concepts or technologies and upgrades using new

technologies and ideas has to be found.

FRONT-END ELECTRONICS AND

DEVICE INTERFACES

A commonly used front-end hardware standard is

mandatory to ensure efficient long-term maintenance of

hardware and software. At DESY, hardware

standardization was enforced by the DESY-proprietary

fieldbus standard SEDAC with decreasing success during

the last years. SEDAC is now more than 25 years old and

is experiencing strong competition from modern

industrial fieldbuses or data links. Besides SEDAC,

CANopen is progressively used. Less frequently used are

USB, RS232, GPIB, PCI/cPCI and TCP/IP. Increasingly

popular is TwinCAT ADS [2] that is also widely used in

automation industry.

In order to handle this variety of different solutions

within the PETRA 3 project a few measures have been

taken:

(1) Only a limited fraction of the existing SEDAC-

based electronics will be used in future.

Figure 1: Schematics of CANopen interface software

(2) New developments concentrate on CANopen as

fieldbus interface standard. A new standard based on the

industrial 3U-Euro crate standard has been established.

General electronic boards based on the Coldfire and

HCS12 microcontroller [3] families have been developed

and the corresponding Vector [4] CANopen

implementations have been adapted to our needs [5]. In

7

order to communicate with the CANopen stack the

developer of the application software registers the user

specific variables in the CANopen object dictionary and

provides the user specific code for a predefined set of

callback functions (Fig. 1).

In addition, a processor board based on Altera NIOS II

is under development. The general processor boards are

connected with user-specific boards implementing the

corresponding electrical and mechanical interfaces. The

cables to the user-specific equipment are connected at the

back of the crate.

Figure 2: Architecture of the common device interface

(3) A CANopen-to-SEDAC adapter has been developed

which allows operating SEDAC-based electronics in a

CANopen-dominated environment.

(4) Recently, a common device interface [6] has been

developed. It runs as a separate TINE equipment module

and offers a generic access to the attached front-end

electronics (Fig. 2). Bus plugs are available for

CANopen, SEDAC and RS2232. Plugs for GPIB and

TwinCAT ADS will be provided.

(5) Specific stand-alone and off-the-shelf test and

measurement instruments such as oscilloscopes or

spectrum analysers do not in general fit seamlessly into

control system architectures. Proper instrument

integration often imposes an undue burden on the

application developer. To simplify this task, we use IVI-

foundation [7] compliant instrument drivers. The

Interchangeable Virtual Instrument (IVI) standard defines

types of instruments and interfaces to generic virtual

instrument drivers in order to avoid vendor-specific

incompatibilities. In addition, the VISA (Virtual

Instrument Software Architecture) [8] standard is used to

become data bus independent. Prototype-like LabView

virtual instrument applications for oscilloscopes (Fig 3)

and digital multimeters have been finished and tested with

instruments from various vendors.

Figure 3: Generic virtual oscilloscope application

TINE CONTROL SYSTEM SOFTWARE

SUITE

The up-graded control system uses a multi-layer

architecture linked by the integrating middleware or

software bus TINE (Threefold Integrated Network

Environment), a set of communication protocols and

services developed over the past years as the core of the

HERA 1/2 control system [9]. TINE is now in a mature

state. Figure 4 illustrates the control system architecture.

TINE is a multi-platform system, running on such

legacy systems as MS-DOS, Win16, and Vax VMS as

well as Win32, Linux, most Unix machines, MACOS,

VxWorks and NIOS. TINE is also a multi-protocol

system to the extent that IP and IPX are both supported as

data exchange protocols. Finally, TINE is a multi-control

system architecture system, allowing client-server,

publisher-subscriber, broadcast and multicast data

exchange.

TINE provides application programmer interfaces

(APIs) for Java, VisualBasic, C/C++, LabView, MatLab

and a command line interface for scripting tools.

The TINE client/server implementation in C is widely

used while the corresponding JAVA implementation has

been recently finished.

Name services are provided with plug-and-play

automated server registration.

Besides user access control, TINE offers a repeater and

redirection mechanisms. The repeater mechanism is

suitable for relieving delicate servers such as orbit

feedback servers of undue communication burden or data

archiving duties. Redirection [10] allows for instance

redirecting of locally registered devices (or even ‘local’

hardware access) to a remote server.

TINE includes interfaces to several associated services.

Data filtering and archiving, event handling, alarm

filtering and archiving are already supported. An interface

for central message processing and archiving will be

developed.

8

Figure 4: Architecture of the control system for the future light source PETRA 3

A prototype implementation of a read-only TINE Web

gateway has been completed which is located in the so-

called “Demilitarized Zone” between Internet and

Intranet. Data are returned in response to an http-GET

request from the corresponding web server.

Figure 5: Graphical JAVA client application using both the client application framework and the device manger classes

9

APPLICATION DEVELOPMENT

To ensure platform independence, JAVA is preferred

and recommended as the programming language. Swing

lightweight components are the basis for the graphical

applications. In addition, The ACOP (Accelerator

Component Oriented Programming) toolbox [11] is used

for simple data access and rendition. The widely used

ACOP chart component is presently being extended to a

suite of different ACOP components offering a powerful

graphical user interface for rapid development of simple

JAVA applications [12].

Framework classes for client and server applications

have been developed to ensure design conformity and to

handle initialisation data. The so-called device manager, a

set of classes dedicated to build standardized operator

panels has been provided (Fig. 5). A device server wizard

generates code skeletons that are fully operational and

integrated into the control system [15]. ANT-based scripts

facilitate and standardize application building and

deployment [14]

Recently, conceptual design work to implement an

accelerator component database as “single-point-of-

information” has been started. Fig. 6 shows the proposed

architecture.

Figure 6: Proposed architecture of the accelerator

component database

PROJECT MANAGEMENT

In order to facilitate project management, the Cosy

project manager tool from Cosylab [15] has been chosen.

This collaborative tool uses extensively e-mail

correspondence to distribute task tickets. The

corresponding work progress is measured in “minutes

worked”. Both features may not be applicable in a

scientific environment. Most scientific software

developers are trained to analyse and structure their tasks

without too strict supervision, guidance or control. To

promote the acceptance, the tool has been tailored. The

progress metrics has been changed from absolute to

relative units and the report form has been simplified.

SUMMARY

Within the scope of the PETRA 3 project at DESY, the

control systems and the front-end electronics of PETRA 2

and the pre-accelerators LINAC 2 and DESY 2 will be

upgraded. PETRA 3 will start user beam operation in

January 2009.

Various measures have been taken to limit the variety

of device interfaces. In particular, forced use of newly

developed CANopen based electronic modules and the

use of a common device interface will facilitate this task.

The TINE control system software suite that is now in a

mature state, and its associated services will be the core

of the upgrades control system of PETRA 3, LINAC 2

and DESY 2.

JAVA is the preferred and recommended programming

language. Common class libraries are provided to reduce

the final coding work and to ensure design conformity.

The ACOP toolbox will be extended to support rapid

development of simple JAVA applications even by less

experienced programmers.

The Cosylab Project Manger Tool has been adapted for

use in a scientific environment. The acceptance by the

project team is currently being investigated.

REFERENCES

[1] http://petra3.desy.de/

[2] http://www.beckhoff.de/

[3] http://www.freescale.com/

[4] http://www.vector-informatik.de/

[5] P. Bartkiewicz, P. Duval, S. Herb, DESY, The

Common Application Programming Interface for

Fieldbus Related Projects at PETRA III, this

workshop

[6] P. Duval, H.G. Wu, DESY, Using the Common

Device Interface in TINE, this workshop

[7] http://www.ivifoundation.org/

[8] http://www.ni.com/visa/

[9] http://tine.desy.de/

[10] S. Herb, P. Duval, DESY, Device Address

Redirection as a Tool in the TINE Control System,

this workshop

[11] http://adweb.desy.de/mst/acop/ workshop

[12] H.G. Wu, P. Duval, DESY and M. Plesko, I. Kriznar,

Cosylab, The ACOP Family Beans, this workshop

[13] J.Wilgen, P. Duval, DESY, A Device Server

Generator for Control Systems

[14] A. Labudda, DESY, Building and Deployment

Loosely Coupled Console Applications, this conf.

[15] http://www.cosylab.com

10

STATUS OF THE SCSS PROTOTYPE ACCELERATOR

 AND CONTROL SYSTEM

T. Ohata, T. Fukui, T. Hirono, N. Hosoda, T. Masuda, T. Matsushita, T. Ohshima, M. Takeuchi, R.

Tanaka, A. Yamashita, JASRI/SPring-8, Hyogo, Japan

M. Kitamura, H. Maesaka, Y. Otake, RIKEN/SPring-8, Hyogo, Japan

Abstract
The prototype accelerator of SPring-8 Compact SASE

Source (SCSS) has succeeded in VUV lasing in June

2006. The prototype accelerator was built to confirm the

technical feasibility of the 8-GeV X-ray FEL accelerator

under construction in SPring-8. A control framework,

MADOCA, is used for the prototype accelerator control.

MADOCA-based control system worked well and was

stable enough to perform VUV lasing operation. This

paper described the present status of the SCSS prototype

accelerator and its control system.

INTRODUCTION

The X-ray FEL, which is able to produce a high peak

brilliance photon beam with high coherency, is required

by a wide range of new sciences. The SASE (Self-

Amplified Spontaneous Emission) that realizes the FEL

light source at X-ray region is the unique concept of the

X-ray FEL. Three ongoing X-ray FEL projects exist at

SLAC, DESY and SPring-8. In Japan, the X-ray FEL

project has been authorized as one of the key technologies

of national importance in the 3rd Science and Technology

Basic Plan and it is promoted as a national project.

The SCSS project was stated as a RIKEN/JASRI joint

project in 2002 [1]. And the project aims generating

coherent X-ray beams by SASE with the high gradient C-

band accelerator and the short period in-vacuum insertion

devices [2]. A 0.06 nm lasing wavelength will be

achieved by the project on SPring-8 site at 2010. The

SCSS prototype accelerator as the first phase of the SCSS

project is the test facility to confirm feasibility. The

prototype accelerator, whose electron beam energy is

250MeV and a target photon wavelength is 60nm, was

started to build in 2004. The commissioning of the

prototype accelerator began in November 2005. On June

20th, the prototype accelerator lased successfully at a

wavelength of 49nm with an 110kW maximum output

power. Figure 1 shows a picture of the SCSS prototype

accelerator seen from electron injector.

A FEL has large differences from traditional SR at the

point of coherency. To acquire a high coherent photon

beam, a quite stable RF control system and high precision

timing system are required. The prototype accelerator has

very tight requirements of the RF timing control. Less

than a sub-pico-seconds time jitter was required to

generate a stable laser. In addition, from a budget problem

we should have made ready the control system of the

SCSS prototype accelerator by the end of 2005. The X-

ray FEL project brought challenges to its control system.

OVERVIEW OF THE SCSS PROTOTYPE

ACCELERATOR

One of the important features of the X-ray FEL project

is the compactness. A Low-emittance beam injector, a

high-gradient C-band accelerator and a short-period in-

vacuum undulator are key components and they shorten a

total facility length. In the SCSS prototype accelerator we

had taken technical adequacy in those key components.

Figure 1: Cover shot of the SCSS prototype

accelerator. From this side, 500kV Gun tank, 238MHz

pre-buncher, 476MHz booster cavity are shown.

Figure 2: Overview of components of the SCSS prototype accelerator.

11

Figure 2 shows typical components of the SCSS

prototype accelerator.

A 500kV thermionic electron gun generates a low

emittance electron beam from CeB6 crystal cathode [3].

The electron injector consists of a 238MHz pre-buncher, a

476MHz booster and an S-band linac as main component.

Two C-band linacs were driven by 50MW klystrons.

Their accelerator field comes up to 35MV/m. The beam

energy was reached to 250MeV within about 35m

accelerating structures.

Two in-vacuum undulators [4] with 15mm period were

installed at the end of chicane. In-vacuum design has a

merit not only acquiring very short-period magnet array

but also providing wider aperture for the electron beam at

the commissioning. A 45-deg. tilted magnet configuration

has been adopted to ensure wide tenability of correction.

The nominal gap width is 3.5mm and its K value is 1.3.

We have confirmed validity of these key technologies

by the lasing. Figure 3 shows a plot of generated self-

amplified spontaneous emission by the SCSS prototype

accelerator. These technologies are promising to make X-

ray FEL facility compact.

CONTROL SYSTEM

General configuration

Hardware design of the control system started in April

2004. And we have started development of the software

in May 2005. The implementation for commissioning

finished in November 2005. Several I/O and

communication VMEbus boards were developed for this

project. We used MADOCA to shorten the development

period of the control software for the SCSS prototype

accelerator. MADOCA is a control framework [5] based

on database-oriented and network-distributed architecture.

An advantage of MADOCA is to abstract a hardware

component. We can put easy-to-understand semantic

names to all controlled object instead of hard-to-

understand syntactic symbols such as bit-number of a

DIO board that a VME system has. As a RDBMS, Sybase

ASE12.0 is used for management of device configuration

data. MADOCA was originally developed for the storage

ring control system in SPring-8. MADOCA has

scalability because control system applications to X-ray

beamline experiments and the accelerator complex (a

linac, a booster synchrotron and an 8-GeV storage ring)

have been working satisfactory. This feature is promising

to develop the prototype accelerator control software at

the first stage, developed software components, hereafter,

will be applicable to the coming full-scale X-ray FEL

facility. Operation program software was developed by

using X-Mate; a GUI builder on the bases of X-Window.

The GUI builder enables rapid prototyping and easy

development of a sophisticated GUI. We should have

only written application programs of only GUIs and parts

of Equipment Manager (EM). EM is device serving front-

end program on the MADOCA framework.

PC-based operator consoles were adopted in the

prototype accelerator. We selected Intel architecture (IA-

32) workstation running Red Hat Enterprise Linux 3 for

the operator consoles. Fourteen VME systems were

installed as an equipment interface. As the VME

controllers, we used Pentium3 and Pentium-M IA-32

processor boards running Solaris 9 with capability of

booting from a Compact Flash card.

The PLC was used as a built-in controller of several

components such as a magnet power supply. We selected

a FA-M3 from Yokogawa Electric Co., Ltd. The PLCs of

main components have graphical display panels with

touch pad for local operation. Makers have tested the

components by using the display panel of the PLC at own

facility. Then we could reduce the task of combined test

in site. To reduce the number of signal cabling we

adopted the DeviceNet for slow control as a peripheral

field bus. The DeviceNet links between the PLC and each

accelerator component such as magnet power supply.

We used FL-net for communication between the PLCs

and the VME systems. FL-net is one of the Ethernet-

based open standard protocols for factory automation

(FA) network and was standardized by the requirements

of Japan Automobile Manufactures Association (JAMA)

[6]. The specification of FL-net was established

afterwards as the ISO15745-4 in Oct. 2003, and as the JIS

B3521 in Feb. 2004.

A Gigabit Ethernet with optical fiber is used for the

backbone of the control network. The network has one

subnet of the control networks in SPring-8. The control

network including network switch was shared with the

FL-net that was separated by virtual LAN. We defined

eleven FL-net segments for machine groups such as gun,

s-band, c-band and so on.

Figure 4 shows a schematic view of the control system

of the SCSS prototype accelerator.

Hardware development

VME boards of high-speed A/D, D/A and two kinds of

trigger units were newly developed for the X-ray FEL

Figure 3: Observed peak powers of first lasing at the

SCSS prototype accelerator.

12

project to improve the stability of the RF system. These

boards were compliant with VME specification rev. C.1.

The A/D and the D/A boards [7] control the

acceleration gradient variation caused by the instability of

the klystron output RF power. The A/D board has four

analog input channels, which are running by 238MHz

external clock. This clock is the sub-harmonic of C-band

acceleration frequency of 5712MHz. For stable analog-to-

digital conversion two ADC chips of 12bits resolution are

used at each channel. The nonlinearity of maximum

likelihood estimation is less than 2 LSB. A Low-pass

filter of digital smoothing has a bandwidth of -3dB at

30MHz. Each channel has 4Mbytes memory to

accumulate signals from RF-detectors. The D/A board has

four analog output channels of 12bits resolution DAC,

which are running by 238MHz external clock same as the

A/D board. It has 4Mbytes memory and 32 taps FIR

filters for each output channel.

 We developed a master trigger unit (MTU) and a

trigger delay unit (TDU) for the timing system [8]. The

X-ray FEL needs a high precision timing system. We

selected a tentative target time jitter of 1 pico-second for

the SCSS prototype accelerator. The MTU generates a 1-

120Hz master trigger to drive all accelerator components

synchronously from a commercial AC frequency. The

TDU has an oven-controlled 24bits delay counters driven

by 238 MHz RF signal and generates delayed pulses

resynchronized by C-band acceleration frequency of 5712

MHz. Then we can achieve the targeted value of 1 pico-

second. The TDU has independent eight delay modules,

which make delayed timing signals for each accelerator

components.

A VME-based FL-net interface board has been

developed to control devices on PLCs via VMEbus

systems. Then, we can control whole equipment of the

SCSS prototype accelerator seamlessly from the operator

consoles.

We adopted the OPT-VME, and the MCU [9], those

stability were proven at SPring-8. The OPT-VME

consists of master and slave boards, and is a kind of

remote I/O. We used a slave board with D/A function for

fast controls of magnet power supply. The MCU is easy

customizable intelligent controller based on µiTRON OS

with SH-4 CPU. We used the MCU to control stepper

motors with position sensors.

For a small amount of data acquisition at many

distributed environment, we developed a network-

attached equipment with a capability of power over

Ethernet (PoE) [10]. A PoE is a technology of supplying

power via generic Ethernet cable along with data. Its

specifications were standardized by IEEE 802.3af. This

technology is useful for low power consumption devices

such as a wireless LAN access points. We adopted this

technology for a small size data acquisition controller. To

realize low power consumption, we developed SH-4 CPU

based controller and ported Linux (kernel-2.6.x) OS. Two

I/O modules were developed. One is 4 channels Pt100

resistance thermometer module with 0.001 degree

resolution and the other is GP-IB module. As a power

supply for the controllers, we installed intelligent

switching hubs with a capability of power sourcing

equipment (PSE) of IEEE 802.3af.

To make easy to write software for network-attached

equipment, we developed an application software

framework, which called Device Masquerade [11].

Device Masquerade fakes network-attached equipment as

local device. Application programmer should not have

knowledge of socket API programming. By using Device

Masquerade we were able to have incorporated not only

MCU and PoE based equipment but also device servers

on LabVIEW into MADOCA data collection system.

We introduced GIS-based [12] alarm display for the

SCSS prototype accelerator [13]. This is an application

program for monitor and notification of machine status.

This program was implemented by using ajax technique

Figure 4: A schematic view of the control system of the SCSS prototype accelerator.

13

[14]. By linkage with the database on MADOCA, we

could know troubles on the machine by real-time.

CONCLUSION

8-GeV X-ray FEL project has been authorized as one of

the key technologies of national importance and have

started construction.

The SCSS control system was developed in 1.5 years,

and played an important role for accelerator tuning of

VUV lasing. The control system components have proven

potentiality to be the building blocks of the 8-GeV X-ray

FEL control system. We could have made highly stable

RF system and high precision timing system on VMEbus

system. Adopting FL-net realized the integration PLC

devices into VMEbus system. We could support a small

amount of data acquisition of many distributed

environment by network-attached equipment. And for

these equipment, we developed a application framework;

Device Masquerade. and its is working well.

The race for the development of an X-ray FEL has been

intensifying worldwide with projects at SLAC, DESY and

SPring-8. In Japan, the X-ray FEL has been authorized as

one of the key technologies of national importance in the

3rd Science and Technology Basic Plan and it is promoted

as one of the national projects. We are starting the

detailed design of the control system based on MADOCA

for the X-ray FEL.

ACKNOWLEDGEMENT

The authors would like to thank to all contributors in

the SCSS project.

REFERENCES

[1] T. Shintake et. al., “X-ray FEL project at SPring-8

Japan”, Proceedings of 8th International Conference

of Synchrotron Radiation Instrument (SRI2003), 227

(2004).

[2] T. Shintake, “Status of SPring-8 compact SASE

Source FEL project”, NIMA21188, Nuclear Inst.

And Methods in Physics Research, A, 507 (2003),

382-397.

[3] K. Togawa et. al., “Emittance measurement on the

CeB6 electron gun for the SPring-8 Compact SASE

Source”, Proceedings of FEL2004, Trieste, Italy.

[4] T. Tanaka et. al., “Development of the short-period

undulator for the X-ray FEL project at SPring-8”,

Proceedings of 8th International Conference of

Synchrotron Radiation Instrument (SRI2003), 227

(2004).

[5] R. Tanaka et. al., “The first operation of control

system at the SPring-8 storage ring”, Proceedings of

ICALEPCS’97, Beijing, China, 1997, p1.

[6] http://www.jema-net.or.jp/English/

[7] T. Fukui et. al., ”A development of high-speed A/D

and D/A VME boards for a low level RF system of

SCSS”, Proceedings of ICALEPCS2005, Geneva,

Switzerland.

[8] N. Hosoda et. al., ”Development of 5712MHz

synchronous delay VME module”, Proceedings of

Particle Accelerator Society of Japan, Saga, Japan,

July 2005.

[9] T. Masuda et. al., “Upgrade of the SPring-8 linac

control by re-engineering the VME systems for

maximizing availability”, Proceedings of

ICALEPCS2003, Gyeongju, Korea, 2003.

[10] IEEE802.3af

[11] M. Ishii et. al., “A software framework to control a

network-connected equpment as a pseudo device”,

Proceedings of ICALEPCS2003, Gyeongju, Korea,

2003.

[12] http://en.wikipedia.org/wiki/Gis

[13] A. Yamashita, et. al., in this conference.

[14] http://en.wikipedia.org/wiki/AJAX

14

MIGRATING THE STAR SLOW CONTROLS SYSTEM TO PC’S

J. Fujita, Y. Gorbunov, M. Cherney, W. Waggoner, J. Burns, M. Brnicky and R. Thomen

Physics Department, Creighton University, Omaha, NE 68178, U.S.A.

Abstract
The STAR (Solenoidal Tracker At RHIC) experiment

located at Brookhaven National Laboratory has been

studying relativistic heavy ion collisions since it began

operation in the summer of 2000. An EPICS-based

hardware controls system monitors the detector's 40000

operating parameters. The system initially used VME

processors to communicate with sub-system based

sensors over a variety of field busses. The system is being

revised transferring user displays from Sun Workstations

to PC's and replacing aging VME processors with PC's.

The first subsystems were replaced during the Spring and

Summer of 2006. The new hardware has been

implemented in a way that it can operate in parallel with

the existing hardware and software.

I. HISTORICAL BACKGROUND

A. STAR/RHIC description

The Relativistic Heavy Ion Collider (RHIC) at

Brookhaven National Laboratory is home to the STAR

(Solenoidal Tracker At RHIC) experiment. The STAR

experiment investigates collisions between ions

accelerated to energies up to 200 GeV per nucleon. In

addition, at STAR collisions between polarized proton

beams at various energies are also investigated. The

primary physics goal of the STAR experiment is to search

for evidence of the Quark Gluon Plasma (QGP) [1]. The

detectors, detector electronics, and the control system

electronics sit in a high radiation area in the Wide Angle

Hall (WAH). This area is not accessible during RHIC

operation of RHIC Access may be prohibited for days or

even weeks at a time. Therefore, the slow controls

system as well as the operation of STAR is designed to

allow for both remote and continuous operation. Data

acquisition electronics are located in the DAQ room

adjacent to the STAR control room along with control

electronics for monitoring environmental conditions,

RHIC clock frequency, and control electronics for

interfacing with the accelerator and magnet control

systems.

B. STAR Slow Controls system

 The STAR controls system utilizes a Sun workstation

host in the STAR control room running EPICS

(Experimental Physics and Industrial Control System) on

a network of front-end processors [3]. STAR slow

controls mainly runs EPICS version 3.12.1. Motorola

VME board with 680x0 processors running VxWorks

version 5.2 are used as the front-end processors in the

WAH and DAQ room. These VME cards function as

EPICS Input/Output controllers (IOC’s). IOC’s are

connected to the Sun host workstation via a serial

connection and an Ethernet connection.

 VME boards are configured to boot over the network

from the host Sun workstation, since they are only

accessible when the RHIC beam is down. Once an IOC is

booted, failure of the host will not affect the operation of

an IOC unless an IOC is rebooted when the host is down.

The use of CANbus provides an alternate method for

controlling the electronics in a crate. This design of

redundant control capabilities is typical of the slow

control design at STAR.

 In the control room, the Sun workstation hosts a variety

of control software such as EPICS IOC applications for

VME boards, the CANbus control application, the

MEDM (Motif Editor and Display Manager), the Alarm

Handler, and the Channel Archiver. In the control room,

each subsystem has at least one workstation on the

controls network. These serve as operator interfaces

(OPI’s) to the control system. During RHIC operation,

these OPI’s are used for the control of the STAR detector

subsystems via their respective MEDM displays. The

host Sun workstation display is used to display the Alarm

Handler. Through the Alarm Handler many subsystems

control displays can be accessed.

II. MOTIVATIONS FOR CHANGE

Current controls system is aging and

approaching obsolescence

The STAR control system was designed over ten years

ago, and implemented during the commissioning run for

STAR in 1999. Since that time, the VxWorks version has

never upgraded, and the EPICS version upgraded once

from 3.11.9 to 3.12.4. During this time the EPICS has

steadily been upgraded and evolved. The current EPICS

release, 3.14, became available in 2002.

The outdated version of the EPICS impacts STAR slow

controls in numerous ways. It limits the support available

from the EPICS collaboration regarding maintaining

application tools, and adapting new application tools.

Any further upgrade of the EPICS past 3.13 requires a

newer version of VxWorks or alternative operating

system. VxWorks license upgrade to meet the near future

needs of STAR appears to be costly. Fortunately, the

current release has made the EPICS base portable to other

operating systems, and IOC’s can run on VxWorks,

Solaris, GNU/Linux, HP-UX, RTEMS and Win32 [2]

This enhancement is a strong motivation for STAR to

15

migrate to the current EPICS release, and away from

VxWorks.

In a similar fashion, VME boards are a decade old. While

few have failed, occasionally we have to replace an IOC

processor or expand its memory. The detector subsystems

currently operating at STAR are constantly evolving.

This typically requires adding a second IOC to share load,

but often requires additional VME crates with IOC’s. In

many cases an IOC only accesses the front-end

electronics via the serial port. The purchase of additional

VME processors appears to be cost ineffective. The

ability of an IOC to run on so many architectures under

the current EPICS release is again a strong motivation for

change.

 As with the VME boards, the Sun workstations have

proven reliable but are also aging. When the controls

system was designed and implemented Sun workstations

with Solaris running EPICS was the only option. Today

many EPICS users have moved to PC’s running Linux

and there has been substantial development work done for

EPICS on this platform.

 All of these reasons for change are becoming

increasingly important as new detector subsystems are

added to STAR. Under the present controls system

environment as new subsystems would come on line and

evolve they would be forced to use the costly VME crate

MVME solution. They would need to acquire a VxWorks

license. New systems were faced with a substantial

overhead.

III. NEW SYSTEM

A. Requirements

 The upgraded STAR slow control system must meet

several requirements. First, the system must be backward

compatible with the existing system. Second, the new

system must allow for the upgrade of the IOC operating

system in a cost efficient manner. The new control

system must allow for the migration away from VME

boards where possible.

B. Upgrade Plan

While a number of subsystems will keep using VME as

IOC processors, the subsystem that does not require the

performance of real-time operating system will be

replaced by PCs running Linux as host based IOC (soft

IOC). These are the subsystems where serial connections

are used. By moving these systems to PCs running

Linux, the VME processors that are currently in use can

now serve as spares for the aging processors. The

subsystem that requires the performance of the real-time

operating system and VME processors may to migrate to

RTEMS. In addition, the host computers in the control

room have been migrated to PCs running Linux from Sun

workstations running Solaris.

Such a hardware configuration offers several

advantages. It is cost effective in that it offers the hope of

lower hardware costs for upgrading systems, and lower

overhead costs for new systems.

IV. NEW SYSTEM

In the fall 2005, the first Linux PC host computer was

installed in the control room along side with Sun Solaris

workstations. EPICS 3.13 as well as 3.14 has been

installed along with MEDM, Channel Archiver, ALH, and

ArchiveViewer. This Linux PC has proven to be very

stable great addition for STAR control.

The second Linux PC host computer has just been

installed in the control room starting for the run year

2006-2007 as well. The second Linux PC is essentially a

mirror of the first Linux PC, functioning as the back up

computer.

Starting Spring/Summer 2006, the work on replacing

asynchronous device IOC’s began. The IOC for the

hygrometer that monitors the temperature and relative

humidity in the DAQ room has been replaced by Linux

soft IOC from MVME 167 board for the run year 2006-

2007. The ground integrity detector (GID) in

experimental hall is being integrated into EPICS as well.

On the VME boards, the work on RTEMS for MVME

167 boards has begun. For the time being, we decided to

start with MVME 167 boards. The work on RTEMS for

MVME 167 done by at SLAC is also under consideration

for MVME 167.

 V. SUMMARY

The STAR control system was designed a decade ago

and has been fundamentally unchanged since the first

experimental run at RHIC in 1999. Both the hardware and

software components of the control system are old and

approaching obsolescence. The system is at a stage

where it is difficult and expensive to upgrade the system.

An upgrade of the EPICS base to the most recent version

combined with the adoption of Linux and RTEMS as the

IOC target architecture will produce many advantages and

benefits to the STAR collaboration. A plan is now in

place for moving I/O controllers from VxWorks to Linux

and RTEMS, transferring user displays from Sun

Workstations to Linux PC's, and replacing aging VME

processors with PC's.

VI. ACKNOWLEDGMENTS

This work was supported by the Office of Science of

the United States Department of Energy.

REFERENCES

[1] 1. J.W. Harris and the STAR Collaboration “The

STAR Experiment at the Relativistic Heavy Ion

Colider”, Nucl. Phys A566, 277c (1994)

[2] R. Cole, M. Kraimer, F. Lenkszus, J. Anderson, J.

Hill, et al. The EPICS collaboration, URL:

http://www.aps.anl.gov/epics/base/R3-14/index.php

[3] H.S. Matis et al., “Integration and Conventional

Systems at STAR”, NIM, A499, 802 (2003)

16

Using the Common Device Interface in TINE

Philip Duval and Honggong Wu, DESY MST, Hamburg, Germany

Abstract
 An accelerator control system must in general support a
variety of hardware devices and field busses. The
Common Device Interface (CDI) is designed to provide
the control system engineer with an easy-to-use-and-
understand interface for accessing data from the hardware
devices, independent from the underlying field bus. The
concept behind CDI was initially presented in PCaPAC
2005 [1]. Since that time CDI has undergone numerous
refinements which render the writing of a plug-and-play
CDI bus plug a straightforward procedure on the one
hand, and allow the server developer an intuitive interface
for acquiring or setting hardware data either
synchronously or asynchronously and from either single
or multiple devices.

We note here some of the differences in philosophy
between CDI and asynDriver [2] (used by EPICS) and
DOOCS [3] device drivers, and we report on the first
operational results using CDI on several different TINE
[4] platforms (including, Windows, Linux, and Java).
Although CDI can be trivially hooked into a TINE server
and offers the TINE client interface to the hardware, it is
not tightly bound to TINE and could in principle be used
independently.

INTRODUCTION
The access and control of hardware devices is typically

achieved via fundamental ‘Get’ and ‘Set’ operations,
where a ‘Get’ is used to acquire data or status information
from the hardware bus and a ‘Set’ is used to change
control modes or download data to the hardware. The
details behind these simple operations are in general quite
varied for disparate bus types. Some bus drivers offer
single-channel read and write calls while others utilize
duplex channels for read and write. Some bus drivers are
single master, others are multi-master. The bus data
format can also be different. For instance, RS232 deals
with character string data, whereas SEDAC deals with
short integers. Hence the interfaces to these ‘Get’ and
‘Set’ operations are generally just as varied as the details
behind them.

Prior to CDI, the TINE control system did not have an
explicit hardware layer for device servers. For TINE
device servers which are EPICS [4] IOCs running
Epics2Tine [5] then the device drivers are automatically
EPICS drivers (most likely aSyn drivers). For TINE
device servers which are DOOCS [6] servers, then the
device drivers are DOOCS drivers (which follow the
UNIX device server model). By and large the vast
majority of TINE device servers at DESY are native

TINE servers and follow a “do it yourself” ansatz.
Namely, one uses the drivers “which come with the
hardware” or (more likely) one uses the in-house SEDAC
drivers. This has always proved a viable approach as the
bulk of the hardware for HERA and its pre-accelerators is
SEDAC. That will change with the advent of PETRA III
and is already no longer true with FLASH. There will be
considerably more front end hardware using CANOpen
devices and TwinCat devices, along with legacy SEDAC,
GPIB, rs232, vme, etc.

Application programmers will then either have to
become familiar with a bus interface API for each of
these bus types or rely on CDI to provide a common
interface for all.

The Common Device Interface (CDI) first presented in
PCaPAC 2005 [1] has now reached a new level of
maturity and is in operation on a couple of test stands at
DESY.

CDI API
As all TINE developers are familiar with the TINE

client API for accessing data from device servers, CDI
strives to leverage this knowledge by offering the same
API for accessing data from the hardware bus. In this
case a device server running on a Front End Computer
(FEC) is a client to its attached hardware.

CDI itself offers a CDI-native API which is TINE-
similar. However, by and large developers will want to
make use of precisely the same TINE client API calls as
used when accessing data from any other end-point in the
control system.

It is worth a bit of time to review the TINE client API,
as it does not follow the (seemingly ubiquitous) ‘get(),
set(), and monitor()’ APIs so loved by other control
systems. Instead TINE deals with ‘calls’ in the sense of
Remote Procedure Calls or Remote Method Invocation,
which are passed via data ‘links’. A data link can be
either synchronous or asynchronous and calls a TINE
property at a TINE endpoint. A TINE endpoint is in turn
determined by a namespace consisting of device context,
device server, and device name. Schematically, a call will
attempt to access:

/<context>/<server>/<device> [<property>].

and will optionally send an input data object to the target
and/or request an output data object to be returned. A
TINE property should rather be thought of as a ‘method’.
If data is both sent to and received from the target, this
exchange of data objects occurs atomically. Note also the
requested data access (read or write) is separated from the

17

data objects. That is, a ‘read’ call which needs to send
data to the target is still a ‘read’ call!

The synchronous API call is ExecLink() (short for
‘execute link’) and has the following basic prototype:

ExecLink(name, property, dout, din, access, timeout)

The corresponding asynchronous call AttachLink() has
additional monitoring parameters which supply callback
information as well as the monitoring ‘mode’, which can
contain a wide variety of monitoring instructions.

AttachLink(name, property, dout, din, access, pollrate,

 callback, callbackId, mode)

One can of course wrap these calls with get(), set() and

monitor(), but will loose generality in doing so. Indeed
some general features are then difficult to re-introduce,
such as a set-get atomic operation or starting a monitor
with instructions to stop processing until the first update,
etc.

Using these API calls to access the hardware to access
the local hardware becomes a simple matter if the
endpoint uses the device context “localhost”, and the
device server “cdi”. Special parsing of the full device
name also allows multiple endpoints with a single call.
For instance, a call to “/localhost/cdi/#1” would access
only the device registered as device number 1. On the
other hand a call to “/localhost/cdi/#1-#100” or
“/localhost/cdi/#1,#3-#10,#99” would identify the
individual registered devices and access them as a group.
The CDI property space include the properties “RECV”
for receiving (reading) data from the device, “SEND” for
sending (writing) data to the device,
“RECV.SEND.ATOM” and “SEND.RECV.ATOM” for
issuing a pair-wise read-write or write-read operation
which is guaranteed to be atomic, “RECV.CLBR” and
“SEND.RECV.CLBR” for returning data which has been
calibrated according to the registered calibration rules,
and such properties as “ADDR” and “BUSNAME” which
return information about the endpoint device.

For the sake of an example, a CDI monitor call in C
might look like

dout.dArrayLength = 100;
dout.dFormat = CF_UINT16;
dout.data.sptr = rbData;
AttachLink(“/localhost/cdi/#1-#100”, ”RECV.CLBR,
 &dout, NULL, 1000, cb);

which would read devices 1 to 100, calibrate the data, fill
in the read-back buffer rbData and call the callback
routine cb at 1 Hz.

Needless to say, there is a similar interface for other
languages such as java, Visual Basic, or LabView. We
should also point out that CDI devices are registered both
with a device name and a device number. The registered
device name can likewise be used in the above calls,
which might be desirable when browsing the registered

hardware remotely. Generally speaking, a server
developer will be more inclined to use the device number
when accessing the attached hardware, since the actual
name of temperature sensor, sputter pump, BPM or
whatever in question is mostly irrelevant at that level of
data access.

CDI DETAILS
CDI operates on a plug-and-play basis, and adding a

new bus interface plug to CDI only involves writing a
new bus interface plug. The CDI shared library needs
only to be compiled and installed once for the platform in
question. On windows for instance this will be cdi32.dll
(or cdi64.dll) and on Unix systems libcdi.so. Application
platforms such as java, VB, or LabView will also access
this same shared library.

When the library loads, it will look for a CDI bus
manifest file, which is a simple comma-separated-value
file and can be a simple as a single column with a list of
bus plug libraries, as shown below in figure 1.

Figure 1. Example of a CDI bus manifest file.

CDI will then call cdiLoadLib() for each bus plug entry

in the manifest list, for instance

cdiLoadLib(“cdiCanEsd.dll”);

on windows or

cdiLoadLib(“libcdiCanEsd.so”);

on Unix platforms, etc. If the library loads successfully, it
will (via its prologue code) register its name and all of its
bus handlers with CDI, which itself has no a priori
knowledge of any hardware bus interface.

After the manifest has been read, CDI will look for a
CDI device database and, if found, read it and register all
devices and device information contained within. The
registered information will include the bus name and
address of the device and any accompanying bus
parameters (such as bus speed) along with its assigned
device name and number, as well as data access
parameters and calibration rules. The supported
calibration operations include addition (and subtraction),
multiplication, and exponentiation along with bit shifting

18

and modulo arithmetic on integer values. There is no
limit to the number of calibration rules which can be
applied, and they can be applied in any order, although
care must be taken when mixing possible floating point
rules such as multiplication or exponentiation with purely
integer rules such as modulo arithmetic or bit shifting, so
that the outcome of the calibration makes sense. We note
here for completeness that CDI can operate without a
database, but then all devices must be registered via API
calls from with the server application.

It should also be pointed out that writing a new bus
plug for CDI is a relatively straightforward process. CDI
itself will do nothing but load the bus plug library. It is
the duty of the bus plug to register itself with CDI. There
are a handful of CDI routines the bus plug should make
use of in order to function properly. These are essentially
all registration routines which provide CDI with the bus
handlers for accessing its bus hardware (calls to open the
bus, read and write to the bus, and close the bus). If a
new hardware device has a driver API for the target
platform, then the task of writing a bus plug is no more
complicated than wrapping the appropriate API calls
within the CDI bus plug handlers.

To this end, a “bus” plug does not itself have to
interface directly to hardware, but could simply provide
access to more complicated, generic hardware entities,
such as “stepper motor” or “oscilloscope”. These entities
could themselves access the hardware directly (using CDI
in a nested manner) and incorporate the “business logic”
which handles the generic functionality the all “stepper
motors” or all “oscilloscopes” have.

REMOTE CDI

TINE servers which make use of CDI will

automatically offer the full palette of device access
available locally to remote clients. In other words, CDI
will export a de facto device server (unless operating in
stand-alone mode) which makes the hardware available
for remote access. A remote client wishing to access the
device hardware directly can do so by contacting the
endpoint using the device context of the registered TINE
server and the device server name given by the Front End
Controller (FEC) name appended with the suffix “.CDI”.
In other words, a Beam Position Monitor FEC, called
BPM which registers itself in context PETRA will
automatically export a device server called BPM.CDI also
in context PETRA. The local server will access its
hardware using, for example, the endpoint

“/localhost/cdi/#1-#100”

whereas a remote client could access the hardware via

“/PETRA/BPM.CDI/#1-#100”

Indeed, remotely it might make more sense to use device
names and issue the call as

“/PETRA/BPM.CDI/BPM/OR1 – NL25”

assuming that “OR1” is the registered name for device 1
and “NL25” is the registered name for device 2.

Although these remote services are automatically

present and do not require coding, accessing the hardware
devices remotely in this manner should be thought of as a
debugging service. On some (rare) occasions, when the
server itself has no more complicated duties than to read
out a number of, say, temperature sensors, calibrate the
results and offer them, then the default CDI server can be
used almost as is (It would probably be prudent in this
case to alias the CDI property “RECV.CLBR” with
“Temperature”, for example).

CURRENT STATUS
CDI is now being tested at DESY for isolated but

relevant cases in HERA and PETRA, and is so far proving
to be stable as easy to use as advertised. The existing bus
plugs include three varieties of SEDAC bus plugs (which
suggests that these should rather be thought of as bus
interface plugs) for both Windows and Linux, two
varieties of CANOpen for Windows and Linux, RS232
for Windows and Linux and most recently for the
TwinCat interface from Beckoff [7] (for Windows).

Current efforts will now focus on providing database
management tools which allow rapid and straightforward
creation and checking of the CDI database.

REFERENCES
[1] R. Bacher, et. al., “Common Device Access for

Accelerator Controls”, Proceedings PCaPAC 2005.
[2] M. Kraimer, E. Norum, and M. Rivers, “asynDriver:

Asynchronous Driver Support”,
http://www.aps.anl.gov/epics/modules/soft/asyn.

 [3] http://tine.desy.de.
 [4] http://www.aps.anl.gov/epics.
 [5] Z. Kakucs, P. Duval, M. Clausen, “An EPICS to

TINE Translator”, ICALEPCS 2001.
 [6] http://doocs.desy.de
 [7] http://www.beckhoff.com/english

19

http://www.aps.anl.gov/epics/modules/soft/asyn
http://tine.desy.de/

THE INTERCONNECTION OF TINE AND STARS

Takashi Kosuge*, Philip Duval**, Yasuko Nagatani* and Kazuyuki Nigorikawa*
*High Energy Accelerator Research Organization (KEK)

**Deutsches Elektronen-Synchrotron (DESY)

Abstract
We have succeed to connect TINE (Three-fold

Integrated Networking Environment)[1] and STARS
(Simple Transmission and Retrieval System)[2][3] with
co-development of gateway and bridge programs.

TINE is very powerful system which was developed by
DESY and STARS is a very simple message transferring
system for small scale control system. At the Photon
Factory(KEK), STARS is used for synchrotron radiation
beamlines and installation of STARS is still in progress.

Recently, we have started development of a ring
information (ring current, life time etc.) distribution
system for the beamline with TINE and STARS. Multicast
function of TINE works efficiently in this system.

We will describe the detail of connection TINE-STARS
and development status of ring information distribution
system.

OVERVIEW OF TINE
TINE is a significant networking environment and it

has advantages as follows.
• Multi-Platform (Windows, Unix, Macintosh, VMS,

VxWorks, DOS, etc.)
• Multi-Protocol (IP, IPX)
• Multi-Architecture
• Plug and Play
Client and server components are integrated and behave

like a “software bus”.
Fig. 1 shows image of TINE components and their

communication.

OVERVIEW OF STARS
STARS is a message transferring software for small-

scale control systems with TCP/IP sockets, which works
on various types of operating systems (STARS server is
written in Perl). STARS consists of client programs
(STARS clients) and a server program (STARS server),
and each client is connected to the server via a TCP/IP
socket. STARS users can upgrade the system by writing
client programs, and STARS clients are able to participate
in the system at any time without system stoppage.

STARS server and clients handle only text-based
messages and these text messages are transferred through
TCP/IP socket. This brings extremely simple architecture
for STARS.

Hierarchical node name
Each client of STARS has its own unique node name.

The node name is used to identify nodes at transferring
messages. A hierarchically structured system can be
developed with the hierarchical node name of STARS. A
period (“.”) is used for the separator and the STARS
server uses the first part of the destination. For example,
the message which has “Br2.Dev1” as destination will be
delivered to “Br2”.

Fig. 2 shows example of STARS connection and
transferring messages in STARS.

THE INTERCONECTION
We made 2 types of interface (see Fig. 3). One is to

access STARS from TINE clients (TINE-STARS
gateway) and the other one is to access TINE servers from
STARS (TINE bridge). Development of these interfaces is

TINE
Client

TINE
Server

Device etc.

TINE
Client

TINE
Server

Device etc.

TINE
Client

TINE
Server

Device etc.

TINE
Server

Device etc.

TINETINE

Figure 1: TINE servers and clients.

STARS
(Simple Transmission

and
Retrieval System)

I/O
Client

Device

TCP/IP

Device
driver

Device

I/O
Client

Device
driver

Device

Application
program

Bridge

Br1

Term1

Dev1 Dev2 Dev3

Br2

Dev1 xxx

Term1>Dev1 xxx

Application
program

Br2.Dev1 xxx

Term1>Br2.Dev2 xxx

Figure 2: STARS connection and messages.

20

still in progress now. We will describe recent version of
interfaces here.

Name space
The name space is very important to identify devices

etc. in both systems. TINE uses “Context Name” and
“Device Server Name” to specify an equipment module
on a FEC (Front End Controller), and “Device Name” to
identify an individual device managed by the equipment
module. Properties (or methods) of the device are
accessed via the device “Property”. STARS uses a
straightforward hierarchical structure as its name space.
One of the big issues of interconnection is “How to map
the name space”.

We mapped TINE device name and property name to
the STARS node name by separating identifiers of TINE
with the “period” character.

TINE-STARS gateway
TINE-STARS gateway is used to access STARS from

TINE clients. The gateway is basically a STARS client
and it looks like a TINE server for TINE clients. The
gateway exchanges requests from TINE clients and sends

or gets corresponding messages from STARS. Then, the
TINE-STARS gateway maps the name space between
TINE and STARS in both directions. Fig. 4 shows
accessing STARS client from TINE and example of
mapping STARS name space to TINE.

Gateway manager
TINE can handle various data types such as CF_TEXT

(C: char, VB: String, Java: char), CF_LONG (C: long,
VB: Long, Java: int), CF_FLOAT(C: float, VB: Single,
Java: float) etc. and user-defined data types are available.

On the other hand STARS does not need to process
different data types because STARS handles text
messages only. Each STARS client must exchange the
text into corresponding data type by itself. This means the
TINE-STARS gateway has to know how to convert TINE
data types to text and how to parse STARS data text into
TINE data types. The gateway manager (also STARS
client) does just that!

TINE bridge
A TINE bridge is used to access TINE servers from

STARS. It exchanges name space and data type between

TINE and STARS. If the bridge receives “GetValue” or
“SetValue” command, the bridge reads or writes
corresponding device property of TINE server. Fig. 5
shows example of accessing TINE server from STARS.

The bridge supports attach link and multicast function
of TINE then it can get values from TINE server
frequently. Device properties must be set in configuration
file of TINE bridge at present. Then the bridge sends
“_ChangedValue” event message to the STARS server.

APPLICATION
At this time, we have developed a beta version of the

PF ring information display with TINE and STARS.
The system consists of a TINE server which gets ring

status, TINE bridge and “display client” of STARS. The
TINE server is connected to PF ring control system and
gets information of ring such as beam current, life time,
operation mode, gap of undulater etc. Then it sends them

Device

STARS
(Simple Transmission

and
Retrieval System)

I/O Client

TINE-STARS
Gateway

TINE
Bridge

User client
TINE

Gateway
manager

TINE
Client

TINE
Server

Device

Figure 3: The interconnection TINE and STARS.

STARS
(Simple Transmission

and
Retrieval System)

dummydev

sine

dummydev.sine GetValue

GetValue
SetValue
……

TINE-STARS
Gateway

TINE Client

TINE
Gateway
manager

Device
Information

file

Figure 4: Accessing STARS from TINE client.

STARS
(Simple Transmission

and
Retrieval System)

TINE
Bridge

User client

TINE
Server

Device

TINE
Server

Device

tinebridge

tinebridge.PFRING.RNGREADER.device_0.BEAMCUR

TINE
Server

Device

Device Context: PFRING
Device Server: RNGREADER
Device Name: device_0
Device Property: BEAMCUR

Principal commands
GetValue
SetValue
GetPropertyList
GetPropertyInfo
RegisterPolling
StopPolling

Figure 5: Accessing TINE server from STARS.

21

to the TINE bridge frequently with attach link and
multicast.

After receiving value, the bridge checks the value has
been changed by comparing with previous value. If value
has been changed, the bridge sends “_ChangedValue”
message to STARS server.

“display client” sends “GetValue” command to the
bridge and get values at starting time. Then it sends

“flgon” command to STARS server and waits event
message which shows value has been changed.

Usually this TINE bridge and “display client” will be
attached to a STARS server that works on beamline
control system. And, we prepared Linux PC for the TINE
server and ENS of TINE. The TINE server which gets
ring status is running on this PC and waiting for
connection from TINE bridges. Fig. 6 shows composition
of the system.

We are planning multiple connections as next step.
Number of beamline control system attached TINE bridge
will run finally. Multicast function of TINE will work
effectively (see Fig. 7).

CONCLUSION
This time we have succeeded to connect TINE and

STARS to develop a TINE-STARS gateway, a gateway
manager and TINE bridge. This means;

• STARS can connect various systems via tine,
• TINE can connect COACK[4][5][6] etc. via STARS,
• Efficient function on TINE and STARS is available.
At present, there is an unresolved character problem in

the name space mapping. TINE allows blanks and other
special characters within a device name. STARS,
however uses the standard set “A” to “Z”, “a” to “z”, “0”
to “9”, as well as “_” and “-“. Development is still in
progress and the problem will be fixed.

REFERENCES
[1] http://adweb.desy.de/mst/tine/
[2] http://pfwww.kek.jp/stars
[3] T. Kosuge, et al., “Recent Progress of STARS”,

PCaPAC2005, Hayama, 2005.
[4] I. Abe, et al., “Recent status on COACK project”,

PCaPAC2000, Hamburg, 2000.
[5] T. Kosuge, et al., “COACK Application for the

Beamline Interlock System at the Photon Factory”,
PCaPAC2000, Hamburg, 2000.

[6] T. Kosuge, et al., “COACK Multi-Server System
with STARS”, PCaPAC2002, Frascati, 2002.

STARS
(Simple Transmission

and
Retrieval System)

TINE
Bridge

TINE
Server

PF 2.5GeV Ring Control

Device

I/O Client

User client

Linux

Beamline

Figure 6: PF ring information display.

TINE
Server

PF 2.5GeV Ring Control

Linux

STARS
(Simple Transmission

and
Retrieval System)

TINE
Bridge

Device

I/O Client

User client Beamline

TINE
Bridge

STARS
(Simple Transmission

and
Retrieval System)

TINE
Bridge

STARS
(Simple Transmission

and
Retrieval System)

Multicast

Figure 7: Information display with multicast.

22

Embedding a TANGO device into a digital BPM

C. Scafuri, V. Forchı̀, G. Gaio: Sincrotrone Trieste, Trieste,Italy
N. Leclercq: Synchrotron SOLEIL,Gif-sur-Yvette,France

Abstract

The Global Orbit Feedback project will provide the
Elettra storage ring with a fast digital orbit correction
system. The goal is to reach sub-micron stability and
to damp disturbances up to 150Hz. A fundamental
component of the new feedback system are the digital
BPM detectors ”Libera Electron” by Instrumentation
Technologies. The Tango control system has been ported to
the Intel Xscale Linux used by the embedded controller of
the Libera devices. We have already developed, tested and
successfully deployed the embedded version of a Tango
Device server on the Libera device. Most of this work has
been done in collaboration with the other partners of the
Tango collaboration.

GLOBAL ORBIT FEEDBACK

The Global Orbit Feedback project goal is to equip
the Elettra storage ring with a fast digital orbit correction
system. The main specifications are: sampling rate
of 10 kHz, sub-micron resolution, capable of damping
disturbances up to 150 Hz and suppress mains generated
disturbances up to 300 Hz. A fundamental component of
the feedback system is the new digital BPM electronics.

Digital BPM

The new digital BPM detectors are based on
Instrumentation Technologies Libera Electron devices.
These devices are connected to the existing storage ring
pickups, replacing the old 96 analog BPM detectors.
They provide the required resolution and bandwidth. The
digital processing is done entirely in a FPGA module. The
Libera Electron device is also equipped with a single board
computer (SBC) based on ARM type processor (Intel
Xscale). The SBC runs a custom version of Linux and
is in charge of managing the device. The Libera detector
provides data at three different rates: turn-by-turn, 10
Hz and 10 kHz. The first two data flows are available
to the SBC, while the latter is available only to some
custom FPGA interface. Instrumentation Technologies
provides a software library, named Control System
Programming Interface (CSPI), and a gnu-gcc based
cross-compiler development environment to allow the
development of custom applications for the digital BPM.
These applications can either be deployed on the SBC
itself or can talk to the SBC through a dedicated socket
server, which exports the CSPI api.

TANGO DEVICE FOR LIBERA

Both Soleil and Elettra control systems are based on
Tango [1],[2], and both institutes use Libera as BPM
detectors. In order to easily integrate the Libera devices
with the rest of the control system, Soleil designed and
implemented a Tango device using the CSPI library to get
data from the BPM and provide the needed configuration
and management capabilities. The first version of the
Libera tango device server (DS) accessed the SBC via
the socket server. Although this version provided all
the required functionality, it had the drawback of a
complex deployment scheme and of poor resource usage,
for example network bandwidth, which was several times
higher. The availability of the full source code of Tango
and of the cross development tools for the Libera SBC,
led us to develop an embedded Tango Device server for
the Libera SBC. In order to do this, three steps had to
be performed: porting of omniORB to ARM, porting of
Tango to ARM, development of the Libera Device Server
with new the tools and the embedded version of CSPI.
The advantage of deploying an embedded Tango Device
server is twofold: reduction of network traffic and simpler
deployment, troubleshooting and maintenance.

omniORB for ARM

The Tango control system is based on omniORB, an
open source CORBA implementation [3]. The problem of
porting the omniORB to the Libera device was the most
difficult.

building in a cross-development environment The
first difficulty is due to the fact that we had to build
omniORB with a cross compiler set of tools. The building
of omniORB happens in three stages. During the first
stage the IDL compiler and associated tools is built. In
the second stage the IDL compiler is used to generate the
parts of the core omniORB library and other parts dealing
with basic CORBA services, stating from a set standard
IDL files. The third stage compiles the core libraries,
the basic stubs and skeletons and generates the effective
omniORB library and related tools. The problem of using a
cross-compiler arises during the second stage: the new IDL
compiler is built for the target architecture (ARM) but it is
actually run on the host architecture (i386). This problem is
solved by stopping the build process, manually copying the
IDL compiler and related libraries from another ”native”
build tree, which has been already built, and then restarting
the build process. A definitive solution would involve a
complete restructuring of autoconf/automake based build

23

process. After completing the third stage, we had to
perform yet another manual intervention, patching by hand
one of core omniORB libraries. This step, performed by
means of the arm-ar tool, comes from the fact that in many
cases the linker - arm-ld - is not able to produce a working
executable and notifies some unresolved symbols.

coping with endianess The second difficulty derived
from the peculiar format of type “double” on the ARM Intel
Xscale processor. By default the ARM processor is little-
endian (like i386, VAX . . .) but can also be programmed
to be big-endian (like 68k, HP-PA, the network . . .). But
on this processor, as supported by the gnu-gcc based cross
compiler, the two 32 bit words of a double have the same
order as in big-endian processors. This peculiar case of
mixed endianess was not originally handled by omniORB,
resulting in mangled numbers when data of type double
is exchanged with other types of processors. After we
identified the problem we were able, thanks mostly to the
synergies of the Tango collaboration[4], to get in contact
with the original developer of omniORB. He provided the
necessary patches, while the debug and testing was carried
out by us. After a few iterations we had a perfectly working
omniORB for the ARM processor on Linux.

Tango for ARM
Building Tango on ARM was relatively straightforward.

The only special step we had to perform was to
regenerate the CORBA stubs and skeleton classes with
the patched omniORB tools. After this step the standard
configure/make/make install procedure was applied. An
extensive set of tests have been carried out. For still not
completely clear reasons, we had to link programs using
Tango and omniORB as fully static executable (that is,
avoid shared libraries). By sticking to this simple rules our
tests for omniORB and Tango worked correctly.

Embedded Tango Device
Porting the prototype Tango Device for Libera that was

working with the socket version of the CSPI library to
run natively inside the Libera SBC was extremely simple.
After some trivial changes in the Makefile the device was
compiled without major modifications. After some tests
we made some further changes on the thread handling code
due to differences in the CSPI library behaviour. There
were no problems or bugs due Tango or omniORB. We
deployed the new embedded Tango device for Libera on
96 nodes with any problems. Figure 1 is a picture of the
Libera devices installed in one section of the Elettra storage
ring. All the already running programs that accessed the
Libera devices continued to work without modifications.

RESULTS
By embedding the Libera device we achieved three

important results: dramatic cut of the bandwidth required

Figure 1: Libera installation for one section of the storage
ring

by the Libera BPM traffic; simplify and make more
intuitive the deployment and management of new Libera
devices; free a lot of wasted processing power on the
“intermediate server” and exploit instead the unused
processing power of the Libera SBCs. Tango speed
performances are limited by the network performances
of the Libera SBC for almost all the operations; only
operations involving doubles suffer some penalization due
to the additional operations required by the weird format
of doubles on ARM. Since the BPM data is of type float,
this is not a real problem. In practical terms, we get the
same results of the non embedded version using the socket
based CSPI library, that is about 8ms for reading a single
position from one BPM and less than 50ms for reading
the whole orbit on both planes. Since Libera is a Tango
device, we could exploit all the Tango infrastructure and
developing tools to rapidly design and put in operation
dedicated control panels for the new BPM (see Figure 2
and Figure 3). The embedded Libera device has been
in daily operations at Elettra and Soleil for more than
two months. No problems have emerged so far due to
omniORB or Tango.

CONCLUSION
The embedded version of the Tango Libera device

is now in operation in two institutes: Soleil and
Elettra. Its adoption greatly simplified the deployment and
management of new Libera BPM in the Elettra storage ring.
The procedure became so straightforward that we were able
to upgrade the old BPM with Libera during some users
shifts, exploiting the few hours that are weekly dedicated to
machine tuning and calibration. No service disruptions or

24

Figure 2: control panel for a Libera BPM

Figure 3: panel for monitoring the status of all the Libera
BPMs of the Elettra storage ring

important malfunctions have so far emerged. Performances
are limited only by the TCP/IP stack of the Linux version
running on the Libera SBC. The porting of Tango to the
ARM architecture is a success of the Tango collaboration.
It showed once again that Tango is portable and fit to run
also on embedded hardware. As a by-product of the effort,
we have now a version of omniORB and Tango for the

ARM processor. This fact opens up the possibility on using
Tango on a series of interesting devices such as embedded
instrumentation, PDAs, cellular phones, etc. . .

ACKNOWLEDGEMENTS
Special thanks to Duncan Grisby, who provided

the patches for handling the mixed-endian doubles on
omniORB.

REFERENCES
[1] A. Götz et al. “Tango a CORBA based Control System”,

ICALEPCS 2003, Gyeongju, Korea

[2] J.M. Chaize “Tango control system status”, these proceedings

[3] http://omniorb.sourceforge.net

[4] E. Taurel “The Tango Collaboration Status and some
of the Latest Developments”, ICALEPCS 2005, Geneva,
Switzerland

25

Control system for the FFAG complex in KURRI

M. Tanigaki∗, K. Takamiya, H. Yoshino, N. Abe, T. Takeshita, Y. Mori, K. Mishima, S. Shiroya
Research Reactor Institute, Kyoto Univ., Kumatori, Osaka 590-0494, Japan

Y. Kijima, M. Ikeda, Mitsubishi Electric Corp. Kobe 652-8555, Japan

Abstract
The 150 MeV proton FFAG accelerator complex in

KURRI is now in the final stage of construction. This ac-
celerator complex will be served as the proton driver for for
the feasibility study of accelerator driven subcritical reac-
tor (ADSR). The control system for this FFAG accelerator
complex is based on conventional PCs and programmable
logic controllers (PLC) on TCP/IP network. The databases
of parameters for connected devices are maintained by
PLCs and these can be accessed by any type of equipments
or higher integrated applications as long as they can handle
the conventional network connection. We report the current
status of the controlling system and future upgrades for the
beam commissioning of our FFAG complex.

INTRODUCTION
Kumatori Accelerator driven Reactor Test(KART)

project[1, 2] has been approved by the ministry of edu-
cation, culture, sports, science and technology and started
from the fiscal year of 2002. The main purposes of this
project is to study the basic feasibility of ADS system and
to develop a practical FFAG accelerator as a proton driver
for ADS, based on the developments and successes on PoP
FFAG accelerators in KEK[3, 4].

In KART project, an accelerator complex which consists
of one FFAG with an induction unit for acceleration as the
injector and two FFAG with RF as the booster and main
accelerators are constructed(Fig. 1). Basic specifications
for this FFAG complex are summarized in Table 1. The
layout of these FFAG accelerators in the accelerator room
is shown in Fig. 1. In near future, this accelerator complex
is expected to be served for multi-purpose usages in vari-
ous fields, such as physics, chemistry, material science and
medical applications.

Since this accelerator complex is the first practical FFAG
accelerators, many major and minor modifications in the
design and equipments have been made during the con-
struction. The control system for this complex is required

Table 1: Specification of the FFAG complex at KUR
Beam Energy 25 - 150 MeV

Maximum Average Beam Current up to 1 µA
Repetition Rate up to 120 Hz

∗ tanigaki@rri.kyoto-u.ac.jp

Figure 1: FFAG complex at KURRI.

to accept such time-to-time changes. Our control system
should be sufficiently easy for them to use, or develop.
While we have to keep such flexibility and easiness, the
combined operation with a nuclear fuel assembly requires
high reliability and stability towards the control system
from the point of nuclear safety.

In our case like other small institutes, the number of
technical staffs who support the construction or the oper-
ation of the accelerator are limited and they have only lim-
ited skills other than their own specific field. As for com-
puting, our average echnical staffs have very limited skills
such as web browsing, using mail clients or Microsoft Of-
fice suite on Windows environment. Sometimes they can’t
even setup a Windows PC for network connection. Our
control system should be easy for such technicians to use.

To meet such requirements for the present control sys-
tem, we decide to develope a control system based on Lab-
View and PLC with network capability.

In this paper, the control system for our FFAG complex
and some plans for future upgrades of this system are in-
troduced.

SYSTEM OUTLINE

Framework

The framework of the present control system is shown
in Fig. 2. The present system is basically the same con-
trol flow in the AVF cyclotron at Tohoku University[5], i.e.,
PLCs are controlled by remote PCs over the fast network.
In this architecture, devices and instruments such as power
supplies, motor drivers, inputs and outputs of analog sig-
nals and digital logic signals are connected to respective

26

PLC modules. Such PLC modules are on TCP/IP network
for the communication with the remote PCs, which are
served for the human interface and high level sequences.

A big advantage in using PLC is that a wide variety of
modules for various kinds of devices are already available
as commercial base. One can easily control almost any de-
vices by PLC without special software drivers, while the
development of the drivers for devices itself is a kind of
important work in other control framework like EPICS.

One of the important feature in this control system is
that we positively use the memory of PLC as the database
of this control system. PLC accepts various types of com-
mands for memory operation over network, thus we have
already possessed a kind of database server in operation on
the network without any programming or preparing special
database servers. This feature greatly improves the relia-
bility and simplicity of our control system.

Hardware
FA-M3R series by Yokogawa Electric Corporation is

used as the PLC in the present control system. This se-
ries is well adapted to the network. For example, FA-M3 is
the only controller that allows all maintenance over the net-
work except hardware troubles, while other PLCs require to

Man-Machine
Interface

Low Level
Sequence

Database

PLC

PC

TCP/IP

P.S. Motor
Driver

Relay

Digital
I/O

Motor
Driver

A/D
D/A

Interfaces

Controlled
Devices

High Level
Sequence

Various types of
Connections

Figure 2: Schematic diagram of the present control system.
PLC is responsible for serving the interface between low-
level devices and higher PC control software and for main-
taining the database of parameters of connected devices.

PLC Slave Block

 Room

100 Mbps ethernet

CPU
odule

PC PC PC

PLC

Control Room

PLC

PLC Master Block PLC
Slave
Block

Figure 3: Hardware configuration of the present control
system. Each section has one CPU which governs the con-
nected slave modules. All CPUs are placed in the control
room and connected over the TCP/IP network.

prepare some direct connections such as USB or RS-232c.
FA-M3R also has the capability of bus extension by optical
fibers. All modules connected by optical fibers work as if
they are one module block, therefore, the configuration of
modules is not affected by the physical limitations, such as
the location of devices etc. This feature enables CPU to
be kept away from the high noise or radiation environment,
which always become problems in the control system of
accelerators. Another advantage in FA-M3R series is that
the backup system for the code. All programs prepared for
this PLC is stored on RAM, and this PLC makes a com-
plete copy of these code and perform the check-sum for
both codes whenever it is powered on. If either of them
has check-sum error, then the error block are automatically
restored from the other one. Furthermore, FA-M3R has
a built-in backup battery which maintain the data on the
memory for ten years without external power supply. With
these features, FA-M3R obtains the durability for the mem-
ory lost caused by radiation or other reasons without losing
the flexibility to the modification of codes. In the usual
PLCs, the programming codes are to be stored in ROM for
the protection from such memory lost, then one has to pre-
pare ROM every time any modifications are required in the
program.

The hardware configuration of the current control system
is shown in Fig. 3. All the devices are grouped into several
groups based on the hardware configuration such as “ion
source” or “booster”, and one CPU is assigned for each
group. All the CPUs are placed in the control room to pre-
vent from the electrical noise and radiation damages. Only
the slave module blocks, which consists of several interface
modules, are implemented close or inside the devices, then
connected to the respective CPUs with the optical fiber. A
typical implementation of the slave module block is shown
in Fig. 4. Each CPU module has its own program to main-
tain the database of parameters from/to the connected de-
vices. Lower level sequences, such as the hardware pro-
tections, are also implemented in PLC. PLC modules are
connected to the 100 Mbps ethernet network for the com-
munication with remote PCs over TCP/IP protocol.

27

Figure 4: A typical implementation of a slave module in the
device. In this case, a slave module block is implemented in
the power supply and serves the data communication with
the control board of power supply over I/O bus line.

Software

All MMIand higher control sequence are developed in
LabView. LabView is known as its easy programming pro-
cess and support of various operating systems. Developed
VIs are basically independent from operating systems and
keep good upward compatibility for a long period.

The conceptual diagram of the softwares is shown in
Fig. 5.

The remote PC has one or more MMIs and commu-
nication VIs which communicate with remote PLCs over
TCP/IP. All the communications are initiated by the com-
munication VI, usually every 100 ms. In each communi-
cation, all the data on the PLC memory allocated for the
parameters from devices is transferred to the PC, then the
communication VI translate and store them as global vari-
ables in LabView. Any manipulations made by the oper-
ator are written into the global variables from MMI VIs,
then these values are translated into a set of parameters and
transmitted to PLC by the communication VI in each com-
munication cycle. These translations are made by alloca-
tion tables described later.

MMIs on PCs can be easily prepared without the special

PLC
Building/Resolving

Parameters

Periodic
Communication

(~100ms)

Front End VI

Global Variables

Communication VI

Front End VI Front End VI

Human Interface Human Interface Human Interface

probe position

RF voltage

detect_current

set_current

out_PWon

transistor_warn

low_flow set_strb

PC

Figure 5: A conceptual diagram of the software on PC.

Figure 6: MMI developed on LabView environment. MMI
VIs are usually used on conventional Windows laptop PCs.

knowledge on the programming or on the operating system
since communication VIs have already expand the param-
eters as global variables. For conventional users, placing
items on the window and wiring them are sufficient to de-
velop MMI and control a device. One can also develop
more complicated control sequence in the same way as de-
veloping a conventional VI in LabView.

PLC as database server

The parameter set received by the Ethernet module of
PLC is expanded to the memory and referred by CPU in a
very high speed (less than 0.1 µs). Then the signals comes
out from the respective modules. The status of controlled
devices are transferred on the memory by the CPU, then
the Ethernet module sends the data on the memory upon
requests made by remote PCs.

Allocation tables of the parameters on PLC memory are
given in text file and referred by communication VIs. This
file contains not only necessary information in the trans-
lation of data on PLC and VI, such as the name of global
variables the assigned address on PLC memory, but also
other information such as the physical pin assignment of
PLC modules, the conversion parameters and units of data
from equipments connected to PLCs or the IP address of
the PLC. The allocation tables are originally prepared and
maintained on conventional Excel files for the hardware
connection between devices and PLCs by the field tech-
nician. These files are converted to simple text files then
served to communication VIs. An interpretation function
of this table format are implemented in communication
VIs.

The memory protection features in FA-M3R are very
strong, e.g., a built-in backup battery which lasts ten years.
This because FA-M3R are supposed to be used under a con-
dition that some memory troubles such as power failure,
high level noise may be expected while in the operation.
This feature makes our database safe without special pro-
tection system.

28

CURRENT STATUS AND FUTURE
PROSPECTS

The development of the control system is basically com-
pleted and devices are added as the accelerator is con-
structed. Conventional laptop PCs are mainly used for
serving man-machine interfaces(MMI) and higher control
sequence since a lot of field works like test operations of
equipments are expected during the construction and test
operation. In such cases, these PCs are brought into fields
and controls are made over the network. The conventional
wi-fi access points are prepared in most of the accelera-
tor building for such laptop PCs. There is no special re-
quirements for PCs other than the network capability and
sufficient hardware configuration for LabView. Currently,
windows laptop PCs, which are familiar to ordinary tech-
nicians, and some MacOS X laptops are mainly used.

As we proceed the test operation of our FFAG complex,
a logging system for parameters of accelerators becomes
very important. As a candidate for our logging system,
MyDAQ[6] developed in spring-8 is recently implemented
to our ion source part for evaluation.

Small handy devices are sometimes very convenient in
the test operation, so MMI and communication VIs are
ported to PDA with wi-fi capability. Thanks to the multi-
platform support of LabView, minor modifications such as
the rearrangement of user interfaces and performance opti-
mization. An example of such ported VI running on Win-
dows mobile PDA is shown in Fig. 7.

Figure 7: A prototype VI ported to PDA. This is the control
panel for an RF power amplifier.

REFERENCES
[1] S. Shiroya, H. Unesaki et al., “Neutronics of Future Neu-

tron Source Based on Accelerator Driven Subcritical Reac-
tor Concept in Kyoto University Research Reactor Institute

(KURRI)”, Int. Seminar on Advanced Nucl. Energy Systems
toward Zero Release of Radioactive Wastes, 2nd Fujiwara Int.
Seminar, Nov. 6-9, 2000, Shizuoka, Japan, Abstracts p. 58.

[2] S. Shiroya, H. Unesaki et al., Trans. Am. Nucl. Soc., 2001
Annu. Mtg., June 17-21, 2001, Milwaukee, Wisconsin, p. 78.

[3] M. Aiba et al., “DEVELOPMENT OF A FFAG PROTON
SYNCHROTRON”, Proceedings of EPAC 2000, Vienna,
Austria, p. 581

[4] T. Adachi et al., “A 150MeV FFAG SYNCHROTRON WITH
”RETURN-YOKE FREE”MAGNET”, PAC 2001, Chicago,
the United States, p. 3254

[5] M. Fujita et al., ”A CONTROL SYSTEM FOR THE NEW
AVF CYCLOTRON AT CYRIC”, The 13th Symp. on Acc.
Sci. and Tech, (2001) p.106.

[6] Akihoro Yamashita, Toru Ohata, “MyDAQ, A SIMPLE
DATA LOGGING AND DISPLAY SERVER”, Proceedings
of PCaPAC2005, Hayama, Japan

29

OPERATIONAL EXPERIENCE WITH SYNCHROTRON LIGHT

INTERFEROMETERS FOR CEBAF EXPERIMENTAL BEAM LINES

P. Chevtsov, Jefferson Lab, Newport News, VA 23606, USA

Abstract
Beam size and energy spread monitoring systems based

on Synchrotron Light Interferometers (SLI) have been in

operations at Jefferson Lab for several years. A non-

invasive nature and a very high (a few µm) resolution of

SLI make these instruments valuable beam diagnostic

tools for the CEBAF accelerator. This presentation

describes the evolution of the Synchrotron Light

Interferometer at Jefferson Lab and highlights our

extensive experience in the installation and operation of

the SLI for CEBAF experimental beam lines.

INTRODUCTION

Synchrotron radiation (SR) is emitted from relativistic

charged particles when they are traveling on curved paths.

Because of strong relativistic effects (factor β≈1), the

synchrotron radiation is emitted in a very narrow cone in

the forward direction tangent to the particle orbit. In other

words, each relativistic electron traveling in a magnetic

field looks like a moving flashlight giving off synchrotron

light in front of itself. The SR has a wide energy

spectrum, from infrared to γ rays. Beam size monitors

based on the use of synchrotron radiation are not invasive

because they do not need to intercept the beam to perform

beam size measurements.

A prominent feature of the CEBAF accelerator at

Jefferson Lab is a very small (~2
.
10

-5
) relative energy

spread of the electron beams provided for the nuclear

physics research program. The smaller the beam energy

spread, the higher the resolution of the experiment using

this beam, and physicists can see more details inside

nuclei. Two synchrotron light interferometers have been

installed at high dispersion locations 1C12 (Fig. 1) and

3C12 of experimental beam lines to continuously monitor

the transverse size and energy spread of the beams for

Hall A and Hall C experimental end stations. These high

dispersion locations are also equipped with optical

transition radiation monitors (OTR), which are invasive

and mostly used for the SLI calibration purposes.

 Each SLI at Jefferson Lab is a classic wave front

division interferometer using polarized quasi-

monochromatic synchrotron light.

 Synchrotron light generated by the electron beam in a

dipole magnet (we call this magnet the principal SLI

dipole) is extracted from the beam pipe through a circular

Notice: Authored by The Southeastern Universities Research

Association, Inc. under U.S. DOE Contract No. DE-AC05-84150. The
U.S. Government retains a non-exclusive, paid-up, irrevocable, world-

wide license to publish or reproduce this manuscript for U.S.

Government purposes.

Figure 1. SLI installed at high dispersion location 1C12 at

Jefferson Lab and its main optical components.

viewing port window by means of a rectangular mirror

installed in a vacuum chamber (“in-vacuum” mirror).

Two additional mirrors guide the synchrotron light

through the SLI’s optical system. One of them is remotely

controlled. We call it the active SLI mirror. The main task

of this mirror is to send light on to a CCD camera head

through a long (~5 m) plastic pipe, diffraction slits, a

narrow band pass filter, a polarization filter, and a CCD

camera objective lens, in the direction opposite to the

direction of the electron beam. The CCD and optical

components are placed in an optical box. The CCD

camera is connected to an image processor. A double slit

assembly with small slit openings and a predefined set of

distances between slits is located right in front of the

video camera objective. The assembly is moved by

remotely controlled stepper-motors.

 A limited space and relatively high radiation level in

the accelerator tunnel strongly influenced the 3-D SLI

design, with main elements placed on two horizontal

levels parallel to the ground plane. We note that the upper

horizontal plane is determined by the design beam

trajectory in the SLI principal dipole and following

straight section of the beam line. Consider now a straight

line that lies in this plane and intersects the design beam

trajectory at a right angle, ~20 cm downstream from the

SLI principal dipole. We call this line the SLI reference

line. The SLI reference line is very important for the SLI

project. In particular, the alignment of all SLI optical

components is based on this line, and the viewing port

window is installed so that this line goes through its

center and is perpendicular to it.

EVOLUTION OF SLI BEAM DIAGNOSTIC

SYSTEMS AT JEFFERSON LAB

All basic SLI functions are automated using control and

data processing software. This software and SLI

components together build up the SLI systems. A very

30

high resolution (a few � m for beam size measurements)

and ability to monitor the beam size and energy spread

non-invasively make these systems valuable beam

diagnostics tools for nuclear physics experiments. The

SLI systems require a lot of work during their installations

and support during operations. In this paper, we describe

the most critical elements of the SLI systems and their

evolution.

“In-vacuum” mirror
 We begin with the “in-vacuum” mirror. Its installation

must be performed extremely carefully. Based on

technical drawings of accelerator components at a high

dispersion location, the mirror is positioned in a vacuum

chamber so that its center lies on the SLI reference line

and redirects the synchrotron light ray originating 0.5 m

downstream from the center of the magnet along this line.

Figure 2. Adjustable mount of the SLI “in-vacuum”

mirror.

Figure 3. 3C12 SLI interference patterns for incorrect

(left) and correct (right) positions of the “in-vacuum”

mirror.

 In the first (1C12) SLI installed at Jefferson Lab, the

“in-vacuum” mirror was fixed. It appeared that we were

very lucky in positioning this mirror in the vacuum

chamber so accurately that this SLI has been operating

without any problem since its installation about five years

ago. If we happen to position the “in-vacuum” mirror at a

slightly wrong (~0.3 arc degree) angle to the design beam

trajectory, a detailed analysis of the geometry of our high

dispersion locations shows [1] that the SLI optics can

capture two synchrotron light beams, which are almost

parallel to each other and are separated by only ~1 cm.

The first light beam is emitted from the accelerated

electrons in the principal SLI dipole. It produces a

primary SLI interference pattern. The second light beam

is generated in the upstream dipole magnet, travels in the

vacuum chamber in the area of the principal SLI dipole,

and reflects from the metallic walls of the chamber. It is

this light that we don’t want to observe because it

produces a secondary SLI interference pattern overlapping

with the primary one. The resultant combinations of

interferograms are so complicated that it is much easier to

modify the SLI design to be able to get rid of all possible

secondary synchrotron light sources than to analyze such

combinations. All that is needed is to have a possibility to

correct small errors in positioning the “in-vacuum” mirror

after its installation. That is the reason for making the

mirror in the second (3C12) SLI adjustable. The mirror is

attached to a remotely controlled mount (Fig. 2) that can

be rotated by a specified angle in a horizontal or a vertical

plane with a high accuracy (better than 0.1 arc degree).

Figure 3 illustrates the working of this mount. It shows

the SLI interference patterns for an incorrect and correct

position of the “in-vacuum” mirror.

Active SLI mirror
 If the “in-vacuum” mirror is positioned properly then

the quality of the SLI interference pattern depends on the

position of the active SLI mirror, which is adjustable and

remotely controlled. To calculate the beam size, the

interference pattern is analyzed on the basis of the SLI

multi-parameter non-linear data model [2]. One of the

necessary conditions for the validity of this model is the

requirement of equal light intensities on the diffraction

slits. With small fluctuations of the beam trajectory in the

CEBAF accelerator around its design orbit, this

requirement can always be fulfilled by the adjustment of

the position of the active SLI mirror. In the initial SLI

design, this mirror was not computer controlled. Its

adjustment could only be done manually, by pushing a set

of buttons on a keypad. Soon after the first SLI tests, we

switched to computer controlled active SLI mirror.

SLI video camera and image processor

SLI systems at Jefferson Lab use an STV CCD camera

from Santa Barbara Instrument Group [3]. The integration

(exposure) time of this camera can gradually be changed

from 0.001 seconds to 10 minutes. The quantum

efficiency of the camera is very high. For instance, it is

more than 70% for λ0=630 nm. An electronic cooling

system keeps CCD noise extremely low. The camera has

its own control box with an RS-232 interface to an

external computer.

 A choice of a CCD video camera is very important for

the SLI project at Jefferson Lab. With relatively low beam

currents (~10-100 � A compared to a 10-100 mA range

typical for synchrotron light sources) available at high

dispersion locations of the CEBAF accelerator the images

of synchrotron light interference patterns are dim. In order

to make them suitable for data analysis, the camera has to

integrate these images over a period of time (~1-10

31

seconds). Under these conditions, cooling the CCD

significantly improves its signal-to-noise ratio.

 We note that another practical solution of acquiring dim

synchrotron light interference patterns would be to use an

intensified camera. Intensifiers work similar to photo

multiplier tubes (PMT). They amplify image signals by

many (hundreds and even thousands) times, increasing the

sensitivity of the camera to almost a single photon level.

Unfortunately, at the moment the intensified cameras are

10-20 times more expensive than STV cameras.

The video signal from the SLI camera is fed into

Maxvideo 200 [4], which is a pipelined high performance

image processing system. The main advantage of the

pipeline technology is that the pixel manipulation can be

done while the image is being digitized and directed to the

image memory. As a result, basic image processing

operations can be implemented at the full 30 Hz frame

rate of the standard NTSC video signal.

The optimization of the signal-to-noise ratio for the

Maxvideo input video signal can easily be done on the

basis of a gray scale pattern generator integrated into the

STV camera system. The gain and offset parameters of

the image processor are adjusted to get in its memory all

256 clean shades of gray provided by the generator. This

adjustment is performed regularly (at least once a week)

to make sure that the quality of the video signal is good.

 SLI control software
The main elements of the SLI control software are the

mirror, video camera, and diffraction slit assembly control

modules. All these modules are based on the Common

Serial Driver/Device Library created at Jefferson Lab [5].

The control is based on the device configuration files,

which completely define the communication channels and

protocols. The software is easily configurable for any

hardware architecture and extremely reliable.

SLI data processing software

Preliminary image processing is done by Maxvideo.

The multiplexed software created at Jefferson Lab [6]

makes it possible for Maxvideo not only to routinely

perform such important operations as masking the pixels

outside the region of interest and subtraction of a

background but also estimate the beam sizes from two

OTR beam images and two SLI interference patterns

simultaneously at a up to 10 Hz rate. In the case of the

OTR, the beam size is estimated directly from the beam

image. For the SLI data, the beam size estimate is based

on the visibility (contrast) V of the interference pattern

[2].

 The final image processing and data analysis are done

by an SLI server. It is a typical configuration for high

level applications at Jefferson Lab with very powerful

calculation and modeling engines. The server runs on a

workstation connected to the control system computer

network. It takes the information about the beam

parameters, SLI components, and the Maxvideo beam size

estimates from the accelerator control system and fits the

interference pattern with the use of the SLI data model.

One of the results of this fit is the visibility V that is used

to calculate the beam size and energy spread. The quality

of the data fit is controlled by the SLI data model

reliability parameter. This parameter is the central part of

the SLI data model reliability concept that has been

developed at Jefferson Lab [2].

 In terms of classical problems of setting up and testing

hypotheses, the data model reliability can be defined as

the probability of wrongly rejecting the data model on the

basis of measured results. Higher reliability of the model

means its better consistency with experimental data.

The SLI data model reliability concept allows us to

effectively control all basic SLI operations including the

calibration of the SLI on the basis of the OTR data and

corrections of the active SLI mirror positions when the

beam trajectory changes. We note that one of the main

results of the SLI calibration is the definition of the

optimal (from the data analysis point of view) CCD

camera exposure time for each value of the beam current.

CONCLUSION

 The implementation of the SLI systems for the

experimental beam lines is one of the most successful

beam diagnostics projects at Jefferson Lab. We have

gained a very valuable experience in the SLI installation

and support of all its components in operational

conditions. Based on our Common Serial Driver/Device

Library, multiplexed Maxvideo software, and data model

reliability concept, the SLI systems form powerful beam

diagnostics tools at Jefferson Lab. The systems not only

routinely monitor the transverse sizes and energy spread

of electron beams in a wide range of beam intensities but

also help identify beam trajectory (energy) problems in

the accelerator.

ACKNOWLEDGMENTS

 The author is very thankful to H. Areti for his interest

in the SLI project and support.

 REFERENCES

[1] P. Chevtsov,“Synchrotron Light and its Interferometry

at CEBAF Beam Lines”, Jefferson Lab Tech. Note

JLAB TN-06-033, 2006.

[2] P. Chevtsov, “Automated Image Quality Optimization

 for Synchrotron Light Interferometers”, ICALEPCS

 2005, Geneva, Switzerland, 2005.

[3] www.sbig.com

[4] www.datacube.com

[5] P. Chevtsov, S. Schaffner, “Information-Control

Software for Handling Serial Devices in an EPICS

Environment”, ICALEPCS-2001, San Jose, CA,

USA, 2001.

[6] P. Chevtsov, et al., “Multivideo Source System for

Beam Diagnostic Applications”, PCaPAC 2000,

DESY, 2000.

32

BEYOND PCS: ACCELERATOR CONTROLS ON PROGRAMMABLE

LOGIC

M. Pleško, K. Žagar, A. Hasanović

Cosylab, Ljubljana, Slovenia

Abstract
The large number of gates in modern FPGAs including

processor cores allows implementation of complex

designs, including a core implementing Java byte-code as

the instruction set. Instruments based on FPGA

technology are composed only of digital parts and are

totally configurable.

Based on experience gained on our products (a delay

generators producing sub-nanosecond signals and

function generators producing arbitrary functions of

length in the order of minutes) and on our research

projects (a prototype hardware platform for realtime Java,

where Java runtime is the operating system and there is

no need for Linux), I will speculate about possible future

scenarios: A combination of an FPGA processor core and

custom logic will provide all control tasks, slow and hard

real-time, while keeping our convenient development

environment for software such as Eclipse. I will illustrate

my claims with designs for tasks such as low-latency PID

controllers running at several dozen MHz, sub-

nanosecond resolution timing, motion control and a

versatile I/O controller - all implemented in real-time Java

and on exactly the same hardware - just with different

connectors.

INTRODUCTION

When performance is paramount, one of the techniques a

skilled electronics engineer would use is reconfigurable

computing [1]. In terms of performance, this approach is

the second best to what is achievable with commercially

available electronics, only surpassed by application

specific integrated circuits (ASIC).

Reconfigurable hardware has several advantages over the

fixed wiring in an ASIC. Firstly, it allows for quick and

inexpensive prototyping cycles. If a defect in design is

uncovered, it can be quickly fixed, and the hardware can

be reprogrammed in a matter of minutes.

Application-specific reconfigurable hardware can also be

much faster than general-purpose processors, even though

processors operate at higher clock rates. Thus,

performance improvements are significant (order of

magnitude improvement is not uncommon).

Most commonly used reconfigurable devices today are

field-programmable gate arrays (FPGA) and complex

programmable logic devices (CPLD). CPLDs are less

expensive, but do not offer as much performance and

programming capacity as FPGAs. Prices of these devices

range from several Euros for CPLDs, to several hundred

Euros for high-end FPGAs. Market leaders are Xilinx and

Altera.

Pure programmable hardware implementations might be

costly in terms of development effort, however. Some

problems are inherently difficult to solve in hardware

using programming languages such as VHDL and

Verilog. To this end, FPGA vendors offer generic

processor cores. In some cases, the cores are available in

form of VHDL code (e.g., Altera NIOS or Xilinx

PicoBlaze), whereas in higher-end FPGAs multiple

powerful cores are fixed on the chip (e.g., Xilinx Virtex II

includes PowerPC cores).

With generic processor cores, the development can be

split in two parts: performance intensive part is

implemented in hardware, and the complex part in

assembler or C.

However, development in a C-like language is still

cumbersome. Illegal use of memory, buffer overruns,

memory leaks, relatively long compilation times,

portability issues and structured programming approach

contribute to decreased efficiency, which is in some cases

even 2 to 10 times smaller than one achievable with

higher-level programming languages, such as Java.

REQUIREMENTS

This section lists some of the requirements that a

hardware Java platform would have to meet in order to

retain high-level of development efficiency.

Standard Java constructs should be retained. I.e., no new

keywords should be introduced into the language. This

way, existing tools for Java development could be

leveraged, such as high-productivity integrated

development environments (IDEs, e.g., Eclipse or

NetBeans), compilers, byte-code manipulation tools and

code verifiers.

1. Hardware should be composed of modules. Each

module would consist of the hardware part

(templated VHDL files) and software part

(configurable drivers). When a module would be

instantiated, the software drivers would be

automatically configured for the instantiated

hardware (e.g., matching bus addresses, IRQ

numbers, etc.).

2. Static (compile-time) checking should be possible.

For example, it should be impossible to overlap

register addresses of modules on a bus. Ideally, the

register addresses would be assigned automatically.

3. Support for debugging. A debug console should be

available through a serial port. In addition, Java

virtual machine should support remote debugging

using existing tools. JTAG diagnostics of hardware

should also be possible.

33

4. Field upgrades of hardware and ROM software

should be possible.

One-size-fits-all board: ideally, a general-purpose

board design would exist, so that boards would not have

to be developed for each application specifically. A

modular board composition (IndustryPack, PC/104,

VME) is a good approach to achieve this.

EXAMPLE APPLICATIONS

Nanosecond Resolution Timing

In particle accelerator controls, sub-nanosecond

resolution timing is sometimes required due to high speed

of particles whose orbit needs to be controlled. A

particular application called for a controllable delay

generator, capable of producing output signals that are

delayed relative to a trigger signal for amount of time in

the order of a nanosecond. Figure 1 shows an example of

a trigger signal and the resulting output signals, which are

delayed by tA and tB, respectively.

To this end, FPGA with a phase locked loop (PLL) can be

employed. The PLL is capable of multiplying the clock

frequency by a given factor. Thus, if a 500MHz external

clock is used, the PLL can multiply it by 4, achieving a

2GHz clock (0.5 ns temporal resolution). The jitter of this

clock is also very small (in the order of 50 ps), which

makes FPGA technology a good candidate for this

application.

Since the delays tA and tB induced by the FPGA-based

delay generator would have to be externally controlled

(ideally through a SCADA-like system using a computer

network), a pure VHDL solution is no longer a feasible

option. Therefore, a co-design approach depicted in

Figure 2 is a reasonable alternative. Here, a processor is

monitoring communication over Ethernet, implementing

TCP/IP or other network stacks required by the SCADA

system, implementing their respective protocols. The

processor then converts the requests from Ethernet to

configuration for the delay generator through a bus

internal to the FPGA. The processor, Ethernet MAC layer

and delay generator are thus all contained in a single

FPGA chip, whose input pin is a trigger, and whose

output pins are correspondingly delayed. (Apart from

these pins, also pins for reset, clock, ground, power

supply, etc., are required).

Versatile I/O Controller

In automation applications, integration with many kinds

of devices is required. The devices are equipped with

various control interfaces, ranging from analog current,

via serial interfaces (e.g., RS-232, RS-485, etc) to more

sophisticated busses, such as General Purpose

Input/Output Bus (GPIB).

In some cases, for example control of particle

accelerators, the number of devices under control is large,

and there are tens of thousands of process variables that

need to be controlled or monitored. Consequentially, the

density of I/O channels is high, and entire racks are

devoted to front-end control equipment (also called

Input/Output Controller, IOC). This control equipment is

responsible for performing simple tasks, such as

communicating with devices with their respective

protocol, initializing devices, converting the values

returned by devices from raw to engineering units, etc.

One of the control equipment’s most important

responsibilities is to make the connected devices available

to a SCADA system via a computer network.

Implementing an IOC in programmable hardware might

well be a very economic and efficient approach. The

inputs and outputs of these controllers are then bound to

pins of the FPGA, and from there to the IOC’s board,

where transceivers implementing the physical layer of

communication are placed.

The pin count of FPGAs is fairly large – several

hundred pins are available for application-specific

purposes (e.g., Altera offers FPGAs from 484 to 1508

pins). One UART serial line requires 4 signals, which

means that physically more than 100 serial connections

could be handled by a single FPGA.

Since voltage levels of FPGA’s pins are not arbitrary, the

board would require transceivers to implement the

physical layer of the communication stack. Also, some

I/O controllers are not easily available or are difficult to

implement. One such example is GPIB – in this particular

case, integrated circuits are available, which can be

integrated with FPGA through a standard bus (e.g.,

National Instruments’ TNT5002, which uses PCI bus).

FPGA

Delay

Generator

Processor

trigger

W
is

h
b
o
n

e

output A

output B

Ethernet

MAC

Ethernet MII

tA, tB

Figure 2: block diagram of a delay generator.

time

trigger

output A

output B

tA

tB

Figure 1: signals of a delay generator.

34

Well though-out modular design of the board would allow

re-use of the same design for various I/O configurations.

Such a board would either contain a very large pin bank

to which connectors would be attached, or feature an

extensible interconnect bus (VME, IndustryPack, etc.).

ACHIEVING HARD REALTIME

In automation, hard real-time interlocks are frequently a

requirement. When an interlock is triggered, a reaction

(e.g., a shutdown or switching-off of an output) must

commence immediately. In FPGAs, such interlocks can

be implemented directly in hardware. If they are

implemented asynchronously, the reaction time is only

limited by propagation delays, and doesn’t even have to

wait till the next period of the system clock. Figure 4

shows a circuit of such an implementation of an interlock:

whenever the interlock signal is grounded (becomes 0),

the output becomes 0 without waiting for logic or clock.

The response time is thus even shorter than 1 nanosecond.

VHDL code for this circuit (Listing 1) shows a VHDL

design pattern where an interlock is implemented without

affecting the rest of the logic – thus, the safety aspect of

the system can be introduced in a design systematically,

without affecting the design of the logic.

-- synchronous implementation of the logic

process(clock)

begin

 if rising_edge(clock) then

 begin

 logic <= …;
 end if;

end process;

-- asynchronous handling of an interlock

output <= '0' when interlock='0' else logic;

Listing 1: VHDL code of an interlock.

HARDWARE ARCHITECTURE

The architecture follows an established pattern: it

features a CPU, memory/storage (on-chip and off-chip),

various modules, and a bus that interconnects all of the

components together (Figure 3).

For the CPU core, we propose using a standard,

possibly open, implementation. Cores implementing the

Java virtual machine specification in hardware already

exist, for example Java Optimized Processor (JOP, [2]).

A good candidate for the bus is Wishbone [3].

Wishbone is a flexible, yet simple bus for interconnection

of cores within a programmable chip. Since many

hardware components (such as Ethernet MAC

implementations) exist that offer a wishbone interface,

supporting wishbone would allow leveraging these

implementations.

CONCLUSION

In this paper, we have tried to illustrate the advantages

and application potential of programmable logic. Since

this approach offers a lot of freedom, a well thought-out

architecture should be agreed upon to prevent

unnecessary divergence of efforts and allow re-use of

components and methodologies. Ideally, the approach

would also leverage the standard integrated development

FPGA

Q

Q
SET

CLR

D

D flip-flop

AND

Logic

clock

interlock
output

output pin
Input pin

Figure 4: Digital circuit implementing an interlock.

FPGA

Java Optimized Processor

Java Optimized Processor

RAM

(stack)

Cache

Microcode

ROM

SimpCon

I/O

RAM

(board)

Flash

FPGA cfg

(copy 1)

FPGA cfg

(copy 2)

ROM

(copy 1)

ROM

(copy 2)

Filesystem(s)

Wishbone
Memory access

logic

RAM

(FPGA)

Module B Module C

Module A

Module D

Figure 3: Overview of the hardware architecture..

35

environments, reducing the learning curve of engineers

making use of the technology.

REFERENCES

[1] K. Compton, S. Hauck. “Reconfigurable Computing:

A Survey of Systems and Software”, ACM

Computing Surveys, Vol. 34, Np. 2, June 2002, pp.

171-210.

[2] Martin Schöberl. “JOP. A Java Optimized Processor

for Embedded Real-Time Systems”, PhD thesis,

Vienna University of Technology, January 2005,

http://jopdesign.com.

[3] opencores.org. “WISHBONE System-on-Chip (SoC)

Interconnection Architecture for Portable IP Cores”,

revision B.3, September 2002.

36

MONO FOR CROSS-PLATFORM CONTROL SYSTEM ENVIRONMENT*

H. Nishimura
1
 and C. Timossi

2
, LBNL, Berkeley, CA 94720, U.S.A.

Abstract
Mono is an independent implementation of the .NET

Framework by Novell that runs on multiple operating

systems (including Windows, Linux and Macintosh) and

allows any .NET compatible application to run

unmodified. For instance Mono can run programs with

graphical user interfaces (GUI) developed with the C#

language on Windows with Visual Studio (a full port of

WinForm for Mono is in progress). We present the results

of tests we performed to evaluate the portability of our

controls system .NET applications from MS Windows to

Linux.

.NET PLATFORM AND CONTROLS

Windows in an Accelerator Environment

Microsoft Windows is widely used as a platform for

GUI based applications used for machine operations and

physics studies. Windows is also a useful platform for

instrumentation controls because of the wide industry

support of specialized drivers for it. For these reasons

Windows has become an essential platform for accelerator

and beamline control systems.

The fundamental programming API for developing

Windows software is changing from Win32 to .NET. The

.NET framework has been evolving since .NET 1.0 in

2002, and reasonable backward compatibility with

existing Windows software APIs such as Win32 and

Active/X (COM) has been maintained. During this time

we have been adapting our applications for the .NET

framework on Windows.

EPICS on Windows at ALS

Our accelerator control applications use the Channel

Access (CA) layer of EPICS [1] to access accelerator

controls data. To support the widest variety of

development tools on Windows (e.g. Delphi, C++

Builder, Visual Basic and LabView), we package CA as

an ActiveX Control we call SCACOM [2]. This control is

a thin wrapper around another library, Simple Channel

Access (SCA)[3], that was developed to ease CA client

development at the ALS [4].

Although .NET programs can use ActiveX controls

directly, there is an advantage to repackaging the control

as a .NET assembly. ActiveX is only available on

Windows platforms whereas .NET was designed to be

portable to other platforms. So, a .NET application - even

a GUI application using WinForm - at least has the

potential to run unmodified on a non-Windows OS.

We’ve named this new assembly: SCA.NET [5]. In fact,

we did much more than re-package SCACOM. We

decided to spend some effort recoding some of the

routines (in C#) to make better use of CA, thus improving

data access performance.

MONO AS .NET ON LINUX

Mono for Cross Platform Support of .NET

Mono [6] is an implementation of the .NET Framework

originally developed by Ximian which is now under

Novell. It can be run on multiple operating systems

(including Linux, Mac OS X, Solaris, BSD, and

Windows) on multiple hardware platforms (s390/s390x,

SPARC, PowerPC, x86, x86-64, IA64 and ARM). We

report on Linux running on x86 based PCs in this paper.

Compatibility

The Microsoft .NET Framework for Windows has

evolved from version 1.0 in 2002, to 1.1 in 2003, to 2.0 in

2005 (version 3.0 will be delivered on Vista). Not

surprisingly, Mono has lagged behind Microsoft and is

currently delivering version 1.1. In addition to the basic

framework, Mono also includes support for ADO.NET for

database access and WinForm for GUI development.

In our experience, non-visual classes, such as

ADO.NET, have been well supported on Mono.

On the other hand, GUI programming using WinForm

is behind that in .NET 1.1 on Windows. When we use

graphical libraries from third parties, we need to take

extra steps to assure their availability/compatibility on

Mono. For example, we use a popular open-source library

ZedGraph[7] for plotting and charting. Its newest version

5.0 is for .NET 2.0. However, the previous version for

.NET 1.1 required only minor modifications to run on

Mono.

Third party library support can also be an issue.

Generally speaking, these .NET libraries, which

applications need to access with the Platform Invoke

interface, are now moving to managed code rather than

unmanaged DLLs. However, this move to managed code

often occurs together with the migration to .NET 2.0,

which is only partially supported on Mono.

At the time of this conference in October 2006, the

version of Mono is at 1.1.17. This version basically

covers .NET 1.1 and some of the new .NET 2.0 features.

Better compatibility is expected with the release of Mono

1.2 and 2.0 in the near future.

Mono as Runtime Environment

Mono becomes a runtime environment for the .NET 1.1

programs developed on Windows, including those made

using WinForm. In principle, they should run on Linux

with Mono without rebuilding as long as run-time

libraries are available. However, it is not unusual to

*Work supported by the U.S. Department of Energy under Contract

 No. DE-AC03-76SF00098.
1. H_Nishimura@lbl.gov. 2. CATimossi@lbl.gov

37

modify and rebuild such programs to alleviate minor

incompatibilities.

To start a .NET application with Mono:

$ mono WinApp.exe

where WinApp.exe is a .NET application developed either

on Windows or with the Mono development tools.

Mono as Development Environment

Mono includes a C# compiler (MCS) that enables .NET

development on non-Windows platforms. Although there

are more than 10 programming languages already

available on Mono [8], including Java, Visual Basic.NET

and Python, we currently focus on C# on Mono.

MonoDevelop [9] is the integrated development

environment (IDE) for Mono, running primarily on

Linux. It can import a Visual Studio 2003 solution

containing .NET 1.1 projects in C# developed on

Windows. It supports GUI development with several GUI

tool kits including GTK# with visual designer. However,

WinForm is not currently supported in this manner.

MONO FOR EPICS CLIENTS ON LINUX

SCA.Net for Mono

SCA.NET wraps the Channel Access shared libraries as

a .NET assembly that calls into CA using the Platform

Invoke API (also known as P/Invoke). For example, on

Windows:

public unsafe class Ca

{

 . . .

 [DllImport("ca.dll")]

 public static extern

 short ca_field_type (IntPtr ChanID);

 . . .

}

On Linux, we would expect to need to replace the

reference to “ca.dll” with “ca.so” (the shared library for

Linux-x86). However, if this class is built with “Any

CPU” option, this is not required. It picks up “ca.so”

properly at runtime on Linux. Therefore, there is no need

to modify the source code of SCA.NET.

Here is an example of a client program running on

Windows XP (Fig.1) and Linux (Fig.2); there is no need

for source code changes. It reads the beam current and

beam locations (X, Y) at 4 locations through SCA.NET.

Its binary is identical on both platforms. Here ca.dll is in

the PATH on Windows and ca.so is in the

LD_LIBRARY_PATH on Linux.

Thus, by carefully limiting the use of WinForm 1.1

controls for GUI programming, Linux is seamlessly

supported at run-time for .NET 1.1 programs with EPICS

access.

Fig.1. EPICS Client Program on Windows XP

Fig.2 EPICS Client Program on Linux

AKNOWLEDGEMENTS

The authors thank A. Biocca and D. Robin for their

support, T. Scarvie for useful advices, and C. Ikami and T.

Kellogg for their technical support.

REFERENCES

[1] L. R. Dalesio, et al., ICALEPCS '93, Berlin, Germany,

1993.http://www.aps.anl.gov/epics

[2] C. Timossi and H. Nishimura, IEEE PAC’97, 0-7803-

4376-X/98, p805, 1998

 http://www-controls.als.lbl.gov/epics_collaboration/

sca/win32

[3] http://www-controls.als.lbl.gov/epics_collaboration/

sca

[4] LBL PUB-5172 Rev. LBL,1986

 A. Jackson, IEEE PAC93, 93CH3279-7(1993)1432

[5] H. Nishimura and C. Timossi, PCaPAC 2005,

Hayama, Japan, 2005.

[6] http://www.mono-project.com

[7] http://zedgraph.org

[8] http://www.mono-project.com/Languages

[9] http://www.monodevelop.org

38

A configurable Interlock System for RF- Stations at XFEL

M.Penno, T. Grevsmühl, H.Leich, A. Kretzschmann, W.Köhler,

B. Petrosyan, G.Trowitzsch, R.Wenndorff, DESY, Hamburg, Germany

INTRODUCTION

 The European XFEL-Project
1
 requires for its

superconducting cavities at the acceleration section up to

40 RF-Stations. Each RF-Station requires an interlock

system, which has to prevent any damage from the cost

expensive components of the RF-Station.

INTERLOCK CONCEPT

 The main advantage of the interlock system is its

interlock-logic, which is completely implemented in

hardware and doesn’t depend on software processes

during operation. That is a primary requirement of the

concept. Only initialization and self-test at power-up are

accomplished by software.

INTERLOCK I/O MODULES

The system holds several I/O modules, which are

connected to several input and output signals of different

types. The signals are connected via distribution panels to

the components of the RF-Station. All modules

communicate there signal status periodically to the

interlock logic over the status bus to the interlock

controller module.

INTERLOCK CONTROLLER

 The interlock controller holds a FPGA, which contains

the interlock logic and a NIOS2 Processor, where the

software runs on. The software performs a self-test on

power-up, where all hardware components of the

interlock get checked if ready for operation. Also the

system provides several interfaces over network to

communicate with the control-system DOOCS and

diagnostic tools. The tools are used to record detailed

information and help to identify noise and error sources.

FUTURE PLANS

 Because the NIOS processor doesn’t have a MMU
2

(which affects reliability and deterministic behaviour) and

existing software is difficult or impossible to port to

NIOS2, we are looking forward to switch to a more

popular platform like an AMD Geode x86 Processor

which also brings along better linux support. That will

allow us to run easily TINE and/or DOOCS server on it

and other software that belongs to the interlock system.

1

XFEL – European X-ray free-electron laser project
2

MMU – Memory Management Unit

39

MAGNETIC FIELD MAPPING (MFM) SYSTEM FOR SUPER

CONDUCTING CYCLOTRON (SCC) IN VECC

 Sarbajit Pal, Anindya Roy, Tanushyam Bhattacharjee, N. Chaddha, R. B. Bhole, S. Dasgupta

Variable Energy Cyclotron Centre, DAE, 1/AF Bidhannagar, Kolkata 700 064,

e.mail: sarbajit@veccal.ernet.in

Abstract
The median plane magnetic field of the SCC magnet

(Peak field 5.8T) has been measured over its operating

range and upto 29 inch radius. The complete map of 360

degree at one degree interval is obtained in less than 100

minutes measuring nearly 100K field values with radial

interval of 0.1 inch.

The software of the PC based mapping system works in

a Client-Sever environment, maintaining TCP

communication between the mapping mechanism

controller station as Server and the operator’s Console

station as Client. The client-server developed using

Labview and Windows console program respectively,

provides a reliable and easily modifiable GUI and also

fast hardware control from the PCs’ running Windows-

XP. The server program supports remote client control of

motors and control and operation of digital integrator &

NMR jig along with the collection and logging of

measured data. The client program also supports online

preliminary display and analysis of field data.

The results indicate the correctness of the magnet

assembly and measurement system. After coil-centering

and shims placement the maximum first harmonic in the

fields obtained are less than 16, 12 and 7 Gauss

respectively in central, middle and extraction region at all

magnet excitation.

 INTRODUCTION

The Magnetic Field Mapping (MFM) system comprises

of a hardware system and a control & data acquisition

software [1]. A search coil and Digital integrator

combination are used to measure the difference in field

between the center and any other point of the magnet [2].

The schematic diagram of the system is shown in the Fig

1.

 HARDWARE SYSTEM

The hardware system consists of MFM jig, NMR Gauss

meter, Digital integrator, Measurement PC and Console

PC. The MFM jig comprises of a centrally supported

search-coil carrying arm. The radial movement range of

the search coil is 29inch. The radial position is sensed by

an optical encoder (U. S. Digital) traveling over a linear

strip (360 LPI). One out of every thirty-six pulses from

the encoder is used to trigger the digital integrator unit to

read and integrate the search coil output between the

triggers. The angular position of the search coil carrying

arm is determined by absolute rotary Inductosyn encoder

(256/2 pole, 128/1 speed, 8.15 inch stator O.D.). The

standard accuracy of 1.7arc Sec is obtained using two

dual channel preamplifier (219200) and AWICS

converter board (220500). A microcontroller based

interface module, developed in house, reads the angular

position from the AWICS board online.

The Measurement PC is placed at vault near the main

magnet and the Console PC is placed at the main control

room. Both PCs are connected to the dedicated LAN

commissioned at Super-conducting cyclotron (SCC)

building. The Measurement PC is connected with Digital

Integrator, NMR Gauss meter and angular encoder on

serial ports. Two Animatics smart motors (SM2337DT)

connected in RS232 daisy-chain architecture to the

measurement PC, control radial movement and angular

position of the search coil.

 CONTROL & DATA ACQUISITION

SOFTWARE

The control & data acquisition software has two

independent modules. The Measurement Controller

module, running on Measurement PC, communicates to

control and acquire data from digital integrator, NMR

gauss meter and search coil positioning system. It also

communicates with the Console PC to receive command

and transfer all integrated field values of a radial run in

bulk mode. The MFM User Interface module running on

Console PC, enables users to control the complete process

of field mapping comprises of acquiring, storing and

on/off-line analysis of the data. This module also

communicates with centralized database server to gather

related power supplies, cryogenic and other

environmental parameters.

Features

The MFM system is designed to be fully automatic to

reduce human interference resulting into a minimum

measurement time. To meet this requirement, the

NMR Teslameter

1 8 such T C P SALPHA PS

Mapping Console On-line Data Base

TCP LAN

MMPS PC

TCPS PC

R S 2 3 2

R S 4 2 2

Control Room

Vault

Radial Encoder O/P

Search Coil O/P

BETA PS
R S 4 8 5

Digital Integrator

Angular Encoder

Motor Controller

Jig Driver

NMR Teslameter

1 8 such T C P SALPHA PS

Mapping Console On-line Data Base

TCP LAN

MMPS PC

TCPS PC

R S 2 3 2

R S 4 2 2

Control Room

Vault

Radial Encoder O/P

Search Coil O/P

BETA PS
R S 4 8 5

Digital Integrator

Angular Encoder

Motor Controller

Jig Driver

Fig. 1: The schematic diagram of the system

40

Measurement Controller (MC) and MFM User Interface

(MUI) softwares are developed to cater the following

salient features.

• Faithful communication, control and acquisition of

data from the individual modules, i.e. Digital integrator,

NMR Gauss meter, Smart motors and Angular encoder.

• Generation of warning/error messages for

unacceptable events during mapping.

• Full remote access and control of the MFM system

from the SCC main control room.

• Acquisition, display and storage of other sub-systems

data.

• On-line analysis of the acquired data.

• User-friendly operation interface.

• TCP socket communication between MC server s/w

and MUI client s/w.

Measurement Controller Software

A multithreaded C module implemented using

Windows API performs following three tasks

simultaneously.

• Receive command from client program and decode

the command to invoke appropriate job.

• Execute the current job.

• Execute a watchdog timer independently to monitor

any unacceptable event and notify the client.

The program is divided into following five modules.

Main server thread initializes the search coil movement

and positioning system, opens protected TCP socket to

communicate with the MFM User Interface. MUI has a

predefined IP address to receive command and accepts

command from the client to invoke the appropriate task. It

also generates error message in case of any failure.

• Digital Integrator thread issues commands to digital

integrator module for controlled data acquisition.

• NMR Gauss Meter thread reads online NMR Gauss

meter output.

• Angular movement thread positions the search coil

carrying arm at desired angle by communicating with

angular encoder and smart motor driver.

• Watchdog as a monitoring thread with a preset time

out, facilitates to come out of any deadlock situation.

MFM User Interface Software

This software developed in LabVIEW 6.1 incorporating

multi-threaded architecture, performs following three

tasks simultaneously [3].

• Communication with Measurement Controller s/w for

automatic and manual mode of operation, control and

monitoring the MFM procedure and field data

acquisition and storing.

• Transaction with a centralized Oracle Database server

through Microsoft ActiveX Object in SQL to read and

display different subsystem (Main magnet power supply

System, Trim coil power supplies system, Cryogen

delivery system) parameters to ensure the magnetic field

during the mapping.

• Online 2D visualization of the acquired field data for

comparing the actual and theoretical profile the

magnetic field.

• Offline Fourier analysis of MFM data stored in

database for the analysis of azimuthal field modulation.

RESULT

Extensive magnetic field mapping has been carried out

at different main coil excitations (Fig.2). Three-fold

symmetry dominated magnetic field distribution is a

characteristic feature of the three-sector geometry of SCC

as shown in Fig.3. Deviation from perfectly three-fold

symmetry, arising out of manufacturing tolerances and

assembly errors, is shown in a contour plot of data at Iα =

300A, I β =300A (Fig.4). The blue contour is of zero

deviation, i.e. perfectly three fold symmetric data points,

the red contours are of positive deviation with 10 gauss

step and the green contours are of negative deviations

with same step. This includes all harmonics deviating

from perfect 3-fold symmetry. The radial distribution of

Bav for different current settings (Iα
 , I β) is shown in Fig.5.

Iron shims were added to remove unwanted dips in the

average iron field distribution at several radii (Fig.6). The

distribution of 1
st
 harmonic field at different stage of

correction is shown in Fig.7 by map1, map2, and map3.

The analysis of the measured magnetic field data and the

subsequent correction of the magnet have improved the

field quality.

 CONCLUSION

The computerized MFM electronic set up is installed

inside near Super-conducting magnet. The complete

search coil carriage movement and positioning system

comprises of the motors, encoders with their drivers and

supported electronics, are tested successfully. The starting

point of measurement for radial scan is achieved by

precise positioning of the linear scale with respect to the

encoder head near the central region. The phase and

frequency adjustment of the angular encoder electronics is

done for extending the cable length running from

mechanical encoder head to the control electronics kept at

control rack near the measurement PC.

Fig.2. Measurement grid in Iœ , Iß plane.

41

The mean deviation of the pulse count received from

the radial encoder for complete radial movement of the

search coil is ±2 count i.e. 20 ppm errors. The data

analysis comprises of the following major activities: (i)

processing of the measured raw data, (ii) reproducibility

check up, (iii) finding the magnetic symmetry axis by

minimization of second harmonic component, (iv)

correction of average iron field distribution by adding

iron shims and (v) minimization of first harmonic

component by shimming of iron is successfully

completed.

ACKNOWLEDGEMENT

The authors wish to acknowledge Mr. M. K. Dey and

his group members for providing useful suggestions,

data analysis and plots described in this paper.

 REFERENCES

[1] Sarbajit Pal, et al, Development towards magnetic

field mapping system, Indian Particle Accelerator

Conference-2003, Feb 3-6, 2003, Indore, India.

[2] L.H. Harwood and J. A. Nolen Jr, Plans for

Magnetic Mapping of the NSCL K800 Cyclotron

Magnet, CHI996-3/84/0000-0101.

[3] F. Marti and P. Jhonson, A LabView based

Cyclotron Magnetic Field Mapping System, Proc Int.

Conf. On Cyclotron and their Applications, Caen, 1998.

Fig.3. Isogauss contour plot of measured field.

Fig.4. Deviation from 3-sector average

Fig.5.: (a) Average field profile for different (Iœ , Iß)

Fig.6. Bav correction by adding shim

Fig.7. Minimization of 1

st
 harmonic field profile

42

MCS-8 EIGHT AXIS EMBEDDED MOTION CONTROL SYSTEM

G. Jansa, R. Gajsek, M. Kobal, Cosylab, Ljubljana, Slovenia

Abstract
MCS-8 is an 8 axis motion control system for stepper

motors, servo drives and a variety of special drives.

Central to the controller is the Delta Tau Turbo PMAC 2

programmable multi axis controller. It incorporates a full

PLC specifically designed for positioning and control

functions.

We have developed a layer on top of the generic and

complex Turbo PMAC 2, making the MCS-8 very easy to

use as a stand alone box in a control system. Software

running on embedded controller can range from EPICS,

SPEC to local SCADA system with an Ethernet and

RS232 interfaces.

MCS-8 is capable of controlling even the most

complicated motion such as Stewart-Gough platform

(Hexapod). Hexapod offers six degrees of freedom

positioning system with sub-micrometer precision and

repeatability. PMAC controller is used to calculate

kinematics and EPICS for end user interface. Important

features are user selectable point of rotation in space and

point to point scanning of all six axes.

INTRODUCTION

In particle accelerators there are many applications that

require controlling of motors. These applications range

from controlling injection devices in storage ring, such as

undulators and wigglers, to components in beamlines

which can be as simple as slits or complicated devices

such as Double crystal monochromators (DCM) or

mirrors. Especially DCMs usually requires controlling of

different types of motors such as servo motors with dual

feedback for velocity and position, stepper motors, or

even nano or pico motors for fine positioning of crystals.

MCS-8 is built in a modular way so that it supports any

combinations of motors.

Figure 1: MCS-8

Figure 1: MCS-8 inside

Main hardware components of MCS-8 are Turbo

PMAC 2, embedded computer (microIOC) and power

drivers. MCS-8 software is divided to low level software

residing on Turbo PMAC 2. Basic motion control

includes programs for single axis point to point moves,

home reference search and various housekeeping tasks,

programs synchronize motion of multiple motors can be

achieved. Robotic applications control can be performed

using kinematics calculations. In recent projects we used

EPICS as an interface to PMAC for controlling most

devices used in synchrotron light beamlines such as slits,

mirrors, DCM, hexapod or individual motors. We use

EPICS GUI written in EDM or MEDM [1]. Panels hide

the complexity of the software. Very popular way of

interfacing MCS-8 is by using SPEC [2]. SPEC is a

package for instrument control and data acquisitions

widely used for X-ray diffraction at synchrotrons. MCS-8

comes without embedded computer if used with SPEC,

since SPEC is usually installed on a remote linux

workstation.

This article describes the components of the MCS-8:

Turbo PMAC 2, microIOC and various power drives.

Second part presents an example of usage of MCS-8 to

control hexapod acting as optical element in ADRESS

beamline in Swiss Light Source (SLS).

43

MCS-8 COMPONENTS

Turbo PMAC 2

Turbo PMAC 2 is the heart of MCS-8. It uses the

increased speed and memory of the newest generation of

digital signal processing (DSP) ICs. It has capability to

control up to 32 axes in 16 independent coordinate

systems. Turbo PMAC 2 board itself has at most 8 axis

interface channels. To actually control more than 8

physical axis users must use either special expansion

board or remote interface circuitry on the MACRO ring

[3]. The DSP of the base version of turbo PMAC 2 runs at

80 MHz. Serial interface is used to directly interact with

PMAC (can be used for manual configuration) using

Delta Tau software running on Windows. Ethernet is

used for internal communication between PMAC and

microIOC.

Figure 1: MCS-8 main components

Software on the Turbo PMAC 2 is divided into: setup,

motion programs, homing programs, PLC programs and

servo and phase algorithms. Setup on Turbo PMAC 2 is

performed by means of setting system variables called I

variables [3]. There are more than 8000 variables in total

and 100 for each motor. I variables are used for settings

like maximum velocity, soft limits, PID parameters.

Motion programs are programs that are usually used to

move the motors. They provide an easy way to specify

sequences of coordinated motion of multiple axes and the

execution of any calculations that are synchronous with

the programmed motions.

Homing programs are needed if the encoder on the

motor is relative and the absolute position is lost after a

power failure or a hard reset. Basic homing program

drives motor to one of the limit switch and then the home

reference search sequence is initiated. Other types of

homing programs for motors that don’t have home

reference are also possible (they can use one of the limits

switch as a home indicator).

 PLC programs are intended for actions and calculations

that are asynchronous to the programmed motions. PLC

programs repeatedly scan in the fashion of regular

programmable logic controllers. They are used for

initialization, monitoring of various registers, to perform

manifold actions at certain conditions, such as switching

off power drives after motion for motors that would

otherwise overheat and they can also be used to

implement actions which PMAC would perform if

communication to the remote controller would fail (e.g.

stop all motors).

Servo algorithm implements PID loop for each motor.

In this algorithm PMAC calculates required signal for the

outputs based on the difference between actual and

demanded position. Standard servo loop is shown in

figure 2.

 Figure 2: Standard servo loop

Advanced users can write their own servo algorithms.

Since these tasks are executed at very high priority they

can also be used as a very fast input/output operations or

calculations if they are applied on motors that are not

used in the system.

MicroIOC

MicroIOC [4] is embedded single board computer

(SBC) usually running software for controlling devices. It

has standard outputs for mouse, keyboard, VGA monitor,

2 USB plugs and also two Ethernet connections. All these

except one internet connection can be accessed from

MCS-8 front panel. One of the Ethernet connections is

used for internal communication between PMAC and

EPICS software. It does not have a hard disk; all software

is stored on a compact flash disk (CF) which is loaded at

boot time. Most widely used operating system is linux

(Debian distribution) but also Windows or RTEMS are

possible.

Power drives

The PMAC board provides control for a wide variety of

actual drives. Some of the supported are:

• Mounted internally in MCS-8

o Microstepper Driver – this drive is a

PWM Chopper, providing bipolar drive

for 2-Phase stepping motors.

44

o Servo Motor Driver - This is an intelligent

PWM servo drive designed to drive

brushed and brushless servomotors.

• Other drive options mounted externally to MCS-8:

o DC brushless motors

o Intelligent “Picomotor” drives

o Nanomotors

o Piezoelectric drives

HEXAPOD APPLICATION

Parallel kinematics manipulators (PKMs) have been

rediscovered in the last decade as processor's power

finally satisfies computing force required for their control.

Their great payload capacity, stiffness and accuracy

characteristic as result of their parallel structure make

them superior to serial manipulators in many fields.

One of the most accepted PKMs is Stewart-Gough

platform based manipulator, also known as hexapod

platform. Hexapod consists of two platforms, one fixed

on the floor or ceiling and one mobile, connected together

via six extensible struts with spherical or other types of

joints. That construction gives mobile platform 6-DOF

(degrees of freedom). Hexapod movement and control is

achieved only through strut lengths changes.

Kinematics

In hexapod motion control it is essential to have

capabilities of calculation inverse and forward kinematics.

PMAC provides two special buffers, one for forward and

one for inverse kinematics. If using kinematics in motion

control, no motion program needs to change because

PMAC calls kinematics calculations internally. The

purpose of forward kinematics is to calculate tool tip

position from joint (motor) positions. Inverse kinematics

is mathematical inversion of forward kinematics; it

calculates joint (motor) positions based from the tool tip

positions [5].

In hexapod application user can demand new position

of the hexapod only in tool–tip coordinates. PMAC first

calculates forward kinematics before a move is initiated.

This is done since motors could be individually moved

and the starting tool tip position would then not match the

real world. Calculated values are used as an input to

inverse kinematics calculations. PMAC automatically

calls the inverse kinematics for each programmed move

typically every 10 milliseconds.

EPICS software

EPICS software runs on a microIOC. Since all major

calculations are done inside PMAC EPICS software acts

mainly as interface to the user panels. It is used to control

and monitor tool tip moves, monitor individual motor

status, setup hexapod coordinates systems and scanning

functionality. Figure 3 shows an example of EPICS GUI

panel. Control in tool tip coordinates is in the right top

corner. Lower right part is used to monitor individual

motors status (limit switches, failures and velocity).

Figure 3: Hexapod user panel

Scan functionality offers user to scan hexapod position

in one of the 6 tool tip axis (X, Y, Z, Y, Yaw, Pitch and

Roll). User must select start position, end position,

number of points in scan and dwell time in each point.

For each point the software is able to obtain values from 6

different sensors. At the end of scan graph with acquired

data is displayed and peak statistics is calculated.

REFERENCES

[1] www.aps.anl.gov/epics/extensions/medm/index.php

 http://ics-web1.sns.ornl.gov/edm/

[2] http://www.certif.com/spec.html

[3] “Turbo PMAC – User manual”, Delta Tau, October

2004

[4] R. Sabjan et al., “microIOC and EPICS: The

Complete Control System Node”, PCaPAC 2005

[5] Lung-Wen Tsai, “Robot Analysis”

45

ETHERNET BASED EMBEDDED SYSTEM FOR FEL DIAGNOSTICS AND

CONTROLS

J. Yan, D. Sexton, W. Moore, A. Grippo, and K. Jordan

 FEL, Jefferson Lab, Newport News, USA.

Abstract
 An Ethernet based embedded system has been

developed to upgrade the Beam Viewer and Beam

Position Monitor (BPM) systems within the free-electron

laser (FEL) project at Jefferson Lab. The embedded

microcontroller was mounted on the front-end I/O cards

with software packages such as Experimental Physics and

Industrial Control System (EPICS) and Real Time

Executive for Multiprocessor System (RTEMS) running

as an Input/Output Controller (IOC). By cross compiling

with the EPICS, the RTEMS kernel, IOC device supports,

and databases all of these can be downloaded into the

microcontroller. The first version of the BPM electronics

based on the embedded controller was built and is

currently running in our FEL system. The new version of

BPM that will use a Single Board IOC (SBIOC), which

integrates with an Field Programming Gate Array (FPGA)

and a ColdFire embedded microcontroller, is presently

under development. The new system has the features of a

low cost IOC, an open source real-time operating system,

plug&play-like ease of installation and flexibility, and

provides a much more localized solution.

INTRODUCTION

The Free Electron Laser Project at Jefferson Lab is an

electron accelerator that provides intense, powerful beams

of tunable infrared (IR) laser power. This complicated

machine requires numerous control and diagnostic

systems, some requiring high levels of precision.

Currently these devices, such as beam viewers and BPMs,

are controlled, configured and monitored by a central

VME bus-based configuration. Within the FEL there are

over 100 beam viewers and 35 BPMs that are distributed

throughout the IR FEL beam line, which means high cost

for cable and maintenance. The UV beam line under

construction needs about twenty more beam viewers and

twenty BPMs. However, the current configuration is

limited, so an upgrade for the beam viewer system and

BPM is required for machine expansion and growth.

Currently we have two kinds of configurations for the

BPM system. Figure 1(a) shows the BPM control system

with a VME crate with a custom designed set of SEE

electronics. Each BPM connects with a set of SEE

electronics a BPM Can. Figure 1(b) shows the BPM

system with both VME and CAMAC crates. The adapter

on the VME crate talks with the CAMAC controller.

Within the CAMAC crate each board controls one BPM

device. If we want to add more BPM devices, we either

need a VME crate or a CAMAC, and also a lot of cable.

The cost will be very high.

The beam viewer system is also based on the VME bus.

The IP packs, both IP-DIO48 and CAN bus adapter, are

currently used to control the chassis, which has an

electronics board for each slot and one board controlling

one beam viewer, with a total of 12 channels per chassis.

Expensive and obsolete chassis are required to expand the

beam viewer system.

An Ethernet based embedded system was proposed to

solve these problems and other control system upgrades

within the FEL. Low cost, powerful embedded

microcontrollers make it possible to network numerous

devices and have stand alone systems.

SEE

. . .

Ethernet

(a)

Electronics

BPM

Electronics

BPM

VME

I

O

C

Ethernet

CAMAC
. . .

(b)

Electronics

BPM

Electronics

BPM

VME
I

O

C
. . .

 Figure 1 The current BPM control systems

NEW SYSTEM DESIGN

Microcontroller

The embedded microcontroller is the uCdimm Coldfire

5282 module (uC5282), which is a complete “system on a

module”, including three basic highly integrated

functional blocks, core processor, memory and Ethernet.

The module provides abundant high speed serial and

parallel I/O ports on board when coupled with suitable

devices. It can directly control the I/O devices without

external support. The board has the following

configuration, Motorola MCF5282 controller with 64

MHz Coldfire RISC, 512 KB embedded flash memory for

Bootloader and environment storage, 16 MB on-board

RAM, enhanced multiply-Accumulate Unit (eMAC) for

DSF functionality, 10/100 Ethernet MAC for fast Ethernet

support, two RS232 serial UARTs, queued serial

peripheral interface (QSPI) with four peripheral chip

selects, 8-channel 10-bit queued analog-to-digital

converter (QADC), and other multi-purpose input/outputs.

RTEMS and EPICS

RTEMS is a full featured real-time operating system

that supports a variety of open API and interface

standards. It was developed by OaR Corp, and aims to

provide a free real-time operating system for deeply

embedded systems with less memory. Its performance is

46

competitive with close products
1,2

. The system can be

tailored to a specific application by choosing an

appropriate configuration, where various system

components are partitioned into separate modules.

RTEMS is designed to be easily portable and

consequently supports many CPU architectures, such as

m68k, ColdFire, Intel i386, PowerPC, SPARC, AMD

A29k, and so on. Some previous work had been done to

compare the network and latency performances between

RTEMS and vxWorks. It has been proven that the real-

time performance of the RTEMS is comparable to that of

a commercial system like vxWorks
1,3

. EPICS has been

ported to RTEMS as of new 3.14 EPICS release
4
. The

embedded ColdFire microprocessor integrated with

RTEMS and EPICS allows the microprocessor to be

configured as an IOC This provides the advantages of low

cost, flexibility and optimal real-time control systems.

BPM

The first version of the BPM stand alone system is

divided into two major sub-sections, the RF Front End

electronics, which converts 1.497 GHz RF input into DC,

and the Digital Section with the ColdFire IOC, which is

responsible for data processing and network

communication. Figure 2 shows the schematic of the new

BPM configuration. The RF signals from four channels,

X
+
, X

-
, Y

+
, and Y

-
, are converted into DC voltages by an

AD8362 and sampled by a 16-bit ADC ADS8364. The

Coldfire processor reads four-channels of digital data

from the ADS8364 through the digital I/O pins. Figure 3

shows an overall picture of the BPM electronics with the

on board Coldfire uC5282 processor.

Ethernet

.

ColdFire

IOC

Electronics

BPM

ColdFire

IOC

Electronics

BPM

 Fig. 2 The Schematic of new BPM control system

The device drivers, device supports, and sequencer

were developed under RTEMS/EPICS tools to process the

data calculations and Spline interpolaton calibrations for

the beam position. The embedded Coldfire IOC directly

communicates with the EPICS controls system through

the on board Ethernet interface. Each of the embedded

IOCs has the functionality of remote programming and

remote reboots. This allows for quick changes to be

uploaded into the IOC, without having to remove the

device from the field. Some of new BPMs have been

running within the FEL system for more than one year.

They have proven to be very reliable, easily maintained.

The control screens of the new BPM are compatible with

the previous BPM system. However, one limitation of this

prototype is the throughput from the ADC to the Coldfire

uC5282 processor, as this is limited to about 100 Hz. This

limits the resolution that these electronics are capable of

achieving. A new version of BPM based on the SBIOC,

which integrated the FPGA and the Coldfire uC5282

processor into one device, is under development. This

configuration will solve the limitation and dramatically

increase the throughput. The configuration of the SBIOC

board will be described in the next section.

 Fig. 3 The overall picture of the BPM electronics

SINGLE BOARD IOC (SBIOC)

Because the first version of embedded BPM does not

have a high sample rate to provide high resolution, a

solution to increase the sample rate is currently being

tested. The method of implementing an FPGA to speed-up

the digital sample rate was applied. FPGAs are very

attractive for implementation into digital designs, because

they have high component counts and provide enormous

design flexibility with relatively low cost. By integrating

the FPGA and the Coldfire uC5282 processor, the SBIOC

was designed.

FPGA
ColdFire

uC5282

Address

Data

Control

Ethernet

Single Board IOC

I/O

I/O

 Fig. 4 The schematic of the Single Boardd IOC

Figure 4 shows the schematic of the SBIOC. The Altera

Cyclone II EP2C8Q208 FPGA is chosen, because it

provides abundant I/O pins for device control and the

connection with the Coldfire uC5282 processor. The

interface between the FPGA and the Coldfire uC5282

processor includes a 24-bit address bus, a 16-bit data bus,

and a control bus. The clock of the FPGA can either be

driven by the Coldfire Processor clock or an external

crystal oscillator. The SBIOC has two 40-pin headers and

that allow it to drop in a carrier board as a module. Since

the new board is pin-pin compatible with some existing

designs, it can be upgraded and replaced without have to

redo the whole carrier card. The two 40-pin sets have 32

bits I/O pins from the FGPA, 8 bits of general purpose I/O

47

pins, several other generic digital bits, Ethernet and RS-

232 communication pins, as well as 5V or 3.3 V power

lines. Figure 5 shows the pictures of the SBIOC

prototype. a) front view with the FPGA and without

Coldfire uC5282 processor, b) with the ColdFire uC5282

processor plugged on the top of the FPGA

 (a)

 (b)

Fig. 5 The pictures of Single Board IOC, (a) without the

uC5282, (b) with the uC5282

The functional logic of the FPGA was designed with

the Quartus II software tool. The typical functional

modules of the FPGA consist of a Coldfire-FPGA bridge,

a control module, an interface logic of FPGA and I/O

devices, and a memory block. The Coldfire-FPGA bridge

is the communication protocol between the FPGA and the

Coldfire uC5282 processor, which controls the address

bus, data bus and control bus. Through the bridge the

Coldfire uC5282 processor reads and writes the FPGA as

a peripheral device. The control module coordinates other

modules. The interface logic module interacts with I/O

devices while the memory block is RAM in the FPGA.

Once complied, all the code can be stored in an EPROM

device that connects with the FPGA.

The SBIOC is used for the new version BPM. The

FPGA collects the data from the ADC as fast as the ADC

maximum throughput. For example, AD7655 has sample

rate of 1 MHz, ADS8364 has 250 KHz for each channel.

The FPGA will do some averaging to reduce the noise.

The data that are sampled from the ADC will be stored in

the memory block in the FPGA. The Coldfire processor

reads the data from the memory and executes all the

calculations and calibrations. This BPM will have self

triggering capabilities, fast throughput for averaging, and

better position resolution. By using the FPGA, it is

possible that we can provide some beam diagnostics that

we couldn’t with the current system. Some other control

sub-systems, such as beam viewer crate, GC chassis,

Charge/Dump chassis, and vacuum crate, will be

upgraded by using the SBIOC. All these systems will

have same hardware platform, the only difference is the

function of software. That will save a lot of cost and

should be easy to maintain.

CONCLUSIONS

The prototype of the SBIOC has been designed and

built. Some function modules in the FPGA were

programmed and tested. The Coldfire-FPGA bridge was

programmed and the uC5282 processor could access the

FPGA through the address bus and data bus. The interface

module in the FPGA could sample the data from the

ADC. The SBIOC was tested with the BPM electronics,

and we will design it into the next revison of the BPM

electronics. The new Beam Viewer card is under

development. More work of the SBIOC has to be done to

improve the performance.

The Ethernet based SBIOC integrating the FPGA with

the ColdFire uC5282 processor provides a new

configuration for the upgrade of our FEL control and

diagnostic systems. By using the open source RTEMS and

EPICS real-time control system, there will be no license

hassles and less cost. By moving the IOCs to the frond

end, we cut the cost of expensive cables. The SBIOC will

make the system more powerful and flexible, and it will

improve the performance of FEL. This configuration can

be used for the next generation FELs.

ACKNOWLEDGEMENTS

Thank Eric Norum in Argonne National Lab for

providing RTEMS tools and the step-by-step installation

instructions. Thank Stephen Dutton for electronics board

making and Trent Allison in ESICS group of Jefferson

Lab for the help of Altera FPGA programming. Thank the

Operations and Commissioning team of the FEL for the

support and technical advice. Also a special thanks to

Pavel Evtushenko for his expert advice and explanations

in BPM operations and calculations.

This work is supported by the Office of Naval

Research, the Joint Technology Office, The

Commonwealth of Virginia, the Army Night Vision

Laboratory, the Air Force Research Laboratory, and by

DOE Contract DE-AC05-84ER40150.

REFERENCES

[1] Till Straumann, “Open Source Real-Time Operating

Systems Overview”, cs,os/0111035 (2001) WEB1001

[2] http://www.rtems.com/features.html

[3] S. K. Feng, and etc., “EPICS/RTEMS/MVME5500

For Real-Time Controls at NSLS”, 10
th

 ICALEPCS Int.

Conf. on Accelerator & Large Expt. Physics Control

Systems. Genava, 10-14 Oct. 2005, TU4A. 1-50 (2005)

[4] http://www.aps.anl.gov/epics/base/RTEMS.php

[5] D. Sexton, etc., “Development of BPM Electronics at

the JLAB FEL”, 12
th

 Beam Instrumentation Workshop,

Fermi Lab, Batavia, IL, May 1
st
-4

th
, 2006.

48

MICROIOC: PC AND CONTROL SYSTEM LONGEVITY*

A.Podborsek
#
, D. Golob, A. Hasanovic, I. Kriznar, R. Sabjan, M. Plesko, Cosylab, Slovenia

Abstract

Products, taking part in control systems (CS), belong to

specific area of system solutions. From a high-level point

of view a CS can be split onto a main control part,

managing all important high-level CS aspects, and

peripheral control part, managing distributed end-point

devices.

These two parts feature different requirements because

of the environment and the role they are used in.

Nevertheless, both parts should be seamlessly integrated

in order to lay foundations for reliable and modular CS.

Main control part is normally situated in human and

electronics friendly environment and aimed at high-level

engineering control. On the contrary, a peripheral control

part is usually used in industrial environment with no

direct human interaction. Because of a diversity of end-

point devices, flexible and user customizable interfaces

are required for peripheral control. Long years of

operation are required until end-point devices (data

acquisition, actuators, etc.) are being replaced or

additional functionality is added. Reliability and future

modularity is therefore of crucial importance.

When it comes to the length of service of the entire CS,

it is expected, the same remote control solution would

provide adequate functionality through the whole lifespan

of system where it is used. Designers at Cosylab – as a

provider of CS solutions – we all strive for longevity of

our solutions. In other words, it is the length of service we

are after. This paper is focused on issues and solutions for

the peripheral part of the CS.

INTRODUCTION

Centralized control systems (CS) are considered to be

split into two important subparts – into main control part

and peripheral control part (Figure 1). Whilst integrating

CS solution, both parts must be carefully weighted for the

role they take over. CS integrators are targeting robust,

modular and flexible solutions.

In the main control part of the system it is usually

required that wide variety of system aspects is handled

and usually some form of data processing must be

applied. It is important to have a system with adequate

data processing power and flexible and user-friendly way

of managing of all complex aspects of system under

control. Typically such a system is managed by control-

system engineer in a human friendly environment of

central control room. It is therefore a typical domain for

personal computers (PC) to provide this control flexibility

and processing power.

At peripheral control quite different conditions and

requirements apply: demanding industrial environment,

large number of end nodes, wide range of required

interfaces towards controlled devices, and different

system roles. Nevertheless, complex general-purpose data

processing is usually not required as all potential complex

processing is handled over to the main control part, which

has access to all necessary system-level information. If a

demand for computer-intensive data processing exists,

custom embedded solutions are used, like for example in

motion control applications [5].

Figure 1 – control system

Based on the above, it can be concluded that peripheral

control is successfully handled only if peripheral control

is systematically addressed. A stress must be put onto

flexibility of connectivity, modularity, reliability and

durability. Especially if peripheral control devices are to

be integrated in complex scientific facilities, it is expected

they will play their role flawlessly.

Solutions on the market

Many different solutions exist on the market. One,

interested in integrating a CS solution, should take into

account price-effectiveness, size, modularity, scalability,

robustness, and integration friendliness/readiness. It must

be pointed out that there is no such thing as the best

peripheral-control product, at least not for every CS

scenario. All before mentioned criteria must be carefully

weighted.

When talking about price-effectiveness, an overhead

price, added to the device, requiring remote control, must

be considered and cost for adding support for additional

device of the same/similar type. This is also the issue of

modularity and scalability, i.e. the possibility to add

additional device(s) of the same or different type.

In case multiple devices must be controlled, physical

dimensions could determine the feasibility of the

proposed solution.

49

In the system development phase, possibility and

support for system-integration are of great importance,

determining whether the implementation deadlines can be

met or even if the proposed solution can be finalized.

Some of the most commonly used solutions for

peripheral control are:

• VME (Versa Module Eurocard) crate based solutions

or VXI (VMEbus eXtensions for Instrumentation)

[6];

• personal computer (PC) based solutions;

• embedded PC solutions with customized input-

output controller.

VME crate solutions are generally reliable and

modular. Additional functionality can be simply added by

the use of broad range of available extension cards. A

special care should be taken if only a small portion of a

VME crate is required. In such cases VME-crate solutions

could lead to very poor price-effective solutions.

Additional issue could be density of cards connectors, as

this often requires the use of special transition boards.

In some special circumstances a PC could be used for

remote control. It is ubiquitous, features high computing

power and highly flexible SW support, but the choice of

peripheral control cards is not so rich as with VME crate

solutions. Industrial environment, moving parts (power

supply ventilators, hard disks, etc.) and its size could

represent issues when durable and robust peripheral CS

solution is sought.

Embedded PC solutions can be considered as an

intersection of both previously presented peripheral

control devices. Embedded single board computers (SBC)

represent a flexible HW platform, offering common PC

functionality. The use of standardized operating systems

(e.g. Linux or Windows Embedded) and extension buses

(e.g. PC/104) both contribute to flexible platform, ready

to be customized for nearly every peripheral CS role.

Mass production of embedded SBC platform and variety

of extension cards guarantee the possibility to choose just

the right-configuration for the task. Because they are

optimized for size and often also for power consumption,

they generally use no moving part (neither for data

storage nor for cooling), which lays a good starting point

for use in demanding industrial environment. With the use

of industrial-grade components, these systems are

targeting high MTBF (mean time between failures) ratios.

MICROIOC

microIOC is an example of embedded PC-based

peripheral device, especially built for use in remote

control applications [1]. Its modular design and support

for specific customization scenarios makes it a perfect

turn-key solution for the control of any kind of end-point

devices. Essentially it is a bridge that integrates the

devices with the rest of the CS. The devices are connected

to the microIOC, while the microIOC itself is available to

the control system via the local area network [2].

Interfacing and installation effort is minimized, as

connector customization and support for integration into

higher-level central CS are also included in application

specific customization.

Its cautious design and rigorous testing provide grounds

for playing its role flawlessly. microIOC was especially

designed with a length-of-service in mind. A lot of effort

was put into designing a system with all components

being highly reliable. The core of the unit is composed of

SBC, compact flash (CF) memory module, and power

supply, all of them being carefully tested.

Support for various end-point devices and integration

into higher-level CS is provided through highly reliable

and industry-proved Linux operating system and

preinstalled support for direct integration into standard CS

solutions.

Components are enclosed in a compact and robust

aluminum casing, available in various form factors. Usage

of external cables is minimized to minimum: mains

supply cable, control system connection and connections

towards controlled devices. No other distribution cables

are required.

Figure 2 – examples of microIOC units

It offers a wide range of communication interfaces

(RS232, RS422, RS485, GPIB, Ethernet, USB, etc.),

which can be used to provide communication means for a

variety of devices, for which remote control is required.

Reliable

When reliability comes to question, both hardware and

software are equally important. microIOC is designed

using reliable and long-life industrial components. All

modules are carefully chosen in the way no maintenance

is required. As such it is perfectly suited for integration

into demanding industrial environment. No moving parts

are used in preferred hardware configuration. Even a fan

and a disk are left out, as this provides a system that does

not produce any noise and is resistant to vibrations. In

default configuration ultra low-power processor is used,

supplied with a small and reliable power supply.

50

Wherever possible, high-quality standard components

are used. These components feature higher reliability

factor because of their wide usage in larger number of

different applications; consequently their long-term

operating is tested much better.

Modular and configurable

microIOC is bottom-up designed to be highly

customizable platform. Starting with 3 standard types of

enclosure a variety of mounting requirements can be met.

In basic version one SBC can be used. If computational

power and/or interfacing requirements are greater,

additional SBC is used. If required, application specific

circuitry can be developed to precisely meet application

requirements. This forms a very flexible base, which can

be modularly extended by the use of standard PC/104

extension cards. Various extension cards and additional

modules can be integrated into microIOC unit to

accommodate all remote control requirements.

When it comes to connecting controlled end-point

devices, microIOC unit is equally customizable as with

physical dimensions and functionality. No special

transition boards are required that take-up additional rack

space. Mains connection and switch occupy very little

portion of the microIOC back panel, the remaining of the

space can be used to mount application customized back-

panel connectors for direct connection of devices.

Software

When reliability, flexibility and applicability of

embedded application are at question, Linux is operating

system (OS) of choice. Its kernel can be adjusted to

include just the required functionality, without system

overhead. Our policy is to use the kernels that are already

widely used, supported and tested [3].

microIOC uses CF memory card as non-volatile

memory to store Linux kernel image and required file

system. microIOC is distributed with a SW configuration

matching HW configuration. That means that all required

drivers are provided and SW properly configured.

Open source OS gives a user opportunity to precisely

implement any peculiar design requirement. Furthermore,

it relieves the user of relying on specific commercial

provider if additional requirements show up at some later

time. It is fairly to assume that future peripheral CS

requirements will not become so drastically computing

intensive, therefore only flexible and modular base is

required and we can target the length-of-service.

For integrating into the main control system, microIOC

is provided with a support for EPICS (Experimental

Physics and Industrial Control System) control software

[4]. Device specific code and low-level communication

drivers communicate via asynDriver.

Software support for user customization is provided

through the use of development environment. It is

designed to provide support for integrating custom

functionality and/or new device support.

TESTING

All components comprising the microIOC are tested for

compatibility and long operation under different

conditions, including abusive usage. Series of tests have

been made: long term operation test, memory test

(including three month test for memory leaks),

temperature test, CF test with random power off/on and

CPU overloading test. Any microIOC unit, leaving our

production, is tested as well to meet applicable quality

standards.

microIOC components test

Besides requiring industrial robustness and high MTBF

times, a series of test are made to ensure that a reliable

system can be built. All components that are used in

microIOC undergo a series of rigorous testing procedures,

including: automatic optical inspection (AOI), function

testing, environment testing (temperature / humidity /

vibration / drop test), Static and Dynamic burn-in test.

Even though we require that all our components have all

the tests already made by the manufacturer, we still repeat

some of them when a system is fully assembled in

operational.

Compact flash random test

Based on our experiences with several different types

of Compact Flash (CF) cards, we came to the conclusion

that some of them feature degraded performance. In order

to ensure reliability of a produced system, several tests

had to be made. The most important of them was a test,

where a power supply was put on and off repeatedly in a

random manner. Different models of CF cards were tested

at largest obtainable read/write cycle. The results of the

test were unexpected. Some of the world-class brand-

name CF cards models were found that were featuring

unsatisfying performance. There were also examples of

CF cards that either became defective or its data-system

became corrupted and unusable.

While testing CF cards one of the tests was also to

utilize 15,000 of power-up/boot procedures. This is a very

strict demand and if CF card does not meet this demand,

it is discarded from our future use.

51

Temperature stress test

Temperature diagram

30

35

40

45

50

55

60

65

70

75

0 22 25 29 45 50 75 100 117 125 172

time (h)

te
m

p
e
ra

tu
re

 (
°C

) Chipset

CPU

PS

System

Running STRES test STRES test stoped CPU load 50% CPU load 0%

Figure 3 - temperature stress test of the microIOC

The purpose of temperature stress test was to determine

the stability of the system. If specific application requires

the use of multiple additional boards, they all contribute

to heat that has to be dissipated by means of convectional

cooling. If unit is to be used rack mounted, higher

environmental temperature must be taken into account.

Several temperature tests were performed to observe and

demonstrate microIOC would perform its task flawlessly,

even if used in demanding industrial environment (Figure

3).

CONCLUSION

Peripheral control of end-point devices belong to

special area of CS solutions. Varieties of devices to be

controlled require peripheral CS solutions to be highly

flexible and customizable. Demanding environmental

conditions require industrial-grade reliability. Designed

with careful selection of components and additionally

rigorously tested, microIOC represents a turn-key solution

when such remote control is required. Both HW and SW

support is provided within the box. Installation is quick

and trouble free. Presented design procedure and

integration approach set a firm ground for quality and

length of service, i.e. longevity of CS solution.

REFERENCES

[1] M. Plesko, "New developments at Cosylab",

PCaPAC '05, Hayaman, 2005

[2] R. Sabjan, "microIOC and Epics: the complete

control system node", PCaPAC '05, Hayaman,

2005,

[3] http://www.debian.org

[4] Experimental Physics and Industrial Control

System: http://www.aps.anl.gov/epics/

[5] Delta Tau motion controller solutions:

http://www.deltatau.com

[6] VME and VXI specifications:

http://vme-vxi.globalspec.com/

52

ETHERNET-BASED FIELDBUS FUNCTIONALITY FOR NEUTRON
SCATTERING EXPERIMENTS WITH PROFINET IO

Harald Kleines, Sebastian Detert, Frank Suxdorf, Matthias Drochner,
ZEL, Forschungszentrum Jülich, Germany

Abstract
 Recently the complex PROFINET CBA (Component

Based Automation) has been supplemented by the
simplified PROFINET IO standard. PROFINET CBA
defines a vendor-independent engineering model covering
plant-wide automation and uses a component/container
approach. Contrary to that, PROFINET IO is targeted at
decentral periphery scenarios. Analogous to PROFIBUS
DP it is based on a modular device model. Functionally,
PROFINET IO can be considered as an Ethernet-based
fieldbus.

PROFINET IO is evaluated in Forschungszentrum
Jülich for future application in neutron scattering
experiments. The paper introduces the PROFINET IO
technology and presents the plans for the positioning of
PROFINET IO in the control system architecture of
neutron scattering experiments.

INTRODUCTION
In order to further strengthen its neutron research,

Forschungszentrum Jülich founded the JCNS (Jülich
Center of Neutron Science) on its own campus with
branch labs at the ILL in Grenoble, at the SNS in Oak
Ridge and at the FRM-II (Forschungsreaktor München
II). FRM-II is a new high flux neutron source operated by
the Technical University of Munich in Garching near
Munich. JCNS will operate 7 neutron scattering
experiments at the FRMII, which are under construction
now, partly based on experiments that have been operated
at the research reactor FRJ-2 in Jülich before its shutdown
in May 2006. These instruments will get new control and
data acquisition systems, since software and electronics
typically are older than 10 years.

 ZEL (Zentralinstitut für Elektronik), the central
electronics facility of Forschungszentrum Jülich
responsible for the design and implementation of all new
control and data acquisition systems for neutron
instruments in Jülich has started a close cooperation with
the instrumentation group at the FRM-II. Together both
defined a common framework for all new control and data
acquisition systems of neutron instruments in Garching,
the so-called “Jülich-Munich Standard”, which is
followed by most instruments at the FRM-II. A guiding
principle for definition of the framework was to minimize
the development efforts and to acquire as much from the
market as possible.

Slow control in neutron scattering experiments is
related to the accurate movement of a diverse range of
mechanical parts, to pressure or temperature control and

safety instrumentation. Because ZEL introduced
industrial control equipment already in the 80s to
experiment instrumentation, a key component of the
framework is the consequent use of industrial
technologies like PLCs, fieldbus systems or decentral
periphery in the front end. Main motivations are:

• low prices induced by mass market,
• inherent robustness
• long term availability and support from

manufacturer
• powerful development tools
Since Siemens is the dominating supplier for PLCs in

Europe, the front-end systems being build by ZEL are
based on Siemens products, especially S7-300 PLCs and
ET200S decentral periphery connected via PROFIBUS
DP.

PROFIBUS DP has been designed for the connection of
decentral periphery systems to a central PLC. But ZEL
uses it also for the communication between PLCs or other
process devices and the supervisory computer, since
PROFIBUS DP, which now is the world’s leading
fieldbus, has become a de facto standard with products
available from many companies [1]. It is especially well
supported by Siemens PLCs used in Jülich and provides
high performance and a simple and efficient
communication model.

On the other hand this approach requires the existence
of a PROFIBUS DP communication controller in
supervisory computers. There are several controllers on
the market, but Linux and CompactPCI, which are used in
Jülich, are not well supported. So ZEL had to develop its
own PROFIBUS DP communication controller, which
requires modifications of the device driver with most
Linux version changes.

The now omni-present and cheap Ethernet in
combination with the TCP/IP stack could be a possible
alternative solving the above trade-off. But since Ethernet
and TCP/IP have been designed for an office
environment, appropriate application protocols for device
communication have been missing in the past. Because of
its missing real time features Ethernet has also been
considered inappropriate for the factory floor.

This changed during the last years, since several
initiatives have been started to establish Ethernet as a
fieldbus either by hardware support or by optimized
higher level protocols. Examples are [2]

• Ethernet/IP (supported by PLC-manufacturer Allen
Bradley),

• Modus/TCP (supported by PLC-manufacturer
Schneider), __

Paper submitted October 20, 2006 • Powerlink,

53

• EtherCAT (supported by company Beckhoff) and
• PROFINET (supported by PLC-manufacturer

Siemens).
 Having several competing protocols leads of course to

a market fragmentation and only a few will gain major
relevance on the market. The other protocols will remain
proprietary solutions of the supporting PLC-
manufacturers. For the Neutron scattering experiments of
JCNS PROFINET is of major relevance, since it is the
only protocol supported by Siemens S7 PLCs. Also it can
be expected, that PROFINET gets a similar significance
as PROFIBUS got on the fieldbus market, since Siemens
is the world-leading manufacturer of PLCs.

Originally only the version CBA (Component Based
Automation) has been defined, which is targeted at the
communication between intelligent automation devices or
computers. PROFINET CBA, internationally
standardized by IEC 61784-1[3], defines a vendor-
independent engineering model covering plant-wide
automation and uses a component/container approach.
Recently, the complex PROFINET CBA has been
supplemented by the much simpler PROFINET IO
standard. Contrary to CBA, PROFINET IO is targeted at
decentral periphery scenarios. Analogous to PROFIBUS
DP, it is based on a modular device model and relies on
the cyclic exchange of messages between device and
supervisory system, typically a PLC. Also PROFNET IO
has been defined by the PROFIBUS User Organization
[4] and it will be included in the international standard
IEC61874-2.

OVERVIEW OF PROFINET CBA
The PROFINET CBA concept supports the structuring

of an automation system into autonomous subsystems
called technological modules. Technological modules
comprise all mechanics, electronics and software to
perform a specific task. PROFINET CBA uses an object
oriented approach by modelling each technological
module as a component. The external behaviour of a
component is described by interface variables.
Components can be reused for different automation
systems.

In an engineering phase a specific automation system is
formed by defining its components and the
communication connections between their input and
output variables. Component creation is done by
configuring and programming a device in a conventional
way with a vendor-specific tool, modelling it as
PROFINET CBA component and producing a vendor-
independent XML description of this component.

The communication between components is defined by
a vendor-independent PROFINET CBA connection editor
on an engineering station that allows the import of the
XML descriptions and definition of connections between
component variables. The connection editor supports
download of component and connection configurations to
the PROFINET CBA devices.

During runtime all components autonomously
exchange data according to their predefined connections

without application interaction. Status of devices and
connections can be monitored by the engineering station
via the diagnostic interface of PROFINET CBA.

Each PROFINET CBA device is modelled as a
standardized collection of COM objects. Some of these
objects exist only during runtime. As a consequence, all
communication for engineering, runtime and diagnostics
is based on the DCOM middleware on top of TCP/IP and
Ethernet. For real time data an additional Soft Real Time
(SRT) stack has been defined. Existing PROFIBUS DP
installations can be integrated in a PROFINET CBA
system via Proxies.

OVERVIEW OF PROFINET IO
PROFINET IO model

Similar to PROFIBUS DP, PROFINET IO is targeted
at application scenarios, where a central station
communicates with decentral field devices. As a
consequence, each station in a PROFIBUS IO system can
take one of the following roles:

• IO controller: The IO controller represents an
intelligent central station, like a PLC. It is
responsible for the configuration or
parameterization of its associated devices and is the
source of the output data and the destination of the
input data.

• IO device: The IO device represents a field device,
like an analogue input unit. It cyclically transmits
collected process data to the IO controller and vice
versa. It also provides diagnostic or alarm
information to the IO controller.

• IO supervisor: The IO supervisor represents an
engineering station for programming, configuration
or diagnostics, like a PLC programming tool.

PROFINET I/O is based on a consistent model of the
IO device structure and capabilities. An IO device may be
modular and is composed out of one ore more slots,
which may have subslots. Each slot or subslot represents
an IO module and has a fixed number of input and output
bits. The input data of the IO device is the sequence of the
all inputs of slots and subslots, according to their position
in the device. The same holds for the output data. Slot 0
and subslot 0 do not represent IO modules and have no IO
data. Slot 0 is used to address the IO device and subslot 0
is used to address its corresponding slot. Also all
diagnostic or alarm data reference slots or subslots.

Similar to PROFIBUS DP, each device type is defined
by a so-called GSD-file in XML format, which describes
the device capabilities. The GSD-file defines all possible
modules and contains parameter values and descriptions.
A vendor independent configuration tool, like a PLC
programming tool, reads the GSD-file and allows the
definition of the modular structure and the
parameterization of each device in a PROFINET IO
system. This definition is downloaded to the IO
controller, which uses this information to configure and
parameterize all its associated IO devices during runtime
before entering the cyclic data exchange mode.

54

Also for PROFINET IO proxies are available on the
market, which allow the integration of existing PROIBUS
DP installations.

PROFINET IO operation
The IO controller initiates the system start-up as a

sequence of several phases, based on the configuration
defined with the engineering tool and the information
extracted from the GSD-files.

• Each IO devices is checked and the IP-address is
assigned with the Discovery and Configuration
Protocol (DCP).

• An Application Relation and subordinate
Communication Relations to all IO devices are
formed with the Context Management services.

• With the acyclic record data services all IO devices
and their submodules are configured and
parameterized.

• After successful configuration and parameterization
an IO device enters the cyclic data exchange mode,
where process data and high priority alarms are
exchanged cyclically with the RT communication
services [5].

PROFINET IO protocol
PROFINET IO distinguishes between non real time

communication, real time (RT) communication and
isochronous real time (IRT) communication. RT and IRT
communication are only used for the cyclic data exchange
mode and the DCP protocol. All other communication is
non real time and is defined as an application protocol on
top of TCP/IP.

In order to guarantee a cycle time in the order of a few
milliseconds with moderate jitter in soft real time
scenarios, the RT communication bypasses the TCP/IP
stack and directly uses the MAC layer of Ethernet. RT
frames are identified by the value 0x8892 in the ethertype
field.

For hard real time scenarios, e.g. for motion control
applications, the IRT communication is used, which
guarantees a cycle time with jitter below 1µs. IRT employ
the “Precision Transparent Clock Protocol” (PTCP)
according to IEC61158 for clock synchronization and
requires hardware support by ASICs.

PROFINET IO FOR NEUTRON
SCATTERING AT JCNS

PROFINET IO products are available on the market
from several vendors. It is especially well supported by
Siemens, which provides PROFINET IO communication
modules for PLCs as well as PLC CPUs with integrated
PROFIBUS IO. Also decentral periphery systems
(ET200S, ET200pro) are available for PROFINET IO.
Out of the perspective of a PLC programmer, IO devices
can be access like local PLC IOs with the statements
“load” and “transfer” in the programming language Step 7
STL (statement list), exactly as with PROFIBUS DP.
Also for the transfer of large data blocks and for the

access to diagnostics or alarms the same or similar
functions as for PROFIBUS DP are used. With regard to
performance, we measured the time 6 ms to transfer 1
Byte from a PLC CPU 315-2 PN to a ET200S digital
output, which is almost the same as for PROFIBUS DP.
This mostly due to the low speed of the ET200s
processing of output data, since we observed a reaction
time on Ethernet of about 0.3 ms.

Since PROFINET IO is much simpler than PROFINET
CBA and because of its similarities to PROFIBUS DP,
we decided to use PROFINET IO in future for the
communication between supervisory computers and
subordinate systems, especially PLCs. Communication
with a S7-300 PLC as an IO device can be done with
recent version of the communication module CP 343-1
Lean, but PROFINET IO controller functionality under
Linux is not yet available on the market. So we started to
implement a subset of PROFINET IO consisting out of
DCP, context management, the acyclic record data
services read and write, and the RT communication for
cyclic data exchange. As a development environment we
set up a test system with a working controller/device-
scenario (PLC CPU 315-2 PN/DO as IO controller, IO
devices ET200S with interface module IM 151-3PN and a
S7-300 PLC with module CP343-1 Lean) and Wireshark
as a network monitor, as indicated in Fig. 1.

Figure 1: Test system for the SW developments

REFERENCES
[1] H. Kleines et al., Implementation of the Control and

Data Acquisition Systems for Neutron Scattering
Experiments at the New “Jülich Center for Neutron
Science” According to the “Jülich-Munich Standard”,
ICALEPCS’05, Geneva, Switerzland, 2005.

[2] P. Neumann, A. Pöschmann, “Ethernet-based Real-
Time communication with PROFINET IO”, WSEAS
Transactions on Communications, Issue 5, Volume 4,
May 2005.

[3] IEC 61784-1, “Digital data communications for
measurement and control – Part 1: Profile sets for
continuous and discrete manufacturing relative to
fieldbus used in industrial control systems”, 2003.

[4] PROFIBUS International, “Specification PROFINET
IO Version 2.0”, 2005, http://www.profibus.com.

[5] P. Ferrari, A. Flammini, S. Vitturi, “Performance
analysis of PROFINET networks“, Computer
Standards and Interfaces 28, 2006.

55

https://mall.automation.siemens.com/DE/guest/index.asp?aktprim=0&lang=de&nodeID=10022973&foldersopen=-1373-1-5454-5455-5540-5565-5566-5575-5576-5577-&jumpto=5577
http://www.profibus.com/

EPICS SCA CLIENTS ON THE .NET X64 PLATFORM*

C. Timossi
1
 and H. Nishimura

2
, LBNL, Berkeley, CA 94720, U.S.A.

Abstract
We have developed a .NET assembly, which we call

SCA.NET, which we have been using for building EPICS

[1] based control room applications at the Advanced

Light Source (ALS)[2]. In this paper we report on our

experiences building a 64-bit version of SCA.NET and

the underlying channel access libraries for Windows XP

x64 (using a dual core AMD Athlon CPU). We also

report on our progress in building new accelerator control

applications for this environment.

SIMPLE CHANNEL ACCESS AT ALS

Simple Channel Access (SCA)[3] is a library that

provides a simplified API for developing Channel Access

(CA) clients. SCA was developed at LBNL and has been

in heavy use for both accelerator and beamline controls.

Since SCA’s most common use has been on Windows

platforms, we originally packaged it as an ActiveX

Control called SCA.COM[4]. This control is easily called

by any Windows client supporting Active X (e.g.

Labview, Visual Studio).

Although ActiveX controls can be accessed from .NET

assemblies we believed a more seamless integration was

important for two reasons. First, .NET will be the

standard development framework for Windows in the

future--on Vista, it will be the only development

framework. Second, it looked like a relatively simple task

to re-package the ActiveX control as a .NET assembly. In

fact, as often happens during a re-write, we found many

optimizations that resulted in better performance than the

previous component, in the context of the 32-bit version

of SCA.NET[5].

MIGRATION TO 64-BIT

Need to Support 64-bit

PCs with 64-bit processors and operating systems, such

as Windows XP x64, are finally becoming widely

available. Scientific applications, which are accelerator

tracking programs for us [6], are already taking advantage

of the larger address space and faster execution speed.

On the other hand, typical machine control applications

have little need for these advantages as 32-bit has been

mostly sufficient.

It is convenient, however, when building model based

64bit control applications, to have access to 64 bit

versions of controls libraries to avoid mixing 32 bit and

64 bit libraries.

Building CA for Windows XP x64

Building CA on x64 bit platforms has been done

previously. Even so, some help from the author [7] of the

CA software was needed to add a macro to CA base code

for the AMD architecture on Windows. Further, although

the EPICS build system is both powerful and flexible, we

decided to build the libraries in the Visual Studio

environment to take advantage of its rich debugging tools.

Finally, a patch previously posted by AMD, which

synchronizes the core time stamp counters, needed to be

installed [8].

The 2 DLLs built in this fashion (Com.dll and Ca.dll)

are categorized by .NET as unmanaged because they were

built for the win32 environment, not for .NET.

SCA.NET

Unlike the above DLLs, ALS.dll, which implements

SCA.NET, is built as a .NET assembly. When .NET

assemblies call routines in unmanaged libraries, they do

so through a special interface called Platform Invoke

(P/Invoke). C# has syntax for P/Invoke that uses the

DllImport keyword, for example, as shown below:

 [DllImport("ca.dll")]

 unsafe public static extern

 char * ca_message(uint ca_status);

.NET considers any code that manipulates pointers as

unsafe. The C# compiler will generate an error unless

code using pointers are labelled with the unsafe keyword.

The CA routines used by SCA.NET are similarly

wrapped.

It’s worth noting that although the CA libraries are

separately compiled for both 64-bit (x64) and 32-bit (x86)

versions, ALS.dll is a single binary of the .NET assembly

built with the Visual Studio build option of “Any CPU”.

The OS is responsible for loading either the x64 or x86

versions of the DLLs that ALS.dll needs.

32-bit Programs on 64-bit Windows

Although both 32-bit and 64-bit programs can run on

64-bit Windows, 32-bit programs must run in a

compatibility layer called WOW64. This layer wraps the

application in its own 32-bit environment from which it

can only call directly into 32-bit DLLs. The resulting

overhead from this layer is architecture dependent--AMD

processors can execute 32-bit code directly whereas Intel

processors have to emulate 32-bit instructions. A 32-bit

process may also use inter-process communications (IPC)

when calling into a 64-bit library. Interface options are:

pipes, messages, signals, ActiveX/COM out-of-process

servers, and networking APIs.

*Work supported by the U.S. Department of Energy under Contract
 No. DE-AC03-76SF00098.
1. CATimossi@lbl.gov. 2. H_Nishimura@lbl.gov

56

Assigning the CPU as a Build Option

When building SCA.NET, it’s most convenient to build

and deploy separately for x64 and x86. So first the

sources for CA and ALS.dll are compiled as native x64

libraries then an installer project is built. This process is

repeated for the 32-bit version. Basically, the installer

places the output binaries in either “Program

Files\LBNL” for x64 binaries or in “Program Files

(x86)\LBNL” for 32 bit binaries.

EXAMPLE

When we program SCA/NET client programs that are

portable on x86 and x64 platforms, we must ensure that

all the libraries are also portable if they are by 3rd parties.

We currently use open-source libraries: SourceGrid [9]

for string grid and ZedGraph[10] for chart. Both are

managed code in C# and portable.

Fig.1 is an example program that reads and displays all

the ALS storage ring magnet EPICS channels (287

magnets and 1669 channels) at 1 Hz by using 13

SourceGrid controls on WinForm.

Fig.1. SCA.NET client example

This program runs both on x86 and x64 Windows without

rebuilding.

We have also created EPICS database client programs

that use ADO.NET 2.0 to access static EPICS database

record information such as process variable names from a

MySQL[11] database. ADO.NET also allows saving of

device information and configured/edited information to

XML files for runtime use on both x86 and x64 Windows.

 ACKNOWLEDGEMENTS

The authors appreciate useful advices from T. Scarvie,

and the system management help from C. Ikami and T.

Kellogg.

REFERENCES

[1] L. R. Dalesio, et al., ICALEPCS '93, Berlin,

Germany, 1993.

http://www.aps.anl.gov/epics/

[2] LBL PUB-5172 Rev. LBL, 1986.

 A. Jackson, IEEE PAC93, 93CH3279-7(1993)1432

[3] http://www-controls.als.lbl.gov/epics_collaboration/

sca/

[4] C. Timossi and H. Nishimura, IEEE PAC’97, 0-7803-

4376-X/98, p805, 1998

 http://www-controls.als.lbl.gov/epics_collaboration/

sca/win32

[5] H. Nishimura and C. Timossi, PCaPAC 2005,

Hayama, Japan, 2005.

[6] H. Nishimura and T. Scarvie, EPAC 2006, Edinburgh,

Scotland, 2006.

[7] Jeff Hill, http://www.aps.anl.gov/epics/contacts.php

[8] http://www.amd.com/us-en/Processors/

TechnicalResources/0,,30_182_871_13118,00.html.

[9] http://zedgraph.org

[10] D. Icardi, http://www.devage.com/

[11] http://www.mysql.com/

57

A TUTORIAL ON PROJECT MANAGEMENT

J. Kamenik, P. Kolaric, M. Plesko, I. Verstovsek, Cosylab, Slovenia.

Abstract
Just be clear about one thing first: project management is
not entering random dates and numbers into Microsoft
Project and printing them on long rolls of paper just to
make management happy. There is more to project
management than meets the eye...

As all disciplines, project management has a set of rules
that must be followed and set of recommendations that
make work easier. But as in all engineering, there is no
single magical formula or equation, no matter how much
managers and physicists alike would love to have it. Yet,
fortunately, it is in a way a "linear theory", as it can be
broken down into small steps that can be followed by a
convenient check list.

Steps and check lists will cover the first part of our
tutorial, where their meaning and use will be explained on
a real example such as an accelerator control system.
Although all items are strictly common sense, there are so
many of them that one cannot be aware of them all of the
time - hence the other common sense trick of using check
lists. Don't worry, although our simple check lists contain
nearly a hundred items, we will concentrate on those that
are important and simple but often overlooked, especially
by those that like to do projects in the infamous zero-th
order approximation: "code first - ask later".

The second part of the tutorial will discuss 2nd order
effects, which all honest and respectable physicists, like
myself, prefer to ignore anyway. Among them are risk
analysis and risk management, which sound like another
group of those fancy buzzwords, but in reality mean just
this: "think about what could go wrong and what you are
going to do about it before it happens, and then do it
immediately when it happens". Other popular, or better
unpopular, 2nd order project management effects that we
will discuss are resource planning, handling interaction
among team members and with the "client", change and
version management, analyzing data on project with
quantifiable metrics (e.g. work spent vs. estimated),
systematic search for common errors and possible sources
of confusion (yes, check lists again), using a database of
finished projects to help manage current projects, and
more.

INTRODUCTION
When a serious scientist (or most of other institute

members) is asked about the purpose and usefulness of
project management, the thoughts usually go along the
lines of "Entering random numbers into Microsoft project
and printing long rolls of paper", "Filling pointless

reports nobody looks at", "Something that makes
management happy", etc.

However, the same people are very hard working in
nature and therefore tend to get overbooked with work,
are not sure on what to focus because "everything is
urgent". The purpose of project management tools and
techniques is to prevent these kinds of situations.

Not all project management techniques are of the same
relevance to research institutes. In this paper we will
focus on the most critical ones.

PROJECT PHASES
In a research environment the most crucial step of a

project is not the actual implementation - scientist are
very good a doing things: thinking, coding, debugging,
etc. and usually they perceive this as fun. The critical
parts of projects are the things around the fun stuff, in
particular:

• conception (evaluating the idea before
jumping into implementation)

• planning (how to get things done in terms of
time, resources)

• closing (to finish all work on a project without
a need for constant support)

From Idea to Proposal
The main pitfalls here are that:

• projects are started too easily (without basic
thinking about purpose and scope),

• too many projects in parallel: focus of work is
lost.

What one can do about it is:

• a quick sanity check: why start something?
Think about the big picture as well. How will
this help the work on other projects of the
institute, etc.

• Prepare a well rounded proposal. By putting
things in writing motivates you to think also
about the not-so-fun stuff.

• Use formal decision process to start a project.
This does not have to be a meeting with all the
managers of an institute. Presenting the
proposal in a well prepared presentation to
your group colleagues can do the trick as well.
During the discussion a decision whether the
project is worth a shot or not will most
probably spring up by itself.

See [1] for some checklists that apply to this stage in a

project.

58

Planning
The pitfalls of not doing planning are:

• people get over allocated and ineffective,
• there is no reference to track progress,
• there is no “satisfaction of a job well done”.

What to do about it:

• prepare at least the initial project plan. Even
if the plan is never updated later, there is at
least one reference point to relate to.

• Make a risk plan.
• Communicate the plan and get commitment.

This very important and often neglected: the
plan will hard to carry out if your team does
not about or if the plan is not accepted.

A checklist for identifying risk is so important that we

state it here:
• A short description of the risk.
• When it is expected to occur.
• The probability assessed.
• What consequences are expected.
• What actions you will take if it happens.
• Who will take the actions.
• Who is responsible for monitoring the risk.

From the checklist make a risk log and update it

regularly, at least once a month. For other checklists for
planning, see [1].

Figure 1: Gantt Project with tickets, imported from the Request Tracker.

Closure and Evaluation
This is the "sugar on top" that should come after the

work on a project is coming to an end. Closing the project
formally prevents the never-ending work and allows the
whole team to learn from past experience on the project.
You should at least take care of two things:

• Acceptance process. Acceptance should be
made for internal projects as well - these
projects are the most prone to an eternal life.

• Close project, plan resources for support.
Important here is that the resources for support
are well defined and are planned for a limited
period of time.

Again, see [1] for the relevant checklists.

TRACKING PROGRESS

The Cultural Issue
In a scientific environment, one is expected to do

research - to work on projects that do not have a well
defined flow and consequentially, one cannot estimate
how much work will be spent. Along these lines it does
not seem make sense to enter time report time work.

However, entering time and reporting progress of work
can be helpful - it can assist the overall planning of
activity and therefore reducing the future stress of the
scientist. The scientist will use the system only if he or
she sees a clear benefit in doing so. For any reporting and
management system the following must be true:

• rhe system should introduce minimal overhead
to its user,

• it should display its benefits fast.

59

Define Basic Units of Work
Any project is composed of a number of more-or-less

well defined units of work, assigned to developers,
usually by the project managers. There is a multitude of
tools that manage "work units", many of them freely
downloadable from the Internet. We chose the Request
Tracker (RT) [2] because of one simple reason – this tool
can manage e-mails really well – not only sending but
also receiving. RT was picked as our main tool and we
adapted all the other ones to it. Every now and then, when
experiencing problems with RT’s code written in Perl, a
question appears why we did not rather write such tool by
ourselves, but the final statement remains that RT is really
well structured and extremely useful.

RT is (as described in its manual) an “enterprise-grade
ticketing system which enables a group of people to
intelligently and efficiently manage tasks, issues, and
requests submitted by a community of users”.

Its main unit is a ticket, which represents a specific task
to be done. It has several fields:

• status (new, open, resolved, stalled, dead),
• estimated time,
• time spent (increases whenever a user reports a

transaction),
• dates: start date, due date,
• priority,
• keywords (severity of a bug, type of ticket: QA

ticket, Master ticket for the project, etc.), and
• links - how does this ticket relate to other tickets

(parent - child, "depends on" and "refers to"
relationships are supported).

Each ticket can have one or more parents, children or
brothers. Setting also dependencies, a clear structure can
be made. RT can warn us by email of a creation or
modification of some ticket. The best feature of RT is the
possibility of managing tickets via e-mail – every project
has its e-mail address to which we can send a request for
creation, correspondence or comment and set just about
every field of the ticket.

RT has easy-to-use search functionality, which allows
one to quickly find a ticket. With all its features RT can
be used for handling support requests, ordinary tasks and
bug tracking. We create about 10.000 tickets per year in
Cosylab.

In Cosylab, the system is used to track time in minutes.
This means that after finishing working on a given ticket,
the developer must write a reply to RT on what he or she
did and how long did it take. In order to reduce overhead
for this activity, we have implemented a stopwatch
application: it is an icon in the system tray, when clicked
upon, it displays a list of all your tickets from which you
select one. When switching a task, you switch it also in
the stopwatch. At the end of the day, you just need to

commit all the recorded times to the db and write
comments where necessary.

In DESY, the goal of the system is not to track the time
spent of individual developers, but to track their progress
on the tasks. It was not necessary to modify the system a
lot to accommodate for this functionality - instead of
entering time, developers enter their progress in relative
units, where 100% is a completed task.

Figure 2: Work spent on a project versus time. Blue line:
planned use of work, red: actual time worked.

CONCLUSION
In this paper we have presented a few of the key issues

of project management when applied to research
institutes. Due to the lack of space we have omitted very
important concepts such as resource planning, handling of
team dynamics, communication with the client, etc.

This paper will more than fulfil its goal if it has
persuaded you to do at least some of the following:

• take extra time for conception, planning and
closing stages of projects,

• manage risks thought the project,
• use some sort of project management /

reporting system,
• monitor project progress (close the loop),
• ease the “cultural issues” by demonstrating

benefits of project management to your team
and by constant coaching.

REFERENCES
[1] Successful Project Management, Trevor L. Young,

Konan Page Limited, 2000

[2] I. Verstovšek et al., Cosylab Management Sytem,
PCaPAC 2005, Hayama, Japan.

60

STANDARDISATION OF THE PSI ACCELERATOR CONTROL SYSTEMS

D.Anicic, T.Korhonen, A.C.Mezger, D.Vermeulen,

Paul Scherrer Institut, Villigen, Switzerland.

Abstract

At the Paul Scherrer Institute (PSI) several accelerator

facilities are run from the central control room. Two

control systems are used for the machine operations: the

SLS (Swiss Light Source) based on EPICS and the high

intensity proton accelerators facility based on ACS, an in

house developed Accelerator Control System.

PROSCAN, the biomedical proton facility uses the latter

system (ACS), too.

The decision to standardize the hardware equipment as

much as possible has already been taken a few years ago

and is widely taking place. However the effort to maintain

and continuously develop two control systems is

unnecessarily consuming precious human resources.

Therefore the proposal has been made to implement

EPICS at the proton facilities besides ACS. The two

systems will run concurrently until hardware transition

towards VME has been completed, building this way a

migration path towards EPICS, enhanced with many ACS

features.

INTRODUCTION

Currently three of PSI accelerator installations use two

control systems. The SLS is completely EPICS based,

with about 200 VME crates. With the installation of

remaining beam-lines this number will increase by 100.

The high intensity proton accelerator complex, with three

proton cyclotrons, is based on in-house developed control

system, called ACS. Control and diagnostics systems

hardware is mainly CAMAC with approximately 100

crates. CAMAC crates are accessed through 15 VME

based front-end computers (FEC, further on referenced as

IOC). The upgrade/modernization started already 3 years

ago, with five VME crates for 59 power supplies and 13

digital beam position monitors. The third accelerator

system, for mainly medical cancer therapy purposes, is

also ACS based, with only VME based hardware. In the

final state (End of 2007) it will consist of about 20 VME

crates.

MOTIVATION

Although EPICS could easily replace ACS without

hardware changes, the main obstacle remains the aging

CAMAC hardware components. Some are already 30

years old. Despite it has not been observed already, it is

expected that CAMAC equipment failures will increase in

the future. Obtaining spares or spare parts to repair them

is an ever greater challenge. Due to retirements, expertise

gets lost too, and it’s much easier to find VME developers

and parts and support from commercial companies.

Replacing CAMAC with VME will thus reduce failures

and save resources in a longer term. In addition to it, the

beneficial man-power savings could be achieved by

standardizing the control system software, too. Migration

of ACS control systems of both proton accelerator

facilities towards EPICS is about to commence.

ACS FEATURES

ACS basic operating principles are probably very

similar as in many other control systems. It is distributed

and client-server based. Client side applications, like

operator displays or even closed loop regulations,

communicate requests over the local area network to the

server computers, the IOCs. Starting 17 years ago with

PDP-11 servers and VAX workstations (backends) over

raw Ethernet, towards today’s HP-RT and LynxOS real-

time VME single board servers (IOC) and Linux

workstations over TCP/IP, are used. Only CAMAC

devices were initially supported, but since approximately

3 years VME and PLC equipment are implemented too.

All these upgrades have been done in small steps over the

above mentioned period, with manpower of 3 to 5

persons.

From the beginning, all of the IOC configuration data

and backend utility data (CoreDB, for name discovery

and others) have been tightly coupled to the control

system core. Initially using files and proprietary data-

administration applications, and shortly afterwards was

switched to an Oracle database and its tools. It is

practically impossible to maintain ACS operational

without it. Simply said, all configuration data is stored

and retrieved from database.

ACS assumes a strict naming convention of Device,

Attribute and Conversion. Due to historical reasons those

are limited to eight characters for a Device and four for an

Attribute. A Control system object consists of one or more

attributes, representing together all the data for a

particular “device”. There are up to three conversions, 1

for DAC values (Unit), 2 for engineering units (V, A, mm,

Hz, …) and 3 for physical units.(kGauss, mBar, …).

There is a variety of attributes, representing, for example,

status (STA, STAX), commands (COM, COMX), read-

back value (IST), set value (SOL), high and low limits

(HL, LL, …), and many others.

CoreDB data and associated libraries provide name

discovery for applications. Search methods are available

for almost all properties using wild-cards. So it is possible

to obtain a list of all Devices and Attributes, by choosing

a particular Device or Attribute pattern, system it belongs

to (diagnostics, vacuum, run-permit-system, beam-optics,

…), area in the beam lines, building/room, type (dipole,

quad, bpm, profile-monitor, beam-stopper, …), software

driver it is handled by, and others. That makes it possible

to write dynamically- configurable user/operator

applications.

61

ACS libraries and CoreDB additionally offer methods

for second level data evaluation. Here we basically

consider processing for which we believed does not

belong to the IOC, but rather at the backend level. Status-

bits interpretation logic, resulting in a clear text human

usable result is one of these. All the necessary data for it

comes from Oracle database.

ACS offers RPC gateways for MS-Windows users. The

device IO with access control, and archived data retrieval

are provided for LABVIEW and Visual Basic

applications.

A modified MEDM version using the latest MEDM

version (3.04.B6), supporting our CoreDB features (like

automatic selection of animated gif images based on

second level status-bits interpretation) is available. The

MEDM add-ons are implemented through the

medmCdev.c connectivity interface.

An extra feature of ACS, mostly not found in other

control systems, and implemented at IOC level, is support

for atomic-increment (and some other) actions, besides

usual read (get) and write (set) actions.

ACS ADDONS FOR EPICS

EPICS is a widely used control system toolkit. As it has

already been used successfully at our SLS facility, it

makes a very good starting point for being used at the

proton accelerator facilities, too. By being actually a

toolkit for building control systems, it has to be adapted to

the given circumstances.

The most important is the naming convention, that has

to suit the ACS style. Operations and other users should

not be negatively affected by having to learn new names.

Everything has to continue to work the same way or at

least in a similar way. Special consideration has to be

given to the presence of conversion levels. The most

probable solution is to have names tripled, in a form

 DEVICE:ATTRIBUTE:CONVERSION

(like QXA1:SOL:1, QXA1:SOL:2, QXA1:SOL:3).

Another very important reason to keep the same names is

that they are widely used for labeling cables and devices.

Although there are already CAMAC drivers for EPICS

available, the one we use (from CERN) is not supported.

The driver would have to be implemented, but this effort

will probably be skipped.

Several VME boards already used at ACS, PROSCAN

and SLS are the same, but in most cases with specific

application required firmware version. Those EPICS

drivers will have to be written, too.

In ACS we rely mostly on just-in-time access to

hardware registers, in contrary to EPICS which is based

on buffered IO (either scan or interrupt). The estimate is

that such a behavior will be implemented in EPICS

records through the PROC attribute.

Special ACS actions (atomic-increment) will have to be

implemented in EPICS records. This means additional

records to the tripled as mentioned above. To provide

unified naming, the above naming convention would

probably have to be extended by adding a postfix ‘INC’ to

the conversion level.

In view of the fact that no applications are implemented

at IOC level, we hope to find a way of generating EPICS

records directly form our existing Oracle database.

The existing CoreDB (name discovery, status-bits

interpretation and others) have to be on disposal for

EPICS applications, too.

The Existing RPC gateways will be adapted to EPICS

Channel-Access for user convenience.

EPICS INTEGRATION PATH

The migration to EPICS still has to be carefully

planned into details. The PROSCAN facility is the first to

be migrated. It is less complex, and already has no

CAMAC equipment, being fully VME and PLC based.

However it will not be easy to find the right moment to do

this, the facility being full time operated with patients

from the beginning of December of this year. The

common part will be worked-out; the later ACS migration

would just require additional drivers. ACS migration

towards VME has already begun, but would need

considerable time. The migration process has to be

scheduled in regular shut-downs, without affecting beam

production.

Phase 1

Replacing CAMAC equipment with VME will be done

smoothly. It will probably take 5 years.

Mixed, ACS + EPICS, control system will be used

during that time.

In order to support the dual control system, a two-way

gateway has to be implemented.

ACS features (CoreDB, …) for EPICS applications is

to be implemented.

EPICS records for additional ACS features must be

supported.

EPICS records have to be generated from existing

Oracle database. This also implies database modification

to differentiate between ACS and EPICS devices.

Phase 2

Modify high level applications to use EPICS Channel-

Access, plus ACS features (CoreDB).

The two-way gateway will phase out only when all

CAMAC hardware has been replaced with VME and all

applications have been ported.

The ACS features (EPICS add-ons) will be part of PSI

EPICS.

CONCLUSIONS

A lot of work is in front of us. A lot of money will be

spent on CAMAC replacement (which has to be done

anyhow). The benefits will be visible only in years to

come after. Still, we are confident that the merits will be

multiple, not only for Controls, but for all supporting

groups and users, too.

62

STATUS OF ISAC CONTROL SYSTEM

Chris Payne, ISAC - TRIUMF, Vancouver, BC, Canada

Abstract
The ISAC facility at TRIUMF has been delivering

radioactive isotopes to experiments since late 1998 using
an EPICS based controls system. Initially at ISAC this
was a combination of Solaris servers, VxWorks on
Motorola 68000 based IOCs, and Windows 98 Operator
interface stations. The ISAC controls network
connectivity was originally simply the TRIUMF public
network.

The ISAC facility has expanded considerably in the
following years and now includes complex ion sources,
both room temperature and superconducting accelerators,
as well as numerous, complex experimental facilities. As
the ISAC facility has expanded in both size and
complexity, and the size of the user community has
increased, the limitations in the initial controls
configuration have become apparent. In order to cost
effectively deal with these issues, many changes have
been made in the hardware and software in use at the
ISAC facility.

This paper will discuss the migration of some primary
ISAC controls services to less expensive Intel/Linux
computers as well as the isolation and segregation of the
ISAC controls network to ensure a robust and secure
ISAC Control System.

HISTORY

Control System
The TRI University Meson Facility (TRIUMF) Central

Control System (CCS) was initially classic dials and
knobs hard wired back to a central control room. The CCS
evolved over time as computers became more readily
available, eventually migrating to VMS running on
MicroVAX’s, then DEC Alpha's and finally Intel
Itanium's. The CCS has proven its stability and reliability
through many years of use at TRIUMF.

Figure 1: Cyclotron Control Console circa 1974

In 1995 the Isotope Separator ACcelerator (ISAC)
project at TRIUMF was funded, and shortly thereafter the
decision made to implement the control system using the
Experimental Physics and Industrial Control System
(EPICS). EPICS was initially developed by a few US
Department of Energy accelerator labs, but has since
evolved into a large worldwide collaboration, with many
sites participating actively in the development. [1]

EPICS is a modern, distributed control system which
has been designed with network control in mind from
initial conception. EPICS is a mature control system
which can be used to effectively control geographically
separated systems, requiring only network links for
communication between the Operations Staff and the
devices they control.

Network
TRIUMF predates widespread computer networking

and as such the network infrastructure at TRIUMF was an
after thought, being deployed well after the initial CCS
implementation. Inevitably networked controls equipment
was introduced to TRIUMF and over the first few years
the network expanded in an arbitrary and somewhat
haphazard fashion.

The ISAC controls network was first implemented on
the TRIUMF network as part of the common, flat address
space. Although initially convenient for developers, the
reality of reliable operations necessitated some kind of
segregation of the network layout which is described
below.

LINUX ON PERSONAL COMPUTERS IN
ISAC

Linux Workstations
The ISAC Operator workstations in 1999 were Intel

PC's running Windows 98, with SSH and X Window
clients used for access to controls. This setup was chosen
due to the ease with which multiple monitor desktop
setups could be created. The EPICS development and
production servers in ISAC in use at the time were Solaris
based Sun workstations.

This setup, although acceptable during commissioning,
did not prove reliable (stable) enough to be a viable 24x7
operations configuration. The Windows PCs were
chronically unreliable, and reboots occurred several times
per day. With Linux rapidly becoming mature around this
time (2000), it seemed a natural choice as a replacement
operating system for the ISAC Operations consoles.

There was some initial user (Operator) resistance to the
new operating system as users are generally familiar with
a Microsoft environment from personal use, and anything
which varies slightly from this is met with resistance.
However, after only a few weeks of stable system

63

operation, most were in agreement that the move to Linux
was a logical and natural progression, and all ISAC
Operations consoles were migrated to Linux.

Initially, the Linux consoles were merely serving as X
Windows displays for the applications running on the
Solaris servers. Migrating EPICS client applications from
the Solaris server to the Linux workstations was an
obvious move.

The Linux version in use at ISAC has continued to be
updated, and most recently has been standardized on
Scientific Linux (SL), a release created out of a
collaboration between Fermilab and CERN. [2] TRIUMF
maintains a local mirror of Fermi SL which allows for
easy initial installation as well as subsequent updates and
patching.

Figure 2: ISAC Operator Console circa 2006

Linux Firewalls
The operation of the ISAC facility at TRIUMF, like all

recent accelerator facilities, is "fly by wire", where there
are no direct connections between the Operator interfaces
and the devices they are controlling. Network connections
therefore become mission critical, so that both the
network hardware and the associated wiring must fall
under tighter control than the public TRIUMF network.

The first step in securing the ISAC controls network
was to reconfigure network in order to amalgamate and
isolate all required devices on a physically separated
network. This move made possible a single connection
between ISAC controls and the TRIUMF site network and
by extension the Internet. All that was required was a
means to filter the traffic through this connection, and a
Linux bridging firewall was the natural solution.

The configuration of the TRIUMF network at time of
ISAC firewall installation was a single flat class B address
space, with all computers existing in a single broadcast
space. As a result of this shared address space, network
disturbances such as virus or worm outbreaks, as well as
random broadcast storms could negatively affect ISAC
controls performance, a situation which was unacceptable.
By using a Linux Ethernet bridge with net-filtering
enabled [3] the IP traffic to the ISAC controls network
could be filtered in an intelligent manner without
disturbing the legacy TRIUMF network layout. Adding an

additional package called Ebtables [4] allowed all
extraneous Ethernet packets to be blocked at the perimeter
of the ISAC controls network.

Although initially exclusively non-Windows, the scope
of the ISAC Control system has grown over the years and
many diverse types of controls equipment have become a
reality in ISAC. The first major installation of non-EPICS
controls was the Radio Frequency (RF) controls running
on Microsoft Windows PCs. In order to protect the RF
controls from the Internet, while still protecting the ISAC
controls network proper from the perceived problem
computers, a third interface was added to the ISAC
controls firewall. The new interface allowed for the
creation of a classic De-Militarized Zone (DMZ) where
non-standard controls computers could exist in a semi-
protected segment, isolated from the main ISAC controls
network. Unfortunately, in this configuration the ISAC
controls firewall becomes a mission critical system. A
standby "warm spare" firewall computer is maintained to
facilitate minimal downtime in the event of hardware
failure.

Finally, in early 2006, the TRIUMF network was
reorganized such that the ISAC controls network was
officially separated onto its own Virtual Local Area
Network (VLAN). This separate VLAN had some
unforeseen side effects, but has increased the overall
integrity of the ISAC controls network significantly. To
facilitate communication and monitoring of the network
infrastructure equipment, the ISAC controls firewall had
to be modified to make it VLAN aware.

Figure 3: Network Functional Schematic

The choice of PC hardware with Linux OS for the
ISAC firewall device was seen as somewhat
controversial. Throughput tests and latency monitoring
before and after all transitions of the network and firewall
layout have determined that PC hardware which had
become obsolete as far as desktop use was easily powerful
enough for even complex filtering of high volume
network traffic. The benefits of a firewalled ISAC
controls network, at the price of merely time invested, are
therefore easily justifiable.

64

Linux Application Servers
The ISAC EPICS user community continued to

increase in size as the facility continued to grow, and the
limitations of the Solaris application servers were starting
to be reached. The required EPICS client applications had
already been compiled for Linux as a result of the prior
work for the ISAC Operations consoles, and therefore the
migration of general EPICS users from Solaris to more
powerful, yet less expensive PC hardware running Linux
proved trivial.

A second concern raised by the growing ISAC EPICS
user community was the increased load on the Input
Output Computers (IOCs) in the field. To transfer the
additional computing and network load off of the IOCs,
the EPICS Process Variable Gateway [5] was installed on
the Linux application server at the time of migration.
Beyond transferring CPU and network load, the EPICS
Gateway also allows much easier configuration of access
control of the ISAC EPICS users.

Redundancy
The original Solaris servers were redundant, and in the

event of hardware failure could in theory replace each
other. However, the migration in emergency situations
was a non-trivial task involving service start on the
replacement machine and offline work to synchronize
data files. With the cost of the PC hardware being much
less than the "cost" of experiment downtime, an identical
PC was purchased at the same time as the Linux
Application server installation to be used as a fully
redundant spare. In order to completely minimize
switchover time, the redundant computer is configured
almost identically, right down to the IP address.
Synchronization between these identical machines is
performed hourly over a private network connection. In
the event of hardware failure, the only required
intervention is to take the primary computer off the
network and move the secondary computer to the public
network. Users may then merely login again as if only a
minor network glitch had occurred, and the failed system
can be investigated offline and without undue pressure to
restore services. This system is termed "warm spare"
locally and has been proven to work as described above,
with the ISAC Controls group successfully performing
test switches in a controlled fashion, as well as switches
during a real hardware failure.

Linux Web Servers
The Apache web server has been the most popular web

server on the internet for more than 10 years [6], and its
stability is well proven. With this in mind, it was an
obvious choice for ISAC Controls and ISAC Operations
to migrate their web services from Windows NT to Linux
Web Servers for all mission critical systems.

Access to some of the ISAC web services is
authenticated via a TRIUMF email username/password
pair. This mechanism provides a convenient way to allow
all registered TRIUMF staff authenticated access.
Running a slave Lightweight Directory Access Protocol

(LDAP) server locally on the ISAC web server minimizes
availability downtime without losing the convenience of
the common username/password.

As with the Linux application servers, the ISAC Linux
web servers are run with "warm spare" counterparts in
order to minimize downtime in the event of hardware
failure.

Linux File Servers
The bulk of the file serving required prior to 2000 was

for developer use from Microsoft Windows PCs. The
initial natural fit for this a Windows server, specifically a
Windows NT file server.

However, after the migration of other services to Linux,
the natural progression was to a Linux file server using
Samba [7] to allow Windows PC access. Once initially
configured, this has proven a reliable and low
maintenance solution.

Other basic file server requirements of the controls
system for Operator documentation and data sharing are
accomplished using NFS, a well established protocol.
Both Solaris and Unix servers serve files to clients.

Linux Database Servers
Prior to 2000, the database used by ISAC Controls was

Paradox, and similar to the Web Servers and File Servers
it was running on a Windows server. As other services
such as web serving and file serving migrated to Linux,
the database server was moved to the new platform as
well. After comparing viable Open Source alternatives,
PostgreSQL [8l] was chosen as a replacement database
management system. PostgreSQL is mature, stable, and
fully featured and has proven to be an excellent database
management system for ISAC.

SUMMARY
The use of personal computer hardware along side

freely available open source operating systems and
applications has proven to be an intelligent choice for
ISAC. While the costs have been kept to a minimum, the
overall system stability and availability has been
increased enormously.

REFERENCES
[1] EPICS http://www.aps.anl.gov/epics/
[2] Scientific Linux https://www.scientificlinux.org/
[3] Linux Bridge netfilter
 http://linux-net.osdl.org/index.php/Bridge
[4] Ebtables Ethernet filtering
 http://ebtables.sourceforge.net/
[5] Gateway: The Process Variable Gateway
 http://www.aps.anl.gov/epics/extensions/gateway/ind

ex.php
[6] Netcraft Web Server Survey
 http://news.netcraft.com/archives/web_server_survey.

html
[7] Samba homepage https://www.samba.org
[8] PostgreSQL homepage http://www.postgresql.org

65

FIRST OPERATION WITH SPARC CONTROL SYSTEM

M. Bellaveglia, G. Di Pirro, D. Filippetto, E. Pace, INFN-LNF, 00044 Frascati (Italy)

L. Catani, A. Cianchi, INFN-RM2, 00133 Rome (Italy).

Abstract
The SPARC[1] gun and the diagnostic apparatus called

emittance meter (e-meter) have been installed in all

components. The complete installation of SPARC

accelerator is planned for the end of 2006.

The first part of the installation allows to test the

architecture of the control system from the hardware and

from the software point of view. Control application for

magnetic elements, vacuum equipments, RF cavities and

some diagnostics have been developed and debugged on

line. In order to improve the machine operations we have

included in the system some operation service.

An electronic logbook has been used since the first

phase of the operation contributing to share the

information between all the members of the collaboration.

We began to develop an automatic system the

accelerator status periodically or when some value

changes. This system is based on a PostgreSQL database

server.

Figure 1: SPARC Layout

SPARC

The SPARC (Self-Amplified Pulsed Coherent

Radiation Source) (fig.1) project is to promote an R&D

activity oriented to the development of a high brightness

photo injector to drive SASE-FEL experiments at 500 nm

and higher harmonics generation. Proposed by the

research institutions ENEA, INFN, CNR with

collaboration of Universita` di Roma Tor Vergata and

INFM-ST, it has been funded in 2003 by the Italian

Government with a 3 year time schedule. The machine is

under installation at Laboratori Nazionali di Frascati

(LNF-INFN). It is composed of an RF gun driven by a

Ti:Sa laser to produce 10-ps flat top pulses on the

photocathode, injecting into three SLAC accelerating.

The e-meter

The gun has been installed with a diagnostic apparatus

called e-meter [4] (fig. 2). This apparatus allows us to

characterize the first 2m of the electron beam. The main

component, from the control system point of view, is the

emettance measure apparatus composed by a pepper-pot

and a YAG target. This part of the e-meter can be moved

in any position along a 2 m bellow. At the end is available

a spectrometer to measure the energy and a toroid to read

the bunch charge. In tab.1 the different component are

shown.

Figure 2: E-meter Layout

SYSTEM CHOISE

The SPARC Control System is in charge of managing

devices (Tab. 1) distributed over an accelerator area. To

develop the whole system we have short time and few

people. We decided to use commercial technologies as

much as possible in order to optimize the development

time. A commercial product is characterized by a broad

distribution, which means a lot of feedback from the users

and, consequently, deep debugging. Furthermore the

wider is the distribution of a product the more reliable is

its support from the producer

Another criterion was to privilege "easy development

and maintenance".

We decided to use:

• LabVIEW from National Instrument is used

development as environment for all the software;

• Industrial Personal Computer with PCI bus to house

the front-end hardware

SYSTEM DESCRIPTION

The main operation in an accelerator control system is

data taking, display of information, analysis, command

execution and expandability. To reach these goals we need

to use a well defined system structure. We chose a simple

but efficient three levels architecture.

Console level it is the human interface. Several

equipollent consoles, built on small personal computers

with Linux as operating system.

Service level is the second and central level of the

system. It essentially contains a CPU that acts as a general

concentrator and coordinator of messages throughout the

system. We log automatically the command, the machine

status and the errors. A second processor is used at this

level with an SQL database to store automatically the

information from the front end processors.

Front-end level is constituted by some (more than 8)

industrial Personal Computer distributed round the

machine. Each PC performs control and readout of an

element of the accelerator. The information can be read by

the console on request.

66

Table 1: Elements

In a distributed system the interconnection bus between

the different CPUs is important to allow maximum

performance. First of all we don’t want to have any

evident bottleneck in the data transfer. Furthermore the

bus system has to be reliable and affordable. Today in

every personal computer the Ethernet connection is a

standard: this means that it can be a robust channel of

communication. We use the Gigabit Ethernet to obtain the

necessary bandwidth in the data transfer between the

different parts of the system.

The realization of a switched LAN gives the possibility

to use the network also as a fieldbus infrastructure to

reduce at maximum the interconnection between the

devices and the acquisition system. In table 1 we can see

the elements of the acquisition system: some of them can

be directly connected to Ethernet some other fieldbus can

easily connected to it.

SOFTWARE

In order to reduce the time of development of the

SPARC control system, we decided to use well known

software. Labview became the natural choice for the

following reasons:

• in the Frascati laboratory the use of National

Instrument software is diffused (we can say it is a

“standard”);

• Labview is used as development software in the

DAFNE control system [3]. This choice allows us to

re-use, when possible, the software;

• Labview is considered reference software by a lot of

hardware manufacturers that write interface divers in

Labview.

The DAFNE control system is working since 10 years

and now is well defined and debugged. This encourages

us in using the same architecture and software, when

possible, for the SPARC control system.

Analyzing the two systems we have found two main

differences: first of all the acquisition bus is PCI for

SPARC VME for DAFNE. Furthermore the

communication between the system levels is different.

For these reasons it is necessary to rewrite some software.

We began the porting of the software starting from the

communication mechanisms. In DAFNE the shipment of

the commands happens using a mailbox written on a

shared memory. In the SPARC control we do not have a

shared memory but a LAN. A server program, running in

parallel, receives the commands and makes them

available to the acquisition program through a global

variable. In the DAFNE control system a second

communication channel is present that allows reading the

state and the variations of the single elements under

control. Also this communication is through shared

memory. In the SPARC case we have realized a second

server that bundles the information and sends them upon

request to the console. Presently the data are transferred

without coding them but we are thinking of using XML

coding system [5] in the future.

The usage of PCI bus instead of VME, in the front-end

CPU, forced to replace the acquisition board drivers. In

some cases this was not necessary because the acquisition

happens through a secondary fieldbus (Tab.1). This

allowed simpler re-use of the DAFNE software to that

element.

Radiofrequency

A new acquisition system for radiofrequency (RF)

signal monitoring and synchronization is designed as a

fundamental part of the SPARC project at LNF and it is

currently working with very good performances.

Figure 3 Control system application to measure the

phase noise

The core of the synchronization system is a

demodulation board and digitizer cards in an industrial

PC, where data analysis and device control are

accomplished. The above apparatus can be seen as a

custom multi-channel digital scope, able to display in the

control room all the demodulated signals coming from the

RF structures placed along the whole machine. The

waveform is digitized using data acquisition (DAQ) cards

that are 12bit 60Msamples/s A/D converters. This system

allows a real time monitor of amplitude and phase of the

RF pulses along the machine.

To accomplish the phase noise monitor task, we avoid

transmitting the whole acquired waveforms from the

tunnel to the control room. To implement a shot to shot

monitor at the 10Hz repetition rate of the machine, we

analyze data inside the same software application running

Device e-meter SPARC Interface

Magnet P.S 9 30 serial

Vacuum pump 15 23 Fieldpoint

Vacumeter 2 6 serial

Modulator 2 2 Ethernet

RF 2 2 LAN, Digitizer

Camera 5 12 IEEE1394

Flag 5 12 Serial, CAN

Current Monitor 1 2 Multimeter

Position Monitor 0 12 Ethernet

67

in the front-end industrial PC. In that way, only a number,

representing the phase for each location of interest, can be

sent to the control room. Moreover, the control system

has been designed to perform a “one-click” phase noise

measurement along the whole machine. A snapshot of the

console application is shown in figure 3(a) and results

relative to the RF gun phase noise are shown in figure

3(b).

To reduce the phase noise and to enhance the

performances of the photo-injector, we implemented also

a phase feedback that analyze the acquired values and

controls a motorized phase shifter to compensate slow

drifts figure 4.

Figure 4 Compensation of the slow phase drifts

Diagnostic

The main machine parameter emittance, bunch length

and energy in SPARC are measured with images. The use

of a versatile camera system is strategic in the realization

of this diagnostic. The rapid evolution in the image

acquisition systems allows us to choose the camera and its

own interface in a wide variety of products. The

IEEE1394 interface gives us the possibility to interface

different camera with different specifications without

changing the software

 The cameras are acquired by different distributed

personal computers that send data trough a TCP/IP

channel. We well defined the data transfer structure to full

integrate the cameras inside the control system.

Another important component in the diagnostic is the

control of motors to move flags and slits to allow the

acquisition of the beam image. Also for the e-meter we

need to move position slits and flags.

We have written some useful programs to acquire

automatically the position and the dimension of the image

of the beam and to save them. The saved images are used

by offline beam analysis.

SERVICE PROGRAMS

The SPARC collaboration involves different research

national and international research institutions. Some

services are necessary to allow all people to have the

information available on the status of the machine and the

progress of the work. The old system based on a logbook

where the operator writes the data and glues picture on it

can be useful but cannot be available from remote

researchers. We choose a freeware electronic logbook

that we have customized. This choice is in easy to install

and to use ELOG seems the good choice.

Status log machine

The injector project is an experimental machine the

possibility to have an automatic saving mechanism can be

useful in offline analysis.

We are studying and developing a data acquisition

system based on a database with a possibility to

communicate via TCP/IP. We decide to use the

PostgreSQL database.

For the moment on each front-end processor a database

client program periodically saves the data of the

controlled elements. Some interface to plot historical data

at console level have been developed.

The system is currently acquiring information by all the

elements of the e-meter apparatus. Performance of the

system is under test.

STATUS OF THE ART

During the test of the e-meter the control system

software has been completely defined, implemented and

tested. We also implemented and started the test of the

machine status log.

 We plan some future developments of our control

system with the introduction of some embedded systems

to monitor some other elements. We started the study how

to guarantee the synchronization of different PC in the

system.

ACKNOWLEDGEMETS

We want to thank F.Anelli, S.Fioravanti, L. A. Rossi

and S. Strabioli for their contribution in the software

development and hardware installation.

We are also grateful to all the SPARC staff for their

continuous suggestions and encouragement for making a

good and useful job.

REFERENCES

[1] The SPARC project is financially supported by the

EU Commission in the 6th FP, contract no. 011935

EUROFEL and contract no. RII3-CT-2003-506395

CARE.

[2] SPARC Project Team, Sparc Injector TDR

http://www.lnf.infn.it/acceleratori/sparc/

[3] G. Di Pirro et al. "DANTE: Control System for

DAFNE based on Macintosh and LabView", Nuclear

Instrument and Methods in Physics Research A 352

(1994) 455-475.

[4] A. Cianchi, et alt : "Design Study of a Movable

Emittance Meter Device for the SPARC

Photoinjector", Proceedings of EPAC2004, 5-7 July,

2004 Lucerne, Switzerland;

[5] L. Catani, “A Communication Protocol for a

Distributed Control System with LabVIEW”,

PcaPAC2006, October 24-27,2006 CEBAF Center

Jefferson Lab Newport News, VA USA

68

EPICS ARCHIVEVIEWER PROJECT STATUS

Sergei Chevtsov, SLAC, Menlo Park, USA

Abstract
This paper describes EPICS ArchiveViewer [1], a

software application that presents archived process

variable (PV) data in various forms. ArchiveViewer is

easy to install, capable of multi-tasking, highly

modular, and pluggable in many ways. It is written in

pure Java and currently released in version 1.2.

The next major release, ArchiveViewer 2.0, is

planned as an Eclipse [2] Rich Client.

INTRODUCTION

After EPICS ChannelArchiver [3] became the de

facto standard application for archiving EPICS PV data

in 2003, we decided to give the EPICS community a

friendly way to view and analyze the stored data. When

an extension of the popular real-time EPICS data

plotter StripTool [4] proved hard to maintain, we

created a new application, EPICS ArchiveViewer, from

scratch.

ArchiveViewer is widely used by control system

developers, physicists, and operators around the world.

The application has been continuously updated to

implement new user requirements.

SYSTEM DESIGN

ArchiveViewer consists of three major layers:

• “Archiver Client Adapter” layer is in charge for

communication with pluggable clients of archive

data servers.

• “ArchiveViewer Base” is the centerpiece of

ArchiveViewer. It is responsible for processing

user queries to retrieve data and present it in a plot

or a spreadsheet.

• “Data Presentation Adapter” layer abstracts from

concrete implementations of data presentation

plugins.

Figure 1: ArchiveViewer architecture overview.

A user requests archived data by specifying PV

names (with help of regular or glob expressions) and

time ranges (absolute or relative). Data is retrieved

from a remote data server and cached locally. User

configures plot color, type (e.g. scatter), width, and

axes. Multiple domain and range axes are supported. A

plot image can be printed out, or saved to a file. Plot

data can be exported to a spreadsheet.

While data is processed, user receives real-time

status reports and, in case of errors, comprehensible

exception messages.

ArchiveViewer includes a small math library for

simple data analysis and manipulations. It includes

basic arithmetical, trigonometric, and Boolean

functions as well as the aggregate functions.

An ArchiveViewer configuration can be saved as an

XML document.

USER INTERFACES

Figure 2: ArchiveViewer user interfaces.

• Terminal (command line) interface is particularly

suitable for scripting.

• Web interface requires no installation on the user’s

side. ArchiveViewer provides a custom JSP tag

library to a developer who wishes to extend the

standard web pages.

• Swing front-end is very sophisticated, well

documented [5], and contains an online help

guide. It features GUI preferences and a wrapper

for manipulating plots (incl. hooks for scrolling

and zooming in/out). Swing version is available

via Java Web Start, greatly facilitating installation

and configuration management.

• An Eclipse Rich Client is under development. It is

going to keep features of the current Swing

interface and add some new ones that come with

Eclipse platform.

PLUGINS

EPICS ChannelArchiver client

Development of a stable XML-RPC client plugin for

ChannelArchiver data server is a driving force for

69

Figure 3: ArchiveViewer 2.0 Eclipse interface (under development).

ArchiveViewer. Since ChannelArchiver stores PV data

in different directories, ArchiveViewer supports

directories by default. As of now, this leads to some

limitations concerning data interpolation and

alignment. For instance, formulas can be only

constructed from PV data that are stored in the same

directory.

Export Plugin

So far, only the comma-separated values (CVS)

format is fully supported. However, data in this format

can be imported into various spreadsheet applications,

such as MS Excel. After converting archived data into

their string representations, ArchiveViewer displays the

text on a screen. User can save it later to a file.

The CSV plugin only supports single time range

requests, but can handle PV data of different types

simultaneously.

Plot Plugins

Plot plugins are the major contributors to the success

of ArchiveViewer.

The basic plugin can plot sets of PV data against

multiple time and range axes. Range axes can be

configured to feature logarithmic scales. If meaningful

numeric values can not be assigned to data samples

(e.g. if data status information indicates invalidity),

they are drawn as clickable artifacts underneath the

main graph. Plots can be resized, saved to a file as an

image, and/or printed.

ArchiveViewer has a plot plugin for waveform data.

This plugin acts like a virtual oscilloscope, capable of

playing videos of archived data with various speeds.

Multiple time and range axes are supported, too.

As of now, the final and most important plot plugin

is the “correlator”. This plugin aligns scalar data

samples in time and displays them in correlation to

each other. One PV must be assigned to a domain axis,

with data from other PVs plotted over it.

VERSION 2.0 OUTLOOK

ArchiveViewer is stably released in version 1.2.

Current development focuses on the integration into

Eclipse framework as part of the Control Systems

Studio [6] (see Fig. 3). Additional goals include:

• runtime deployment of archiver clients (currently,

clients are deployed when the application is

compiled)

• an initial set-up guide

• extension of the math library

• support for German language

The development of plot plugins is highly

encouraged.

70

ACKNOWLEDGEMENTS

I would like to thank following people for

contributing to the project in various stages: Bob

Dalesio, Kay Kasemir, Hamid Shoaee, Matthias

Clausen, Craig McChesney, Ernest Williams, and Dave

Gurd.

REFERENCES

[1] EPICS ArchiveViewer main web site, http://ics-

web1.sns.ornl.gov/archive/viewer/

[2] Eclipse project main web site,

http://www.eclipse.org/

[3] EPICS ChannelArchiver main web site, http://ics-

web1.sns.ornl.gov/~kasemir/archiver/index.html

[4] StripTool EPICS web site,

http://www.aps.anl.gov/epics/extensions/StripToo

l/index.php

[5] EPICS ArchiveViewer user manual, http://ics-

web1.sns.ornl.gov/archive/viewer/files/manual.pdf

[6] Control System Studio main web site,

http://css.desy.de/content/index_eng.html

71

DEVICE ADDRESS REDIRECTION AS A TOOL IN THE TINE
CONTROL SYSTEM

Steve Herb, Philip Duval, DESY, Hamburg, Germany

Abstract
Naming and Name Resolution are non-trivial parts of

Control System definition and implementation. A few of
the problematic aspects are: 1) It is often necessary to
integrate devices from neighboring control systems with
different naming conventions, 2) The functionality of
single devices may be scattered over multiple servers, for
example history records or calibration data may be stored
on separate dedicated servers, and 3) Devices which
properly belong to a group are often scattered over
multiple servers, with limited group functionality
implemented by naming tricks or client level lists. In
large control systems it is desirable that the group
concepts are implemented in the middle layer software,
since group functionality should exist as a Control
System-wide facility, rather than as a subprocess of a
single console client.

Our solutions to many of these problems include an
‘address redirection’ mechanism whereby the initial
resolution is provided by the name server, but finer-
grained resolution can be subcontracted to the device
servers, which then redirect the calls to other servers, as
appropriate. This is transparent to the user and maintains
the efficiency of our publish-subscribe mechanism. We
describe the implementation within TINE together with
some representative applications.

NAMING AND NAME RESOLUTION
A naming system arranges the control system objects

into sets of hierarchical families. Some possible directions
for naming of control system devices, together with
associated problems, are:

• A control computer oriented hierarchy of devices,
tasks, and server machines: this is easy to define,
and has been the basis for TINE naming, but often
does not fit so well to the accelerator functionality as
understood by the operations staff.

• A clever ordering of ascii characters encoding
information for wild-card operations: wild-carding
as a means of grouping for device operations is a bad
idea when taken past some minimum level. It leads
to more and more constraints on the device names,
and freezes in particular views of the control system.

• An accelerator function oriented hierarchy ‘easily’
understood by users: for a large distributed control
system similar devices, as well as the properties of a
single device, may be spread over many server
platforms, so that name resolution must operate at a
very detailed level.

A basic aspect of hierarchies is that any structure which
is a good fit to some system views will be a poor fit to
some others. For large control systems, various views are
needed for the different accelerator operations, and no one
naming system will support all required groupings of
devices. So flexibility is required in any case, meaning
that the control system should have additional
mechanisms to support multiple options for grouping of
the objects. We describe here one such mechanism in the
TINE control system [1], and some of the ways in which
it is being used.

DEVICE ADDRESS REDIRECTION
How it works

Redirection is a mechanism which permits a server task
to redirect selected incoming calls to another server task.
The logic is shown in Fig. 1 and includes these steps:

• the client sends out a ‘new’ read or set request.
• the client stack passes the address string to the

nameserver.
• the name server returns an IP Address and task name

(‘QUAD’).
• the client stack sends out the call to 'QUAD'.
• 'QUAD' receives the call and checks the string

against its redirection rules.
• if the rules point to another task, such as 'ABC',

'QUAD' sends this information back to the client.
• the client receives the information and passes it to

the name server.
• the client receives the new address from the name

server and resends the call to 'ABC'.
• this ‘real’ address is cached at the client level.
• 'ABC' fulfills the request and sends the return

information to the client.
• subsequent calls can now be performed without these

multiple bounces.

 Fig. 1: Network calls for Address Redirection

The end result is that the task 'QUAD' functions as a
'virtual server' for some set of distributed quadrupoles.

‘QUAD/QL14W/SETON’

‘ABC’

Name Server

ClientClient
Stack

‘QUAD’

QL14W

QL45N

4. not here, go to
__‘ABC/QL14W’

5. Where
is ABC?

1. Where
is QUAD?

3

7

8

2

6

Redirection List ‘QUAD/QL14W/SETON’

‘ABC’

Name Server

ClientClient
Stack

‘QUAD’

QL14W

QL45N

4. not here, go to
__‘ABC/QL14W’

5. Where
is ABC?

1. Where
is QUAD?

3

7

8

2

6

Redirection List

72

The process is transparent to the ‘client user’ and is
implemented for both the synchronous call and the
publish-subscribe features of TINE. The mechanism was
originally developed to support device properties spread
over multiple server tasks; the result is that to a control
system user it appears that all functionality for a device is
concentrated at one address, which is a simplification
both for the users and for the name server logic. A typical
use of the mechanism has been to redirect calls for
archived history data to a dedicated archive server.
Another use, described in more detail below, has been to
create a virtual server task for a group of magnet power
supply controllers spanning multiple server platforms.

Centralized vs. Distributed Name Resolution
A possible objection might be that the full addressing

information should be stored in one central location, the
name server, rather than distributed at different levels in
the control system. We have several remarks on this
point:

First, for a system such as TINE, in which the name
server entries are dynamically created during the
initialization of server tasks, and for which redirection is
possible both at the device and at the property level, the
name server must either store entries for all possible
permutations, or must implement non-trivial dynamic
logic for deriving the level at which a particular string can
be truncated for purposes of name resolution.

Second, having the redirection information resident on
a particular server task, which then serves as the intial
target for calls, could be considered a useful form of
encapsulation, and as simpler than using only central
storage.

Group Equipment Name Server
This is a recent addition to TINE, implemented as a

middle layer server. It hosts an entire set of virtual server
tasks, each consisting of a group name and a list of group
members with their redirection addresses. The first time
that each member is addressed, the call will pass through
this server; subsequent calls go directly to the 'real'
member address.

An additional feature is that server tasks may on startup
automatically register their devices in one of the virtual
groups, and in fact the first to register for a not yet
existing group will create the group. It is not clear that
this free-for-all registration is always desirable.

DEVICE GROUPS
Passive and Active Groups

The above examples regard groups as lists of devices
bundled together for some operation. To the extent that
this operation is just 'reads' or 'sets' using the same device
properties on each member of the list, the group is not
itself a 'device' in the sense of being an active control
system object. There is however also a need for active
groups with both client and server functionality which
include their own coded methods. These methods can

implement 'business logic' for the control system. Our
experience with the HERA and FLASH control systems
has been that all sorts of special logic is required for
various combinations of magnet Power Supply controllers
(PS) together with assorted peripheral switches etc.

At least for large control systems it is extremely
desirable to move these methods into the middle layer of
the system; too much such business logic in either the
console or the front-end layers severely reduces system
maintainability. Clearly the redirection does not address
this need; we have nonetheless found that it can fit in
well as one component of a device/group complex.

Magnet Power Supply Control Servers
Several aspects of the group implementations are

illustrated by the servers for magnet PS control for the
HERA and the FLASH (previously TTF2) accelerators at
DESY. The HERA system consists of about 1400 magnet
PS controller systems of at least 13 distinct types,
addressed via 'Sedac', a DESY legacy serial fieldbus. It
was very early decided to implement the control via a
device server task supporting the 1400 PS instances, and a
group server task supporting explicit groups with
operations involving more than a single PS. These front-
end and middle-layer tasks run on a single 2-processor
Sun computer. The complete logical separation of the
device and group functionality has been extremely useful
for shielding both the console clients and the front-end
tasks from the often unpleasantly complex logic of the
group operations.

Fig. 2. One computer serves as a 'single access point' for
distributed Power Supply controllers and PSC groups
incorporating 'business logic' for the FLASH linac control
system.

The PS control system for the FLASH linac is based on
the HERA system. An additional complication is that the
system is a mixture of the legacy PSs, and new PSs
addressed via CAN bus. Partly as an experiment in
moving toward distributed systems, the CAN busses are
not driven directly by the Sun computer, but by seven
PC104 modules running under Linux a slightly modified
version of the Sun code and independently accessible over
the network. Using redirection based on the Sun device
server, all PSs appear to the central control system to be
resident on the Sun, which thus becomes a (half) virtual
server representing the entire system (Fig. 2)

PC104CAN

PSPS

PC104CAN

PSPS

PC104CAN

PSPS

PS Group Server

Local Device Server

‘Legacy’ Fieldbus

PS

Ethernet

Redirection List
PS

PC104CAN

PSPS

PC104CAN

PSPS

PC104CAN

PSPS

PC104CAN

PSPS

PC104CAN

PSPS

PC104CAN

PSPS

PS Group Server

Local Device Server

‘Legacy’ Fieldbus

PS

Ethernet

Redirection List
PS

73

In fact, the group functionality extends somewhat
beyond simple redirection. All PS instances are
represented on the Sun, either as fully functional devices,
or as proxies with storage but without full method
implementations. The redirection is accomplished in that
each instance includes as an attribute the name of its
‘home’ task. The group server functions as before, except
that group operations may now contain a mix of local and
remote devices. Finally, the group server maintains client
subscriptions to the devices on the satellite servers, and
writes the results into the proxy storage. The result is that
the group server on the Sun has access to current state
data for both the local and the remote PSs.

'Half-Virtual' Servers' as a middle layer tool
The above construction may seem forced, but our claim

is that it points the way to a possible architectural element
in large distributed control systems, which we might call
a ‘single point of access server’, namely a combination of
tasks which provides a central contact point for a group of
similar devices spread over the network, i.e.

• a single point of contact for the devices, as seen from
the client perspective

• a preferred location for implementing groups and
performing group operations related to the devices

• a preferred location to calculate and maintain group
status information.

For large control systems, it is desirable to move as
much system logic as possible into the middle-layer,
where it is visible to all control system participants (rather
than to a single console client) and to perform
preprocessing on status information, so that the clients
may (normally) work with summary views of the system,
rather than having to piece it together themselves from
atomic data transfers from each device. This model helps
in that direction.

REFERENCE
[1] http://tine.desy.de

74

WEB GUIS FOR THE TANGO CONTROL SYSTEM

L. Zambon, M. Lonza, Sincrotrone Trieste, Trieste, Italy

Abstract
Interactive and scalable web GUIs based on PHP have

been developed at Elettra for the Tango control system.

They consist of a generic control system web client and of

an interface to the Tango historical archiver. Security

procedures against the risk of DoS (Denial of Service)

attacks and tools to easily build new pages and export

data in standard format have been developed. An Ajax

interface has also been implemented in order to increase

the interactivity of the web interface without consuming

too much bandwidth and with no interference with

commands sent from the client.

INTRODUCTION

Tango is a multi-platform object-oriented CORBA

powered control system software [1]. It is the result of a

collaboration between four synchrotron radiation

laboratories in Europe (ESRF, Soleil, Elettra and Alba),

which adopted Tango to control accelerators and

beamlines.

Besides the GUIs (Graphical User Interfaces) written

in Java, C++ and Python using graphical tools included in

the Tango package, web clients allow to access the control

system and the archived data from any PC connected to

the internet and running a normal web browser with no

need of any plug-in.

"Canone" is a graphical animated web interface to the

Tango control system. It is built mainly in PHP (PHP

Hypertext Processor) [2] and animated with AJAX

(Asynchronous JavaScript and XML) [3]. The external

appearance is a set of "panels" from which a user can

interact with the control system via web. Each panel is

composed of a certain number of "widgets" and some

HTML tags.

E-Giga (Electronic Graphical Interface for Global

Archiving) is a graphical interface to the Tango historical

archiving system.

CANONE

Architecture

A web interface is expected not to interfere with the

core of the control system (a downtime due to the web is

unacceptable) and, on the other hand, is expected to be as

vividly interactive as possible. All interactions of Canone

with the control system are performed through a tiny

script in Python which acts both as Tango client using the

PyTango bindings and as TCP/IP socket server (Figure 1).

A PHP front-end acts as a socket client and as a buffer

layer. A multi-channel implementation has been adopted

to distribute the traffic among several socket servers. In

order to limit the total number of Tango calls sent to the

control system all read requests and commands are stored

in a buffer implemented using a tiny database (SQLite or

MySQL). If the requested data is already present in the

buffer and it is not older than three seconds it is retrieved

from the database, otherwise a read call to control system

is done and the value contained in the buffer is adjourned.

With a similar mechanism multiple commands of the

same type are also filtered.

The Canone core assembles the front-end, the widget

library, the user administration library and other tools and

glues them in a PHP powered application.

The front-end can also be used by a Simple Object

Access Protocol (SOAP) server to access the Tango

control system as a web service.

The installation requires a web server with little more

than a basic LAMP (Linux Apache MySQL PHP)

installation. The client side requires only a web browser

with JavaScript and pop-ups enabled. Firefox is the

preferred browser but tests have been done with Internet

Explorer, Opera and Safari.

Thanks to the modular architecture of Canone it is

possible, by opportunely adapting the front-end, to

connect it to another control system, e.g. EPICS.

Figure 1: Block diagram of Canone

Panels

Canone allows building and customizing control

panels. A simple panel is composed by a title and a table

of widgets, but the page deployment may be as complex

as allowed by HTML. Sub-tables and external links are

examples of features that can be added.

A panel can be built writing an independent PHP script

which utilizes some of the basic Canone libraries (widget,

front-end, user administration, etc.). Alternatively, a panel

can be easily created and modified using a web browser

and then saved as a XML file on the server side.

web

Canone

core

Widget

library

Widget

animation

Tango

Control System

Multi-channel socket

Socket server

Buffer DB Front-end

User

administration

75

Widgets

A widget is a graphic element that represents either a

variable to display or a command.

Each widget is contained in its own class which extends

the generic "widget" class. A fundamental attribute of this

class is called "config" and contains all the parameters

that can be customized. For each parameter there is a data

structure composed by an identifier, a type definition, the

default value, a short description and a long description

(intended for the on-line help). The setParam() method

allows to set all the parameters with a single string. Some

widgets are implemented as PNG images others as tables,

in both cases the HTML code necessary to visualize the

widget is returned by the plot() method.

Each widget of a given panel is associated to a control

system variable or command. A form allows to customize

each parameter of the widget (Figure 2) including colours

by means of a selection pop-up. The bandwidth utilized to

transfer the widget initialization has been significantly

reduced utilizing JSON (JavaScript Object Notation).

Figure 2: an example of Canone panel and widget

configuration table.

Widget animation

A basic characteristic of a widget is how often it is

refreshed, but for most widgets only a small part has to be

changed, as all the graduated scales and graphical

ornaments can remain in background. AJAX is a

framework which allows the asynchronous transmission

of tiny packets of data in a highly efficient way.

JavaScript allows the dynamic update of only a fraction

of a web page while all the rest remains unchanged. This

is easy for all widget whose animated part is in text

format, but it is more complex for the fully graphical

widgets. The adopted solution borrows a generic library

by Walter Zorn [4] which utilizes the background colour

of floating DIVs, a HTML feature supported by all

modern browsers. Despite a very smart optimization has

been done to improve the efficiency of the graphical

library, it is important to limit the number of animated

graphical elements.

All background elements are built on the server side by

a PHP routine, sent as an image to the client and never

refreshed.

On the client side, the browser depicts right over the

background image only the minimum graphical elements

got through the AJAX mechanism (Figure 3)

To save further bandwidth and improve the animation

vividness, a configurable number of interpolated values

between two consecutive readings can be inserted. In this

way, a panel can have a refresh rate of up to 20 frames per

second.

Figure 3: Widget animation.

User Administration

The user authentication process in a web environment

must be robust and cannot assume at any time the loyalty

of users.

In Canone, the access is validated using the information

contained in a database (SQLite or MySQL). Users must

be registered in the system with username and password.

Each user must be part of a user group, permissions are

granted to user groups. In addition, several IP numbers

(and netmasks) may be associated to a user group and

receive the same rights. The rights granted to a user

through its username and password override the ones

associated to the IP number.

There are three levels of permissions:

• read: only read operations are granted, any write

operation is denied

• operator: both read and write operations are granted

• expert: both read and write operations are granted,

panels can be modified.

There is also a special group called "admin" with

administration permissions to create and delete users

and grant or revoke permissions.

The user administration utility is composed by three

tools:

• access control: grants permissions to user groups

over panels and controlled devices

• users management: creates, searches, modifies and

deletes user accounts

• database: is a generic database graphical client to

change any configuration. Only expert administrators

should use it.

76

E-GIGA

E-Giga is a web interface that displays the values

collected by the Tango archiving system by means of

plots. It is mainly built in PHP with some parts in

JavaScript and dynamic HTML. Data are retrieved

directly from the archive database with the use of a set of

queries. Plots are built using a native PHP library, called

JPGraph [5].

The variables (Tango device attributes) can be selected

from a list of attribute names together with the time

period to be displayed. Figure 4 shows an example of E-

Giga plots.

Figure 4: E-Giga screen-shot.

The vertical axis scale can be configured changing the

limits (fixed, auto-scale or auto-scale with upper

limitation) and the linearity (linear or logarithmic). There

can be a second vertical axis configured independently

from the first one.

The horizontal axis can be assigned start and stop

date/times or a relative period (e.g. last 24 hours) by using

a calendar and changed by just clicking over the plot

(zoom in). Time scale labels on the horizontal axis are

carefully placed at rounded intervals. The plot size can be

freely modified. It is also possible to display a table

containing the acquired data in numerical format.

A correlation plot can be obtained by placing one

variable on the horizontal and another on the vertical

axis. It is possible to combine variables with complex

formulae by using a pop-up to write the formula and

visualize it in a graphical way using MathML. Some basic

statistics can also be performed.

Data can be exported in a number of external formats:

PDF with graphs and tables, Excel, Matlab and CSV.

Graphs can be also sent via e-mail. All configurations can

be saved locally in the cookies or on the server side and

easily recalled.

CONCLUSIONS

Canone and E-Giga, the web interfaces of the Tango

control system and historical archiver, satisfy most of the

needed requirements. They are still growing with new

tools and features, but the basic functionalities are close

to the maturity phase.

The whole source code, demos and images can be

downloaded from www.elettra.trieste.it/~tango/Canone

and at www.elettra.trieste.it/~tango/E-Giga.

REFERENCES

[1] A. Goetz et al., "TANGO a CORBA Based Control

System", ICALEPCS2003, Gyeongju, October 2003

[2] http://www.php.net

[3] D. Crane, E. Pascarello and D. James, “Ajax in

action”, Manning, October 2005

[4] http://www.walterzorn.com

[5] http://www.aditus.nu/jpgraph

77

A communication protocol for a distributed control system with LabVIEW

L. Catani∗, INFN-Roma Tor Vergata, Roma, Italy

Abstract

Control Systems for accelerators at INFN-LNF (Lab-
oratori Nazionali di Frascati of INFN) are mainly based
on LabVIEW. VME crates hosting I/O controllers are in-
terconnected using bus extenders translating local mem-
ory into a global shared memory. Mailboxes on shared
memory are then used for communications between dis-
tributed processors. While the development of control sys-
tems for new accelerators under construction at INFN-LNF
[1] should be based on well-established and more flexible
technologies for communication, i.e. network, re-use of
part of instrument drivers, sub-system controls and mea-
surement applications already developed must be guaran-
teed. This paper presents the development of an RPC-like
communication protocol based on the TCP/IP and XML
tools provided by LabVIEW. It extends the features of these
built-in libraries, including the managements of large bina-
ries, and incorporates solutions that might provide compat-
ibility with well established communication protocol, e.g.
XML-RPC, while preserving full compatibility with differ-
ent platforms supported by LabVIEW.

INTRODUCTION

LabVIEW is a very common development environment
for controls. Limited size (and man power) projects, espe-
cially, take advantage of its ease of use and profit from the
large number of tools and libraries to interface and control
instrumentation, develop analysis program and display re-
sults. When the experiment or the apparatus became more
complex and larger in size one might need to engage more
than one computer to distribute among the different PCs
the control of various components. For this purpose the be-
fore mentioned use of bus extenders is a possible option.
More common nowadays is the interconnection via ether-
net networks. Also in this case LabVIEW offers a number
of tools to implement transfer, via network, of data between
distributed components of the control/acquisition system:
DataSocket, VI Server, VI reference, TCP/IP and UDP and
interface to .NET and ActiveX. All above mentioned com-
munication tools are powerful and well suited for many
applications but they are not flexible enough to allow im-
plementation of a real communication protocol. Moreover
most of them are proprietary and work only between Lab-
VIEW applications. The Internet Toolkit includes a Lab-
VIEV HTTP server and the possibility to define the Virtual
Instruments as CGI one can invoke using the HTTP proto-
col. This is a very general service but doesn’t offer enough
flexibility. LabVIEW also includes TCP/IP and UDP Lab-

∗ luciano.catani@roma2.infn.it

VIEW libraries providing basic tools for TCP and UDP
data transmission over ethernet. They are compatible with
standard socket communication being the basis for many
communication protocols.

THE XMLvRPC PROTOCOL

XML (eXtensible Markup Language) is becoming a very
popular way of coding data especially when interoperabil-
ity and compatibility between platforms and programming
languages is an issue. Communication protocols based on
this coding exist, among these one of the more interesting is
XML-RPC [3]. It’s basically a remote procedure call that
uses HTTP as the transport, or other TCP/IP and UDP pro-
tocols, and XML as the coding allowing complex, and rela-
tively large, data structures to be transmitted, processed and
returned. The implementation of XML-RPC communica-
tion protocol in LabVIEW, aimed to an accelerator control
system, poses two main problems. First of all the XML
code generated by LabVIEW tools is not compatible with
the specifications of XML-RPC. Secondly, standard XML
coding of binary arrays results in a significant increase of
data size that makes the XML coding of large binaries, raw
images for instance, impracticable.

LabVIEW provides a convenient set of tools to convert
its data type to XML format according to the LabVIEW
XML schema. Unfortunately, the LabVIEW XML schema,
LVXMLSchema.xsd, cannot be customized or replaced by
users but, if we are only interested in LabVIEW-based dis-
tributed control/acquisition systems, this is not a relevant
limitation. In this case, actually, its worth to preserve full
LabVIEW compatibility to take advantage of its XML li-
brary while developing a workaround for the problem of
coding binary arrays efficiently.
The solution proposed in a previous paper [2] consists in
pre-processing of the LabVIEW data structure before it is
sent to the XML coding tool in such a way that all binary
arrays are replaced by the correspondent flattened string,
i.e. the ASCII string made with the same sequence of
bytes as the binary array. Practically this corresponds to
a type-cast of the array into a string. Because strings are
copied into the XML structure without any modification,
the above mentioned type conversion avoid the increase of
data size consequence of standard XML coding of binary
arrays. Because the pre-processor, similarly to the XML
coding tool, must be able to accept all possible types of data
structures as input, we first convert the data structures to
LabVIEW Variants. The Any-to-Variant function converts
any LabVIEW data to a format that can be manipulated
independently of the original data type. A Variant can be
unpacked, its content modified (adding, deleting or replac-

78

LAN

Request
<methodCall>

<methodResponse>

Data/Response
Data

Write Request

XMLvRPC Client

Read DataPost-Process Write Data Pre-Process

Read Request

Serve the
Request

XMLvRPC Server
variant (type-less) Data
text Data (XML)

Figure 1: XMLvRPC client and server communication

ing data, for instance) and then converted back to a ”stan-
dard” LabVIEW data (numeric, text, array, cluster, etc.).
The pre-processor developed for this application is a VI
that recursively (its ”Reentrant execution” option must be
checked) searches for nested binary arrays into a LabVIEW
data structure converted to a Variant and replace them with
the correspondent flattened strings. The processed data is
then coded into a XML string and reduction in size, with
respect to the non-pre-processed version, is clearly signif-
icant. If we compare, for instance, XML coding of a data
structure (e.g. a LabVIEW cluster) that includes a 640x480
2D array of unsigned-bytes , a typical pixels map of a CCD
camera, reduction in size obtained with the pre-processing
described can be a factor 100 or more.
It must be noted that when a binary array is flattened to a
string, some relevant information about the original array
is lost. As consequence reconstruction of a binary array
on the receiver side is not possible unless we supply, by
other means, the dimension(s) of the array and its data type
and size (the number of elements for each dimension is in-
cluded by LabVIEW in a header of the flattened string).
The solution that has been chosen is very simple: the miss-
ing information, the dimensions of the array and its data
type, properly coded and formatted is appended to the name
of the variable. As an example, the variable ’image’, being
the 640x480 2D binary array previously mentioned, after
the pre-processing procedure transforming it into a string
will change its name into ’image 2 U8’. On the receiver
side a post-processor parses the LabVIEW Variant obtained
converting the XML data. It selects the strings that it rec-
ognizes, by their names, as flattened binary array and un-
flatten them into an array having the indicated dimensions
and data type. Once the XML coding is defined the imple-
mentation of the XML-RPC-like communication protocol,
that I called XMLvRPC, is straightforward. See Fig.1.

DISTRIBUTED CONTROLS WITH
XMLvRPC

CLIENT AND SERVER

The core of the XMLvRPC protocol are the XM-
LvRPC Server.vi and XMLvRPC Client.vi whose
components are shown in Fig.1. Since data is passed

to/from these VIs as Variant, that is a type-less data,
the XMLvRPC Client/Server VIs can present a common
interface to all calling VIs, yet compatible with any type of
data they need to transfer across network.
PRE and POST processors take care of large binaries:
binary arrays are flattened (type-cast) into strings and
then coded into XML reducing the size of the coded data
structure. 3+3 symmetric VIs have been developed to
implement the client/server protocol. On the client side
the XMLvRPC Write request.vi initialize the query to the
server. The calling user application must provide the server
address, the method name and optional parameter. The
server is continuously listening on the predefined TCP/IP
port. As soon as a client opens the connection it uses the
XMLvRPC Read request.vi to read the methodCall. Then
it runs locally the VI that serves the method (method.vi)
and the variant data produced as result is passed to the
pre-processor XML preR-processor.vi to search for binary
arrays.
It must be noted that since data is passed to method.vi as
variant the latter, independently on the method they serve,
have the same TypeDef (practically they have the same
input/output parameters) and thus can be programmati-
cally loaded at run-time and executed, provided their name
corresponds to the method name. It also means that when a
new method is added to a server (similarly on a client) the
server source-code doesn’t need to be modified to include
the call to this new VI. It will be sufficient to copy the
VI that serves this new method to the directory where the
server XMLvRPC server.vi searches for method.vi that
serves the methodCall it receives from clients.
After pre-processing the server uses the XM-
LvRPC Write data.vi to send the methodResponse to
the client that is waiting for the result of its call. The
latter uses XMLvRPC Read data.vi to receive the method-
Call from the server. Then it runs the post-processor
XML postR-processor.vi to convert the flattened binaries,
if any, back into the original arrays. Data received are
then given to the calling user application or to another VI
defined by the name of the methodResponse. It will be
loaded at run-time and executed similarly to the server
side. It means that the protocol also support asymmetric
methodCall/Response: on client side the method.vi that

79

displays or analyze the data received from the server can be
different from the one that originated the methodCall. The
methodResponse can indicate another method serving the
response on the client, according to the data produced from
the method.vi on the server side, if it can have different
forms.
Possible future compatibility with standard XML-RPC
since data is passed in XML

COMPONENTS IN A XMLvRPC DISTRIBUTED
CONTROL SYSTEM

Fig.2 shows an example of components in a XMLvRPC
distributed control system. Controllers run front-end appli-
cations: they are either the interface to equipment or pro-
vide general services. Consoles run user applications or
analysis and measurement procedures. Consoles directly
connect to Controllers to run remote procedure provided
they know (the IP address of) the controller in charge for
the particular I/O channel (or service) and the methods
made available from it. This information is provided by
the Configuration Database on request by the Console (or
a generic client). The Configuration Database is thus the
repository of the system configuration files collected from
any controller at the time they startup and register to the
system.

To summarize, TCP/IP and UDP services are the follow-
ing:

XMLvRPC TCP/IP Server: It runs on each con-
troller and on the Configuration DataBase. It
serves XMLvRPC methodCall. For each con-
troller, available methodCalls are those listed in
the XMLvRPC ClientServer/methods svr directory;
Elements under control are those listed in XM-
LvRPC ClientServer/elements svr directory.

XMLvRPC TCP/IP Client: It runs on each console (a
client in general) and send XMLvRPC methodCall to
XMLvRPC TCP/IP Server according to the requests
of the control panel or user application.

Configuration
DataBase

[UDP Receiver]

XMLvRPC UDP Receiver

console

controllers

XMLvRPC TCP/IP Server

XMLvRPC TCP/IP Client

XMLvRPC UDP Sender

LAN

XMLvRPC TCP/IP Server

XMLvRPC UDP Sender

XMLvRPC TCP/IP Client

Figure 2: Typical components in a XMLvRPC based dis-
tributed control system. Main services are also shown.

XMLvRPC UDP Receiver (Configuration DataBase)
It runs on the Configuration DataBase and serves
synch me or register me methodCalls sent by con-
trollers or locate cdb sent by consoles at startup.

XMLvRPC UDP Sender: It runs on the con-
trollers/consoles at startup. It sends synch me or regis-
ter me methodCalls to Configuration DataBase to reg-
ister the new controller in the system. Consoles use it
to locate the Configuration DataBase.

Configuration DataBase: It is the repository of the config-
uration files and provides to the consoles information
about the controller in charge for a given element.

INITIALIZATION AND REGISTRATION OF
SERVICES

At startup each controller sends a UDP-broadcast to reg-
ister on the Configuration DataBase by sending synch me
or register me methodCall (Fig.3). register me is used
if the controller provides all its methods and elements.
synch me is used if some methods (and elements) are pro-
vided by the Configuration DataBase. If the system has
more than one Configuration DataBase for redundancy pur-
poses, both will receive the request to register the controller
in the system. The Configuration DataBase detects the
UDP-broadcast and then sends to the controller a TCP/IP
get elements methodCall and then a get element conf for
each element listed in the previous methodResponse re-
ceived from the controller.

Practically, local services (i.e. those specific for a con-
trolled elements) are configured directly on each controller
while global services (e.g. back-up, restore etc.) can be
configured centrally in the Configuration Database.

Consoles and high level applications relay on the Con-
figuration DataBase to locate the controller in charge for a
particular element. They use an UDP broadcast to find the
Configuration DataBase, i.e its IP address. At this point
one can either decide to receive the complete configuration
of the system at once and refresh it periodically or relay
on the Configuration DataBase each time a client needs to
identify the controller in charge for a particular I/O channel
or service.

THE XMLvRPC SUITE OF VIs

Fig.4 shows the structure (directories, VIs and configu-
ration files) of the XMLvRPC package.

The installation can be identical for any component of
the XMLvRPC system. The role and the services available
for each component are configured by means of the con-
figuration file Config local.xml and by copying the needed
VIs in the methods svr or methods clt for a controller and
a console respectively.
If the local computer runs a Configuration Database the
methods to be used for this service are in methods cdb rec.
The system database directory contains a directory for each

80

UDP Sender
for

Configuration
DataBase

UDP broadcast:
synch_me

User-Agent: LabVIEW (XMLvRPC - LC)
Host: controller1.domain.org
Content-Type: text/xml
Content-length: 67

<?xml version="1.0"?>
<methodCall>
 <methodName>synch_me</methodName>
 <params>
 <host>controller1.domain.org</host>
 </params>
</methodCall>

User-Agent: LabVIEW (XMLvRPC - LC)
Host: controller1.domain.org
Content-Type: text/xml
Content-length: 49

���<?xml version="1.0"?>
<methodCall>
<methodName>get_elements</methodName>
<params></params>
</methodCall>

User-Agent: LabVIEW (XMLvRPC - LC)
Host: confdb1.domain.org
Content-Type: text/xml
Content-length: 121

<?xml version="1.0"?>
<methodResponse>
<params>
 <Array>
 <Name>served elements</Name>
 <Dimsize>5</Dimsize>
 <String>
 <Name>String</Name>
 <Val>cam_01</Val>
 </String>
 <String>
 <Name>String</Name>
 <Val>cam_02</Val>
 </String>
 <String>
 <Name>String</Name>
 <Val>corr_01</Val>
 </String>
 <String>
 <Name>String</Name>
 <Val>corr_02</Val>
 </String>
 <String>
 <Name>String</Name>
 <Val>corr_03</Val>
 </String>
 </Array>
</params>
</methodResponse>

1

TCP: get_elements (Res)
3

Configuration
DataBase

[UDP Receiver]

console

controller

TCP: get_elements (Call)
2

Figure 3: Synchronization of a controller with the Configuration database at startup by means of UDP-broadcast.

of the controllers (servers) that registered the system in
which the configuration files of the controller elements are
stored.

Figure 4: Directories, VIs and configuration files in the
XMLvRPC package

CONCLUSION
XMLvRPC, an XML-based communication protocol for

LabVIEW provides feature allowing its applications to
LabVIEW-based distributed control systems. LabVIEW
programming is simplified because XMLvRPC provides a
general communication system that accepts all kind of data
structures and relies on strings and Variants for its commu-
nication components. Although XMLvRPC application is
restricted to LabVIEW-based distributed control system its
structure is such to make compatible with XML-RPC with
limited effort. The strategy used to manage large binaries
could be useful also in that case because it doesn’t intro-
duce a violation of the XML-RPC standard. The standard
XML-RPC client/server, in fact, will simply pass the string
data (string data type is obviously allowed in XML-RPC)
to the user application that is designed to handle the result
of that particular methodResponse. The latter will contain
the instructions to convert the string back into the original
binary array.

REFERENCES
[1] G. Di Pirro et.al. ”First operation with the SPARC Control

System”, these proceedings

[2] L. Catani et.al., A Large Distributed Digital Camera System
for Accelerator Beam Diagnostics, Rev. Sci.Instr. 76, 073303
(2005)

[3] XML-RPC Specification - http://www.xmlrpc.com/

81

USER REQUIREMENTS FOR THE PETRA3 CONTROL SYSTEM AT DESY

M. Bieler, A. Brinkmann, U. Zobjack, DESY, Hamburg, Germany

Abstract
 In 2007 the PETRA accelerator at DESY, Hamburg,

will be converted into a high brilliances synchrotron

radiation source. At that time the control system for

PETRA will be upgraded. As part of the design process

for this new control system members of the operations

group have gathered their requirements for the new

control system. Some of these requirements will be

presented in this paper.

INTRODUCTION

 The user requirements shown in this paper were

gathered from the operations group at DESY. Good and

bad examples shown here are from the DESY control

room. Not all (bad) examples shown here are still in use

at DESY. Most of the rules proposed here can probably be

found in any software style guide (but who reads them?).

RULES FOR GOOD APPLICATIONS

Colors

About 9% of the male population can not distinguish

between red and green. Therefore, color coded

information should always be accompanied by text.

How many Buttons per Square Inch?
The “All in One” style with all information and all

buttons related to one topic on one application is often

problematic. Such applications show too much

information and to many functions in one application.

Operators often have a hard time to find what they are

looking for.

Using a number of “Pull down Menus” makes it

difficult to find the requested information, because a

search by trial and error is very time consuming.

A good tradeoff is the use of “Folders”, with the

information separated in folders and all relevant

information visible in each folder.

Expert’s Menus

Buttons for experts are dangerous and confusing during

normal operation but necessary for troubleshooting.

Expert’s menus should be hidden during normal

operation, but easy to access in case of trouble.

Labeling of Buttons
 The label on a button should always show its function,

not the status of the device attached to it. Additional

information about the status of the device is welcome, but

should be separated from the button.

Symbols
 Symbols on buttons or sliders should only be used, if

their meaning is well defined.

‘OLD’ Button
 If parameters are frequently used for (mostly fruitless)

optimization, an ‘OLD’ button is very useful. It sets this

parameter back to the value it had when the application

was started.

Size
 With many applications running on one screen, the

size of each application becomes a problem. Each

application should be scalable according to the users

needs. Scaleable fonts would be ideal.

Some applications can be of small size in normal

operation, but should offer more information in an

expanded version in case of a fault or for special

purposes.

 Feedback off

82

‘Look and Feel’
Often used applications should have individual

‘Looks’, so that the operator can distinguish between

them at a glimpse without reading the fine print. Rarely

used applications (e.g. archives) should all have the same

‘Look and Feel’ for easy use.

‘About…’

Every application should offer information about

- the software version number

- the date of the last change

- locations of the involved computers

- name and phone number of the author

- name and phone number of the people

responsible for the hardware driven by this

application (e.g. vacuum valves)

Optimization Plot

When a parameter like experimental background is

optimized, it is useful to see a plot showing the figure of

merit (experimental background) versus the tuning

parameter (orbit bump amplitude).

 Simplified Drawings

For some applications a simplified drawing of the

components involved can be helpful for the occasional

user.

Knobs vs. Sliders
Wherever fine tuning is required (luminosity,

background…), big round knobs are better than sliders.

Turning a knob fast for three turns and than slowly for

another 1/10 of a turn is easier than doing the same job

with a slider.

Different applications can be attached to the same

knob; a short text at the knob shows the actual function of

the knob.

A counter at the knob keeps track of the changes

applied.

Archives
All parameters should be archived at an individual rate.

The archive reader should plot them on the same time

scale. See the paper by Mark Lomperski in these

proceedings.

Miscellaneous Problems
If an operation takes time (e.g. heating up a thyratron),

show the timer on the screen!

Error messages should be as specific as possible (‘Error

41’ does not really help to cure the problem).

Cryptic abbreviations should be avoided.

Different applications should use the same word for the

same function (End, Stop, Exit, Close, Back,…).

Every application should be available on every console.

No application should require a different console type.

Conclusions
The operators don’t care if it is Visual Basic, Java or

something else, they want good application software.

Before new application software is being implemented,

the operators should be asked what they need and how

they need it.

Some of the best control room applications are those

made by operators.

A good way to help the controls group to understand

the needs of the operators is to let the controls group do

part time shift work.

83

OFF-LINE ANALYSIS GOES ON-LINE!

Mark Lomperski, DESY-MIN (NOT the Controls Group!), Hamburg, Germany

Abstract
With the increasing complexity of accelerators, operators

need all the help thay can get to analyze the available

information quickly and to make correct operational

decisions. Software tools for such data analysis often land

in the Off-Line Analysis category, written by and for

experts and which remain separate from On-Line

controls. Making these tools usable on-line requires

flexible controls software, good communication between

subsystem- and software-experts, and support from

management to give the necessary priority and time to

putting a (never completely finished) tool together. In this

report the importance of this aspect of controls will be

covered with selected examples from the central

accelerator control room at DESY.

THIS USER’S BACKGROUND

This user is a member of the DESY Scientist Shift-

Pool, a group of scientists which participates part-time

together with engineers and technicians to run the

accelerators at DESY. The members of the shift-pool only

do shifts part-time. This fact puts extra importance on

user-friendly console applications.

The continuous push for increases in performance and

efficiency requires better understanding of the accelerator,

which brings more and more data to the operators.

Software tools are important to help analyze these data.

Analysis may be needed in real-time, during operations,

by the operators. This is a challenge for a control system:

the search for optimum solutions for problems with

machine-physics, automation, controls, software. To help

the software group with these special tasks, I began to

write application software.

EXAMPLES OF ON-LINE ANALYSIS

To get things started, I give a few simple examples of

on-line data analysis in the DESY control room.

Beam Position Monitors (Orbit or Trajectory)
Beam position monitors are an important diagnostic in

most accelerators. Not only are the absolute values of the

positions of interest, but also the differences or changes

with respect to reference data. These references could be

measured together with the nominal data e.g. the

difference of the positions of two bunches in a bunch

train. The references could have been taken moments

before, before a correction coil setting was changed to

steer the orbit. The reference data could be a “golden

orbit” saved during optimal conditions, far in the past.

Thus the measurement of changes in beam position

depends on how the question is asked: namely, relative to

what? The console applications must allow for easy

selection of reference data types. An example of one of

the orbit-displays was shown in the talk. During

operations, we display absolute orbits and various

difference orbits, and monitor how these differences

change. Orbit corrections can be made using the console

applications to correct relative differences in any of the

display-modes.

Temperature Alarms
At high energy, the HERA electron beam produces

large amounts of synchrotron radiation which can hit the

vacuum chamber, heating it and producing leaks. During

the ramping procedure, many (>150) temperatures are

monitored and can automatically trigger a beam dump.

These temperatures are also monitored by the shift crew,

and with orbit-steering the light can be steered away from

sensitive vacuum chambers, reducing temperatures. At

the beginning of a ramp, the sensors have different initial

values and different alarm thresholds. For the operators,

the development in the temperatures is followed in

various ways: absolute temperature, changes with respect

to the initial value at the start of the ramp, and relative to

the alarm thresholds. The display program must allow the

operator to switch quickly between these different

display-modes. A console application which allows this

was shown in the talk.

This type of data scaling is used in the general archive

viewer programs.

Proton Beam Losses
The HERA proton beam must be dumped to protect the

superconducting magnets in the case that high losses are

detected. The causes of these losses are not always clear:

for example a trip of a technical system may not be found.

Due to the long fill-time (~2 hours) time is saved by

studying the losses before another fill is made.

To aid in the detective work, it is useful to analyze the

time structure of the losses (over what time scale have

they increased?) and the distribution around the ring

(localized in one area, or spread-out?). With 300

monitors, this task is tedious done by hand. An extension

of the console application for the loss monitors has been

written to search through the data: the user can select time

windows, and thresholds, to help select and analyze the

distribution in time and space. This application, with

input parameters for thresholds and time window, was

shown in the talk.

This type of functionality is also common for

applications which show status information. The user can

select a subset of the complete information. For example,

when a component trips, the status information is sorted

through, and ONLY the bits which are changed are

84

displayed. The other status bits, which still have an OK

status, do not need to be shown.

MY REQUIREMENTS FOR THE

CONTROL SYSTEM

Starting with these examples, one can characterize some

aspects of the console applications which are in use in the

accelerator control room at DESY.

Data Flow
Data for an application can come from various sources.

Live data can come from a front-end server or from a

middle-layer data server which may have the task to

calculate extra stuff. History Data can come from the

front-end, a middle layer, or from a central-archiving

system. Console applications need to be able to switch

between these sources, either automatically or by

command of the operator.

Data Manipulation

The console application must be written in a language

to allow data manipulation. Not all number-crunching can

be done in a middle layer. In the simple examples

discussed above, the subtraction of orbits and the scaling

of temperatures were described.

Graphical User Interface

The presentation of data analysis must be kept as clean

and user friendly as possible. This is a goal of any control

software. Data analysis makes console applications more

complicated, and so more effort must be made to produce

an application which helps guide the operators to where

they want to go.

For example, applications should be able to switch

easily between live data and history data – and these

choices are best integrated into a SINGLE program. A

decision which source of history data should be accessed

is made by first checking how much data is stored by each

source. If the central archive server has sufficient data,

then it is collected from there. This happens without

intervention by the user.

User Interface Development

The development of analysis applications never stops.

New questions arise, new data is made available, or

simply because the questions become clearer and the type

of answers can be refined. Analysis applications require

substantially more time for both discussions and for

programming before the end-product reaches a state

usefulness for the operators.

NEW DEVELOPMENTS IN CONTROLS?

These requirements and goals for control system

applications are apparently not universal.

Quick-Applications

I have heard buzzing (by Controls-Bees) at DESY

about new software “frameworks” which allow simple

browsing through control-system structures, with the

feature that one can “select” and “drop” these “objects”

into a displayer. I apologize if my software-vocabulary is

used incorrectly to describe this functionality.

The super idea, I guess, is to quickly and easily produce

graphical displayers for control system data. The “user”

only needs to “Drag ‘n’ Drop” or “Cut ‘n’ Paste” and

WOW! One has a console application!

In the DESY control room, there are VERY FEW client

programs which could be substituted with such a quick-

glue-together application. The applications are

“subsystem” oriented – and all required functionality for

the subsystem is built into this client. Applications which

ONLY do display with limited additional functionality are

rare. Such a “framework” would be useful for testing, but

that is about all, and can definitely not be a replacement

for a framework for more complex/flexible application

programming.

Expert-Programs

Something else which I have heard from Software-

Types is that certain projects are for “experts” and so lie

outside of the control-system.

It can be difficult to separate which applications are

necessary for operations, or useful for operations in a

pinch, or only required for use by experts. It is best for

operations to have as many software tools as possible

available for special functions. These tools should be

integrated into the control system; NOT be external

programs.

SUMMARY

The presentation layer is very important for the

operational efficiency of an accelerator. The accelerator

can have super hardware and gorgeous servers, but if the

presentation layer suffers, then the efficiency suffers. The

symptoms are not necessarily DOWN-TIME of the

accelerator, but DEAD-TIME of the operators as they use

time unnecessarily to squeeze information out of the data

in order to make decisions.

Accelerators produce large amounts of data and these

data need to be presented to the user in the most user-

friendly way possible. Complex software is required to

produce simple applications based on complex data.

With complex data, not all manipulations can be made

in a middle-layer: computations must also be possible at

the console level.

 Sophisticated software is required to produce simple

applications based on complex data. New ideas about

“drag and drop” clients can be useful only for test

purposes, not for final clients used for operations.

85

Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government

retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government

purposes.

 A Users Perspective

Isadoro T. Carlino, Jefferson Lab, USA

Introduction
Industrial design is not a subject that is often

associated with computer programming in

general and control system design in particular.

Yet the principles of Industrial design have

driven the design of analog controls from the

beginning. From the shape and placement of

breaker controls on a power distribution system

panel to the array of lights on an alarm display

panel the influence of industrial design in the

analog world is easy to see.

In the digital world we have made the leap

away from the constraints imposed by analog

controls, yet the influence of the limitations and

paradigms of the analog world continue to carry

into the digital world. That is as it should be.

Many of these principles are based on human

needs, rather than analog limits.

Jefferson Lab Overview
The accelerators and support systems at

Jefferson Lab (JLab) support science at three

main experimental halls in the Continuous

Electron Beam Accelerator Facility(CEBAF) and

a number of laser experimental halls at the Free

Electron Laser (FEL). A Central Helium

Liquefier (CHL) provides cryogens for these

facilities. The control system used is EPICS.

At Jefferson Lab control system users can be

divided into distinct groups, each with their own

needs. Operations staffs at the CEBAF

Accelerator, CHL and FEL. Experimenters at the

experimental halls. System experts in the support

staff, mostly technicians and engineers.

Accelerator physicists, who often require a wider

view than system experts and a deeper view than

operations. The needs of each group are

different, and must bow to the principles of

usability. This paper will concentrate on the

needs of operational users.

Limitations
One of the limitations of the digital control

system is that control feedback is the

responsibility of the software designer. With

analog controls position is often a cue to state.

Sound is sometimes an indicator of change of

state. All such visual/audible feedback must be

deliberately implemented in a digital control

system.

Perspectives
The user perspective is colored by the

environment. The control room environment is

complex. Unlike the system expert, who

typically concentrates on a single system, device

or limited set of objects, the operator must

monitor a large variety of different systems.

Operators are jack-of-all-trades and not

generally system experts. They also do not

typically have the luxury of becoming experts in

the detailed operation of all accelerator systems.

Conversely they often have a greater knowledge

of the interaction of systems in a real world

setting than experts who are concerned with the

operation of a single system.

Because of their limited knowledge of

individual system operation and the fact that they

often have to operate a system only in a severely

limited operational envelope operator controls

are often made up of a distinct subset of expert

tools. At JLab this often means control screens

with specific controls relevant to particular beam

states or operational conditions and controls

from multiple systems group together on a single

panel to support a specific beam evolution.

Unlike system experts, accelerator physicists

often operate devices from many systems,

analyzing the responses of the accelerator

monitoring devices in complex ways, with the

goal of improving machine operation. Often

these measurements or machine optimizations

can be distilled down to a set of steps or actions

which can then be performed by a less

knowledgeable individual by encapsulating it to

a tool which can perform the procedure. At JLab

a variety of such tools are implemented; some

written in C, others in C++, many in tcl/tk, and

some at the EPICS ioc level, using State

Notation Language, or the EPICS database. An

important consideration for the designer is that

from the user’s perspective the language/system

of the implementation is irrelevant.

86

.

Human Machine Interface
At JLab there are no less than 8,000 EDM

control panels, of which 3,000 are easily

accessible to the control room staff. Of this

number they regularly use no more than several

dozen. Many of the others will only be used by

the operations control staff when there is a

problem. If the colors, layout and design of these

screens are not consistent the staff will have

difficulty interpreting the information on them. It

is quite common for a screen to be used only

during accelerator optimization and steer-up, a

process which happens only two or three times a

year. Due to the nature of rotating shift work it is

quite common for a particular operator to be

required to use a screen with little or no prior

exposure. Consistency of design is once again a

vital component of use.

Colors

Color is a very traditional way to

differentiate fields on a GUI interface. At JLab

we have standardized on a cyan background for

control devices. As can be seen in Figure

1:Frequency Control EDM Screen, control

devices, independent of their widget type are

colored cyan. Text read back fields of all types

are dark blue with white writing. One of the

benefits of these two color combinations is the

ability to differentiate control text fields from

read back text fields on a screen shot printed by a

black and white printer.

Figure 1: Frequency Control EDM Screen

Device status is most typically designated by

the traditional use of red/yellow/green. Green in

our case is a status which will allow accelerator

operation with red indicating a problem. Yellow

typically indicates when a device, such as a

valve, is neither opened nor closed. The addition

of text makes it possible to determine status even

for those with problems differentiating color.

On expert screens we sometimes use other

colors to designate controls of special

importance, usually gold, but sometimes

red/green. Color coding is not used exclusively

on edm screens. Tcl/tk tools follow the standard

pattern as can be seen from figure 2.

Figure 2: tcl/tk Lock Screen

Screen Sets

Screens at the CEBAF machine are made

available from the Accelerator Main Menu,

Monticello (figure 3).

Monticello is divided into a

main section, based on

area/function, and a

subsystems section based on

system. Screens in the

area/function section primarily

consist of panels which display

the status of devices from a

specific location, or screens

used to perform a specific

procedure. The gold buttons

open the single screen from the

set which is which is used most

often, typically the highest

level screen of a system.

 Figure 4.

Figure 3.

The Hall A

Cryotarget cool

down/warm up

panel (figure 4)

illustrates a

screen designed

to perform a

specific

procedure. Note

87

.

that devices are positioned in a logical order so

that an operator following the procedure will

advance down the screen. A link is available to

the written procedure and a related screen button

is present to open the menu leading to the

approximately thirty expert screens of the

systems tangential to this procedure. The

operator sees only the controls and indications

necessary to accomplish the task.

Widgets

It is important that widget function naturally

correspond to device operation. For example,

superconducting RF cavity gradients typically

operate at a fixed setting. For an engineer’s

standpoint a simple text control field would be

sufficient to set RF gradient. However,

operational experience shows that cavities

sometimes fail to maintain gradient, a state

known as cavity SOS’ing. Operator response is

to de-rate the cavity temporarily by stepping

down the gradient, allowing the cavity to

stabilize and then returning the cavity gradient to

the original setting. A simple text field is not the

best type of control to perform this operation. A

slider, which has a controllable step size, is a

much better tool for this task.

Complicated activation sequences should be

reserved for cases where the ramifications of

inadvertent operation have a high penalty. For

example, accidental opening of beamline

vacuum valves in the vicinity of an RF zone

could result in dire problems should the system

be opened for maintenance. Such valves require

a confirmation from the user after the open

command is given (Figure 5 SRF valve). Even in

this case a combined control is provided, because

in normal operation it would be onerous to

require the user to confirm the operation of a

dozen valves individually.

Figure 5: SRF Valve Control EDM Screen.

Screen Displays

Just as users needs are different the display

environment of each group of users is different.

While most users at JLab use single or double

headed display monitors, users in the control

room operate from triple headed monitors. They

also have a 16 ft by 6 ft display screen in front of

the control room, as well as 4 by 2 status display

LCD and plasma monitors. Screens which would

be impractical to use on a standard 21” monitor

are very usable when displayed on a display

wall. For example, while it is impractical to

display much more than a single arc of beam

position indication on a single monitor a

complete beam pass of the 5 pass machine can

easily be displayed on the display wall.

Constraining operational users to small screens

because others are so constrained is not optimal

design.

Alarm Handling
Because of the complexity of the control

room environment it is unrealistic to expect

operations staff to monitor the status of tens or

thousands of system parameters. Such

monitoring is best done by an alarm handler.

Many kinds of alarm system paradigms are

possible. At JLab we use a central alarm handler

for most systems. This standard EPICS software

has both audible and visual cues when an alarm

is active. The system is logically organized based

on area. This replaced an older systems based

alarm setup, which while it made sense to the

system experts who created it, did not make

sense to the operational users who actually used

it.

We also use a separate system for fire,

oxygen deficiency and radiation. This system, is

run by a PLC which triggers an audible alarm as

well as a flashing LED for each alarm type. Fire

alarms are further annunciated using a flashing

strobe light. An MS Windows based fire alarm

monitoring system supplements this system,

88

.

giving more detail to assist in fire investigation.

The screens are geographically based, showing

the user the location of the alarm on a floor plan

of the affected building. Once again information

is display in a manner that allows a user who is

only peripherally familiar with the system to use

the software.

Expert Systems
An example of an application that

encapsulates the knowledge of a system expert is

the Injector Setup tool (figure 6.) This software

allows an operator to setup the CEBAF injector,

a procedure which originally required an injector

expert. The tool has links to procedural help as

well as help for the tool itself. The operational

user moves down the screen in a logical order to

complete the procedure. Buttons either perform

setup actions directly or open other tools or

EPICS control screens to allow individual steps

to be completed. Automatic entries to the

electronic logbook are made by the software,

ensuring consistent entry of information.

Figure 6.

From a users perspective this software

embodies all of the best of user friendly design

principles. The purpose of each step is explained.

Tools are readily available to the user. The order

in which the steps must be performed is obvious

to the user. The use of this tool requires an

overall knowledge of the accelerator, but does

not require that the user be an expert in the

Injector systems that are being configured.

Summary
The user is often the most overlooked

component of control system design. For

operations users the complex control room

environment requires that tools be consistent.

Language/System is irrelevant to the operations

user. Usability is the most important factor to the

operational user. The many considerations

necessary include audio, visual, and Human

Machine Interface parameters. These include

procedural and help interfaces and logical screen

design. They sometimes encompass factors

outside the conventional program design

paradigm to include analog annunciators. All of

these factors effect the user experience.

89

A PROTOTYPE OF A BEAM STEERING ASSISTANT GUI TOOL FOR

ACCELERATOR OPERATIONS

M. Bickley and P. Chevtsov, Jefferson Lab, Newport News, VA 23606, USA

Abstract
The CEBAF accelerator provides nuclear physics

experiments at Jefferson Lab with high quality electron

beams. Three experimental end stations can

simultaneously receive the beams with different energies

and intensities. For each operational mode, the accelerator

setup procedures are complicated and require very careful

checking of beam spot sizes and positions on multiple

beam viewers. To simplify these procedures and make

them reproducible, a beam steering assistant GUI tool has

been created. The tool is implemented as a multi-window

control screen. The screen has an interactive graphical

object window, which is an overlay on top of a digitized

live video image from a beam viewer. It allows a user to

easily create and edit any graphical objects consisting of

text, ellipses, and lines, right above the live beam viewer

image and then save them in a file that is called a beam

steering template. The template can show, for example,

the area within which the beam must always be on the

viewer. Later, this template can be loaded in the

interactive graphical object window to help accelerator

operators steer the beam to the specified area on the

viewer.

INTRODUCTION

 The CEBAF accelerator provides nuclear physics

experiments at Jefferson Lab with high quality electron

beams. High quality of the beam means its precise

position on a target, almost ideal gaussian profile, and

very small (~2
.
10

-5
) relative energy spread. All of this is

extremely important for the nuclear physics program at

Jefferson Lab to advance human understanding of the

atom’s nucleus.

 Visual beam quality control at Jefferson Lab is done

with the use of two different types of beam viewers:

“classic” and “direct light” beam viewers.

 “Classic” beam viewers require thin luminescence

screens (for conventional viewers) or carbon foils (for

optical transition radiation monitors or OTR) to be

inserted in the beam. As a result, the “classic” viewers

are invasive and can only be used at relatively small beam

currents.

 “Direct light” beam viewers at Jefferson Lab are

synchrotron light monitors (SLM) and synchrotron light

interferometers (SLI). They are based on the use of

synchrotron light generated by relativistic electrons

Notice: Authored by The Southeastern Universities Research

Association, Inc. under U.S. DOE Contract No. DE-AC05-84150. The
U.S. Government retains a non-exclusive, paid-up, irrevocable, world-

wide license to publish or reproduce this manuscript for U.S.

Government purposes.

moving in the magnetic fields of dipole magnets. The

“direct light” beam viewers are absolutely not destructive

(not invasive) for the beam.

 The resultant beam images from the viewers are

captured by TV cameras and displayed in the accelerator

control room on the main control display wall as well as

on numerous TV screens all over Jefferson Lab. The TV

signals are also fed into pipelined high performance

image processing systems Maxvideo 200 [1]. The main

advantage of the pipeline technology is that the pixel

manipulation can be done while the image is being

digitized and directed to the image memory. As a result

basic image processing operations can be implemented at

the full 30 Hz frame rate of the standard NTSC video

signal.

MAXVIDEO APPLICATIONS IN

ACCELERATOR CONTROLS

 All beam image analysis applications at Jefferson Lab

are based on the information provided by Maxvideo

systems. The systems run a large amount of control and

image processing software that has been continuously

updated to meet the needs of accelerator operations. The

software routinely performs such important functions as

masking the pixels outside of the region of interest,

subtracting a background image, estimating the transverse

RMS beam size and many others. Beam characteristics

together with the digitized beam images are entered into a

control system database that makes them available for any

application running on the accelerator control computer

network.

 A large variety of high level applications (these

applications usually run on workstations) and scripts

created at Jefferson Lab, based on Maxvideo systems,

allow the users, for example,

 - to have a live beam image from any viewer on a

monitor of any computer or X terminal connected to the

accelerator control network (we call this X-windows

application a “beam movie”);

 - to make a snapshot of any beam image, publish it in

an electronic logbook [2], and save it in a file for future

reference;

 - to calculate the beam energy spread on the basis of the

SLI interference pattern and data model as well as to

estimate the calculation errors and the data model

reliability [3].

 Beam image analysis applications significantly simplify

beam tuning and diagnostics tasks for the accelerator

operations specialists and contribute to very high beam

availability for nuclear physics experiments at Jefferson

Lab.

90

 At the same time, adding to these applications some

functions, which are not typical for “classic” accelerator

control software, can significantly increase this

contribution.

 For example, consider CEBAF accelerator setup

procedures. For each machine operational mode, these

procedures are very complicated and require extremely

careful checking of beam spot sizes and positions on

multiple beam viewers. It would be very helpful to have a

graphical application that allows the accelerator

operations crew to draw simple geometric objects right on

top of a live viewer beam image. Such a drawing can

show, for instance, the area within which the beam must

always be (or not be) on the viewer and become a beam

steering template. Once created and saved in a file, such a

template can later be used as a reference picture for

steering the beam to (or out of) the specified area on the

viewer.

Figure 1: Monitoring screen of the Beam Steering

Template Designer application.

 If we look for commercial and non-commercial painting

software packages available in the market then we find

that some of them allow for drawing graphical objects

directly over the frames in video sequences. The effects

of the use of these packages are amazing. For example,

the CinePaint tool [4] was used on The Last Samurai

feature film to add hundreds of flying arrows to a battle

scene. The main problem is to integrate any of these

packages in the control system environment. It is evident

that this problem is much more complicated than creating

a relatively simple drawing tool as a part of the existing

accelerator control and video image processing systems.

A prototype of such a tool was created at Jefferson Lab in

few weeks. We call it a Beam Steering Assistant Tool.

BEAM STEERING TEMPLATE

DESIGNER APPLICATION

 The main purpose of the Beam Steering Template

Designer application is to create and save beam steering

templates for each beam viewer and each machine

operational mode. The application provides a user with

two information windows: a monitoring screen and a

control panel.

 The monitoring screen (Fig. 1) has an interactive

graphical object window, which is an overlay on top of a

digitized live beam viewer image. With the use of a

computer mouse, one can easily create and destroy simple

color graphical objects in this window. The default object

color is magenta. It can be changed when the application

starts. The upper left corner of the monitoring screen

shows the name of the beam viewer that is currently being

used in accelerator operations.

 Object manipulations in the interactive graphical object

window are handled by the control panel (Fig.2). The

panel has information about all functions implemented in

the Beam Steering Template Designer application.

Figure 2: Control panel of the Beam Steering Template

Designer application at its startup.

Figure 3: Control panel at work.

 When the Beam Steering Template Designer application

starts, its control panel looks exactly like one represented

in Fig. 2. The bottom part of the panel shows that at this

point one can draw ellipses and lines as well as erase

created graphics in any area of the window or in the entire

window at once.

 One can also save graphical objects in a file and load

previously created graphics or a beam steering template

from a previously saved file. The central status line shows

the operation that is currently active. The upper left part

of the panel informs the user about what can be done for

each active operation or how to activate graphics.

 The Beam Steering Template Designer is very easy to

use. For example, to draw an ellipse above a live image,

you have to press the “draw ellipse” button on the control

panel. The panel immediately responds to this command

providing the information about what you are going to do

91

(“ACTIVE OPERATION: DRAW ELLIPSE” in this

case) and how to do it (see Fig. 3 for details).

 We note that, for example, each ellipse is drawn by

positioning a mouse pointer at its future center and then

dragging the pointer to get the required shape and size.

This allows for easy creation of graphical objects with the

reference to the beam spot locations on a viewer as it can

be seen in Fig. 1.

 The software that handles the information windows of

the Beam Steering Template Designer is written in C++.

It consists of two threads running simultaneously: a main

thread and an information thread.

Figure 4: Main information screen of the Beam Steering

Assistant application.

 The information thread continuously updates the beam

viewer images (provided by the Maxvideo systems and

control system database) in the graphical object window.

It also takes care of the name of the currently used

(active) beam viewer, which is shown in this window.

Information about active viewers and beam viewer images

is a part of the control system database at Jefferson Lab.

 The main thread of the software implements the user

interface. It handles all the functions of creating and

destroying graphics in the graphical object window as

well as saving created graphical objects as a beam

steering template in a file and loading previously created

templates in the window.

 Once created and saved, each template can later be used

to reproduce the accelerator mode for which this template

was created by steering the beam to the specified area on

the viewer. We note that for this job the graphics

functions of the Beam Steering Designer are not used at

all. That is why a light version of this application was

created. We call it a Beam Steering Assistant application.

BEAM STEERING ASSISTANT

APPLICATION

 The Beam Steering Assistant application has only one

information window, shown in Fig. 4. During the startup

the application requests the information about the beam

steering template for the active viewer to use (the default

is the last created) and the color to draw this template (the

default is magenta) on top of a video image.

 The software handling the information window is

written in C++ and consists of two threads: a main or

viewer image thread and a viewer name thread.

 The main thread continuously refreshes beam viewer

images in the information window on the basis of the

Maxvideo data.

 The viewer name thread takes care of the name of the

active accelerator beam viewer, which is shown in the

upper left corner of the information window. When the

active viewer changes, the application updates this name

and loads the last created template for this viewer.

 In the latest version of software, before loading a

template the application pops up an additional small

window containing the list of all templates available for

this viewer and asks users to choose one. This makes it

much easier for users to switch to any desired accelerator

mode on the fly.

CONCLUSION

 A prototype of a Beam Steering Assistant tool created at

Jefferson Lab is an example of implementing some “non-

typical” functions in control and data processing systems.

The tool, which looks like a simple computer entertaining

program allowing users to draw various graphical objects

over live TV images, can have a positive impact on

accelerator operations. In particular, it can help simplify

accelerator setup procedures and make them reproducible.

 REFERENCES

[1] P. Chevtsov, “Multivideo Source System for Beam

Diagnostic Applications” PCaPAC-2000. DESY.

Hamburg. Germany. 2000.

[2] T.Larrieu, T. Mcguckin, “Beyond an Electronic

Logbook”. PCaPAC-2005. Hayama. Japan. 2005.

[3] P. Chevtsov, “Automated Image Quality Optimization

for Synchrotron Light Interferometers”, ICALEPCS

2005, Geneva, Switzerland, 2005.

[4] www.cinepaint.org

[5] www.trolltech.com

92

APPLICATIONS OF INTEREST:

A RELATIONAL DATABASE APPROACH TO MANAGING

CONTROL SYSTEM SOFTWARE APPLICATIONS*

D. Quock
#
, N. Arnold, D. Dohan, J. Anderson, D. Clemons, ANL, Argonne, IL 60439, U.S.A.

Abstract
Large accelerator facilities such as the Advanced

Photon Source (APS) typically are operated by a diverse

set of integrated control systems, such as front-end

controllers, PLCs, and FPGAs. This type of control

system structure encompasses numerous engineering

documents, distributed real-time control system databases,

source code, user displays, and other components. The

complexity of the control system is further increased as

the life cycle of a control system is never ending, change

is constant. And the accelerator itself generates new

operational problems on a regular basis. This overall

controls environment begs the question of how best to

provide a means for control system engineers to easily

and quickly troubleshoot unique functions of the control

system, find relevant information, and understand the

impact of changes to one part of the control system on

other applications. The answer to this question lies in

being able to associate pertinent drawings, manuals,

source code, hardware, and expert developers in an

efficient and logical manner. Applications of Interest is a

relational database software tool created for the purpose

of providing alternative views of the supporting

information behind each distinct control system

application at the APS.

IRMIS

 The foundation for the Applications of Interest (AOI)

project is the collaborative effort between several

Experimental Physics and Industrial Control System

(EPICS) sites to build a common relational database

(RDB) schema for documenting large and complex

particle accelerator control systems. The result of this

collaborative effort is the Web-based relational database

software application Integrated Relational Model of

Installed Systems (IRMIS) [1]. At the Advanced Photon

Source, IRMIS is a collection of Java, PHP, and Perl tools

that search and populate a MySQL relational database.

The IRMIS database stores information about

programmable control devices such as EPICS IOCs and

programmable logic controllers (PLCs), and the process

variables and interconnecting hardware shared among

these devices. To enable intuitive and quick access to

control systems information, the user interface for IRMIS

is organized into the separate viewers: IOC, PLC,

Component Type, Network, Controls Spares, PV

Information, Installed Components, Cables, and

Applications of Interest. Access to the IRMIS viewers is

from the IRMIS main display as shown in Figure 1.

Interactive links from one IRMIS viewer to another are

provided where appropriate.

Figure 1: IRMIS Main Display.

APPLICATIONS OF INTEREST

The motivation for creating an Application of Interest

view of the controls system at APS was to provide a

means for establishing a starting point for control systems

developers to navigate through the various pieces of

distinct controls systems applications. Examples of

distinct control system applications viewed in this manner

at APS include the storage ring vacuum control system,

storage ring vacuum bakeout system, linac water leak

detection system, and linac timing system. Over 130 AOI

control systems have been cataloged thus far, and it is

expected that this number will exceed 300 when the

controls system for the entire APS site is fully

documented.

AOI Attributes

To characterize each Application of Interest control

system, several basic attributes are defined by control

system developers and stored in the IRMIS relational

database (see Table 1). These attributes are entered

through an AOI Editor Web-based display built in PHP

(see Figure 2). Other attributes of an AOI are

automatically discovered or generated by an AOI Crawler

and include EPICS process variables, user-programmable

components (UPCs), and EPICS IOC startup command

lines that support the particular application.

*Work supported by the U.S. Department of Energy, Office of Science,

Office of Basic Energy Sciences, under Contract No. DE-AC02-

06CH11357.
#quock@aps.anl.gov 93

Table 1: AOI Attributes Defined by Controls Developer

Attribute Example

AOI Name aoi_sr_mps_system_latch-card

Cognizant 1 Marty Smith

Cognizant 2 Ned Arnold

Customer

Group

Controls

Criticality 2 Equipment or Beam Inhibit Risk

Description The latch cards are installed in 20 VP

IOCs around the ring.

Status Active

Functional

Criteria

A validation procedure confirms the

functionality of the system after every

shutdown.

Keywords MPS, latch card, beam inhibit

Notes Request was made to Operations Group

on 10/29/06 to add list of process

variables to dump data printout

following an MPS trip.

EPICS

Top

Displays

- /usr/local/iocapps/adlsys/srbpm/

miscApp/mainMPS.adl

- /usr/local/iocapps/adlsys/sr/mpsApp/

MPS-latchMasterPanel.adl

Revision

History

Storage ring MPS latch card

consolidation project began April/May

2006 shutdown. New EPICS sequence

program was installed for sectors 1

through 14, and 35 through 40.

Documents ICMS

The AOI attribute AOI Name is the main crux behind

linking the AOI Viewer to other APS documentation

software applications such as the IRMIS viewers, the APS

Integrated Content Management System (ICMS), and the

Controls Logbook. By implementing a strict naming

convention for AOI names, the AOI name can be used to

quickly locate pertinent engineering documents (located

in the ICMS repository), search reported troubleshooting

measures (located in the Controls Logbook), and trace

closely associated AOIs (located within IRMIS).

A two-level hierarchy relationship of parent-child is

used to identify closely associated AOIs. This follows

from the object-oriented design concept of inheritance.

Here, a child AOI is a specific instance of a parent AOI,

but the children of a given parent may have a wide variety

of differences that make them distinct from each other.

An example of this at the APS is the parent AOI:

aoi_linac_diagnostics_flag

and its children AOIs:

aoi_linac_diagnostics_flag_fs-1

aoi_linac_diagnostics_flag_fs-4

aoi_linac_diagnostics_flag_fs-7

aoi_linac_diagnostics_flag_fs-9

In this example, fs-# refers to a unique flag station

number located in the linac.

The benefits of having a parent-child relationship for

AOIs (when suitable) is to aid in searching for the desired

amount of detail of a specific control system application.

A parent AOI will provide information on broadly defined

EPICS displays, engineering specifications, revision

history, etc. In other words, the view provided by the

parent AOI gives an engineer a quick and general overall

understanding of the controls system at hand. The child

AOI provides information on and links to more detailed

information specific to that installation and operational

issues.

The AOI name is derived from a carefully defined set

of fields as follows:

aoi_<machine>_<technical system>_<unique function>_<child>

The fields “machine” and “technical system” are defined

in tables in the IRMIS database and are specific to the

APS site. The “unique function” and “child” fields are

free text entry defined at the discretion of a controls

developer’s expertise of a particular control system. The

“child” field is optional and depends on the complexity

and inheritance nature of a controls system application as

explained above. Each AOI name is forced to be distinct

by the AOI Editor and is a requirement built in the IRMIS

database.

 The AOI attributes Criticality and Status are predefined

lists located in the IRMIS database. They are included in

characterizing an AOI in an effort to aid management

when identifying control systems that are of higher

operational priority for assigning engineering staff,

enforcing thorough documentation, and tracking

development and upgrades of AOIs. The levels for

Criticality range from 1 to 5 with 1 being the most severe.

The AOI Criticality choices are:

1. Personnel Risk [e.g., Radiation Safety System]

2. Equipment or Beam Inhibit Risk

3. Beam Performance Risk

4. General Operations

5. R&D [e.g., Test Stand]

The options for AOI Status are: Active, Inactive,

Decommissioned, Under Development, and Other. The

remaining AOI attributes are self explanatory and are

shown with examples in Table 1.

AOI AT WORK

To better appreciate the usefulness of the Applications

of Interest IRMIS viewer, a real-life accelerator

operations troubleshooting example will be walked

through here. Consider the situation where an operator

receives an alarm on a Machine Protection System (MPS)

fault on a weekend, and the fault occurs only once and is

not reoccurring. Given that there are 800 input signals to

the storage ring MPS latch cards at APS, it can be a

daunting task for the operator to determine easily if an

94

Figure 2: AOI Viewer.

operating set point was actually exceeded, or if one of the

latch cards or its associated cabling caused an erroneous

trip of the MPS. The operator notifies the controls system

engineer on call for the weekend, and thus passes on the

task of identifying the underlying cause of the MPS fault,

and the possibility of further disruption to the beam

delivered to users. And it just happens that the engineer on

call this weekend is not the MPS expert.

The engineer uses the best tool available for rapid

controls system troubleshooting -- Applications of

Interest. Through her Web browser, she launches the AOI

Viewer and decides to use the AOI Search selection bar

for efficiently narrowing down available documentation

resources pertinent to the situation. As shown in Figure 2

above, by selecting MPS from the drop-down Technical

System category of an AOI as the sole search criteria of

the IRMIS database, four AOIs are returned as a result set.

Of the four AOIs, all have the technical system MPS

included in their name. One of the children AOIs has

latch-cards as the child name field. Information on this

specific AOI is then just one click away. By selecting the

child AOI aoi_sr_mps_system_latch-cards (as shown on

the left side of Figure 2), all of the attributes for this

specific AOI are displayed (see Table 1) including recent

information about changes made to this control system

application, which EPICS displays to use for viewing

real-time readbacks of MPS latch cards, and which IOCs

are associated with each storage ring sector and, thus,

each latch card. Other IRMIS viewers can then be used to

trace cabling and other hardware associated with an IOC.

In conclusion, the IRMIS viewer Applications of

Interest enables intuitive and quick access to control

system information that is needed for troubleshooting

operation issues, training engineers, managing controls

staffing requirements, and tracking development and

upgrades to control system applications.

REFERENCES

[1] C. Saunders, D.A. Dohan, and N.D. Arnold, “The

IRMIS Object Model and Services API,”

ICALEPCS’05, Geneva, Switzerland, October 2005.

[2] D.A. Dohan, N.D. Arnold, “IRMIS,”

http://www.aps.anl.gov/epics/irmis.

95

ACCELERATOR MANAGEMENT WITH WEB-BASED GIS

A.Yamashita, Y.Ishizawa, T.Ohata, M.Takeuchi, SPring-8,Sayo, Hyogo, Japan

Abstract

We are developing accelerator management systems
based on Geographic Information System (GIS). An open
source GIS system, MapServer, integrates almost every
location related information around SPring-8 accelerator
complex. Users enjoy its Google-map like functions,
zooming and panning, in their web browsers. MapServer
accepts various kind of data format and data sources. It
reads vector and raster, JPEG to CAD data, filesystem and
relational database management system. Not only static
data like equipment location, the system also handles dy-
namic real-time status of accelerator components. We build
two systems. One is SPring-8 equipment management sys-
tem and another is SCSS (SPring-8 Compact SASE source)
alarm system We will discuss the development of those sys-
tems.

INTRODUCTION

The google map [1] impressed us by its smooth map han-
dling. It implements zoom and pan on web browsers using
Ajax technique. It also displays informations linked to map
coordinates. We wish to haveGoogle map for SPring-8.
Because SPring-8 is a large facility and we have many dis-
organized data which should be liked to their location.

SPring-8 has been operating since 1997. The mainte-
nance history such as repairing and replacing equipment
have been recorded by individual persons. Those informa-
tions are stored in Excel files or text files in distributed in-
dividual personal computers. Those disorganized data are
sources of confusion in every-days operation.

The pioneering research of T.Larrieu et al. presented
at ICALEPCS2005 [2] inspires us to use GIS (Geographic
Information system) to organize those equipment informa-
tions linking with their location in SPring-8. We found very
few other projects which uses GIS for small area, like ac-
celerator facilities. [9]

GIS

GIS has wide variety of definition. The Wikipedia [4]
defined GIS as follows.

A geographic information system (GIS) is
a system for creating, storing, analyzing and
managing spatial data and associated attributes.
In the strictest sense, it is a computer sys-
tem capable of integrating, storing, editing, an-
alyzing, sharing, and displaying geographically-
referenced information. In a more generic sense,

GIS is a tool that allows users to create interac-
tive queries (user created searches), analyze the
spatial information, and edit data.

We began to study to use integrating, storing and dis-
playing functions of GIS.

Requirements

We required following conditions for the GIS system.

• Web based display client and server system.
• Open source.
• Handle CAD data we already have.
• Easy to manage both creating application and data

maintenance.

MAPSERVER

We choose MapServer [3] satisfying those requirements.
Many commercial products match to above conditions
except open source. A few projects in open source.
MapServer was originally developed at University of Min-
nesota for managing forest resources. It integrates various
image format, vector and raster and attributes in text for-
mat and relational databases. It is becoming very popu-
lar in GIS community. Two books have been published on
MapServer [6], [7] in United States. One book was trans-
lated in Japan [8]. We do not explain details of MapServer
functions here. Rich number of informations available
from Internet and those books.

MapServer system provides only functions, called Map-
Script, which receives request parameters such as coordi-
nates, display areas, layers, etc. and generates temporary
image file. User can build applications on it. The applica-
tion is not necessary web application, but also standalone
application. MapServer has APIs for many languages like
PHP, perl, Python, Java and Tcl/Tk. Many products have
been implemented on MapServer API1.

SYSTEM DEVELOPMENT

We have been developing two systems for SPring-8
equipment manager and SCSS test accelerator [10] alarm
display system. The common system architecture is shown
in Fig. 1. We build both systems based on p.mapper [11]
a system for web browsing client written in DHTML and
server written in PHP/MapScript. We chose p.mapper from
wide variety of selections because of its rich functions.

1For example, http://www.maptools.org/ site has list of MapServer ap-
plications.

96

The MapServer is able to run in multi-platform. We
developed systems on a Windows 2000 machines. We
checked it was running on Linux server without any mod-
ifications. P.mapper client is written in Javascript taking
account of incompatibility between Internet Explorer (IE)
Mozilla browsers. We tested our systems on IE, Mozilla
Firefox and Opera browsers.

1. A user sends requests from a browser application writ-
ten in DHTML.

2. The http server sends cgi command to the p.mapper
server written in PHP.

3. The p.mapper server make API call to the MapServer.

4. A configuration file for MapServer organizes data files
and RDB data.

5. MapServer reads image data and attribute data from
data files or RDB servers using the mapfile.

6. MapServer generates temporary image file to display
in the browser.

Http server

p.mapper
 server

Mapserver

mapfile

shape file databaseimage file

1,6

2,6

3,6

4,6

5

Figure 1: MapServer system

Figure 2: Screenshot of SPring-8 equipment management
system.

Data Sources

We converted CAD data files to MapServer readable
shape files format both systems, because MapServer can-
not handle CAD data directly. We used fGIS [5], a free
application, to convert AutoCAD .dxf file formats to shape
file format. At first, we removed unwanted data from origi-
nal CAD data by hand and converted to shape file. fGIS ex-
ports separated shape files for polygon , line, multi-line and
point layers. We use polygon and line layers. We stored a
part of polygon data into RDB to link to other data. Most
of layer data are saved as shape file format because of the
access speed. Mapfile integrates them to generate map im-
ages.

SPring-8 equipment manager

We build SPring-8 equipment manager to manage equip-
ment distribute in SPring-8 site. Currently, the system man-
ages VME system and PLCs’. The system manages follow-
ing items.

• VME and PLC location
• Slot management of VME.
• Maintenance history and plan of VMS and PLC

A ProtgreSQL relational database server manages those at-
tributes. The system groups VMS and PLC and displays in
different layer on the map. User can select layers by but-
tons displayed on web browsers. P.mapper provides other
rich functions like distant measurement, hyper link from
icons on the map, zooming using DHTML function, refer-
ence map and etc.. A screenshot of the equipment manage-
ment system is shown in Fig. 2.

SCSS alarm display system

We use GIS system for real-time and dynamic display
of the data. SCSS successfully observed the first lasing in

97

Figure 3: Screenshot of SCSS alarm system

June 2006. We applied standard SPring-8 alarm system[12]
to monitor SCSS equipments. It monitors data which were
acquired periodically from SCSS and writes alarm data
to the SPring-8 control database when unusual data were
discovered. We developed graphical alarm display sys-
tem to display the name and location of alarmed signal
on the interactive map. A database client process period-
ically reads alarm data from the database and writes alarm
file for MapServer. The alarm file contains name, loca-
tion and alarm level of alarmed signal in the GML (Geog-
raphy Markup Language) file format[13]. The client pro-
gram running on the browser periodically reloads map im-
age from the http server without reloading entire web pages
using Ajax techniques. This system also employs shape file
converted from CAD .dxf file as base data. Alarm system
monitors 686 signals of SCSS. Because we have no time
to enter location of each signals to database. We divided
map into 26 areas and make signals belongs those area.
The alarmed signals are displayed in the area on the map.
Screenshot of the SCSS alarm system is shown in Fig. 3.

Development

After we decide to develop a system using MapServer,
it took about one man month to build the equipment man-
ager. Most of the time was spent to understand mapfile.
In addition, at the beginning we have very little knowl-
edge on PHP and Javascript. One month includes learn-
ing those languages. On the other hand, the development
of SCSS alarm system was straightforward. We developed
the system only one week. After we learned how to use
MapServer the development became quite easy. However,
entering data points takes much man power. After enter-
ing VME and PLC data, data entry for other equipment is
under way.

CONCLUSION AND FUTURE PLAN

We developed two google map like web based map sys-
tem for our facility. Open source products MapServer pro-
vides easy way to develop and integrate data distributed
around into one map system.

We are now developing easy data entry system for ev-
erybody enters location and upload their text data, photo,
drawings from their browser. It reduces data entry tasks
which is considered to the biggest problem in GIS.

REFERENCES

[1] http://maps.google.com

[2] T. Larrieu et al., “Evaluating the Potential of Com-
mercial GIS for Accelerator Configuration Management“,
ICALEPCS 2005, Oct 2005, Geneva.

[3] http://mapserver.gis.umn.edu/

[4] http://en.wikipedia.org/wiki/Gis

[5] T. Mitchell, “Web Mapping Illustrated“, Oreilly, Jun 2005,
Sabastopol.

[6] B. Kropla “Beginning MapServer“, Apress, Aug 2005,
Berkeley.

[7] T. Mitchell, K.Otsuka (Translation) “Nyuumonn Web Map-
ping“, Oreilly Japan, May 2006, Tokyo.

[8] M. Matias et al., “Evaluating MicroStation GeoGraphics
GIS“, IWAA 2006, Sep. 2006, Menlo Park.

[9] T.Shintake, “Status of the SCSS Test Accelerator and XFEL
Project in Japan“, EPAC’06, Jun 2006, Edinburgh

[10] http://www.pmapper.net

[11] http://www.forestpal.com/fgis.html

[12] A.Yamashita et al., “The Alarm System for the SPring-8
Storage Ring“, ICALEPCS 1997, Oct 1997, Beijing

[13] http://www.opengeospatial.org/standards/gml

98

STATUS OF THE CEBAF CONTROL SYSTEM*

M. Bickley, Jefferson Lab, Newport News, VA 23606 USA.

Abstract
The Continuous Electron Beam Accelerator (CEBA)

has been in operation at Jefferson Laboratory since 1994.
The evolution of the control system since that time has
resulted in a steady increase in the scope of control being
executed on commodity computer hardware, mostly
during the last six years. We have installed a number of
single-purpose Linux-based computers that provide
infrastructure capabilities such as name services,
gateways and archiving. The large-format display, central
to the machine control room, operates on a high-end
personal computer. In the real-time arena the lab is
pursuing inexpensive PC-104 daughter boards to serve as
control system interfaces to an FPGA-based fast data
acquisition system. Our expectation is that the digital RF
system required for the lab’s planned 12 GeV upgrade
will have a similar design. This paper will discuss these
and similar solutions, highlighting how they enable
reliable operation of the accelerator.

THE ORIGINAL CEBAF CONTROL
SYSTEM

At the start of CEBAF commissioning the control
system used at Jefferson Laboratory was, in many ways,
the antithesis of modern, open control systems. Instead of
the now standard three tier construction we implemented
a two-tier architecture. We had front-end Hewlett-Packard
(HP) computers controlling hardware through an HPIB
interface connected to CAMAC data acquisition crates.
On the back end we used Hewlett-Packard computers
serving as operator displays.

The control system software implementation choices
we made then were also not in line with current thinking.
We implemented a completely closed system, built of
single-vendor proprietary components. The data
acquisition and control software depended on HP-specific
shared memory interface software. The communication
protocol between the front-end and back-end systems
utilized HP-specific networking capabilities. On the back-
end systems the same shared-memory software was used,
and the operator interfaces all depended on HP-
proprietary graphics libraries.

In sum, our control system was completely dependent
on both HP hardware and HP software. This greatly
limited the flexibility of the control system, put the
accelerator controls at the mercy of Hewlett-Packard’s
developmental plans, and isolated us from advances being
made throughout the accelerator controls community. The

past 12 years have seen the laboratory make great
progress towards an open, modern control system. The
remainder of this paper will point out some of the steps
we have taken towards increased standardization and
openness, and discuss future plans that continue in that
direction.

FRONT-END SYSTEMS
Jefferson Laboratory has made great progress from the

time that all control system front-ends were HP computers
running custom-built data acquisition software. Now we
use almost entirely VME-based single-board computers.
These computers run the VxWorks operating system, with
EPICS providing data acquisition and control. The use of
EPICS in the control system provides the lab a more open
environment, thanks to changes made within the EPICS
collaboration.

The last few years have seen the EPICS developers
create an operating system independent (OSI) layer in the
real-time control portion of the software. The result of this
change is that EPICS’ front-end dependence on VxWorks
has been severed. Now an input-output controller (IOC)
can execute on any of a variety of operating systems,
including VxWorks (of course), Windows, Solaris, Linux
and RTEMS. Porting the IOC code to a new operating
system requires only that the OSI interface be developed
for the new system. The more posix-compliant the new
operating system is, the more straightforward it is to
implement the port.

PC Hardware and Low-level Controls
We have leveraged the EPICS changes to take

additional steps towards opening the CEBAF control
system. We now use a handful of PC104 IOCs, small-
format standard PC cards such as shown in figure 1,
running EPICS on top of a standard linux operating
system (Red Hat Linux). Due to the poor determinism and
lack of prioritization flexibility in this version of linux,
this implementation is only useful in situations where
real-time response is not required. At Jefferson Laboratory
we use front-ends like this to control slow devices, such
as a thermal mass-based calorimeter.

__

* Notice: Authored by Jefferson Science Associates, LLC under U.S.
DOE Contract No. DE-AC05-06OR23177. The U.S. Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce this manuscript for U.S. Government purposes. Figure 1: A typical PC104 card

99

The lab is pursuing much more widespread use of
PC104. Because this hardware implements the ISA
standard and uses standard Intel processors, these systems
are much less expensive than comparable VME-based
solutions. The RF group at the lab wants to have a
general-purpose microprocessor dedicated to the
execution of all of the front-end controls for each of the
384 cavities used for electron acceleration. This would be
prohibitively expensive using VME, but is much more
reasonably priced when based on commodity hardware.
While VME-based solutions are a good fit for high
channel-density applications, low-density applications are
an excellent fit for commodity hardware like PC104.

Jefferson Laboratory is investigating this solution using
a similar hardware configuration dedicated to the control
of a fast data acquisition board used to monitor RF signals
at rates from 1 to 10 megahertz. This implementation uses
RTEMS rather than linux as its base operating system.
Because RTEMS is a true real-time operating system, we
can develop much more deterministic controls and higher
data rates than would be possible with linux as the
underlying operating system.

An effective implementation of the fast data acquisition
application has positive implications for the long-term
future of the rest of the CEBAF control system. The open-
source operating system RTEMS has board support
available for all of the different real-time control hardware
used at the lab. Consolidating all of our real-time controls
under a single, non-proprietary operating system will
enable us to simplify the control system support
environment. At the same time we will be better able to
match the control hardware used against the data
acquisition and control requirements of the specific
application.

THE MIDDLE TIER
The middle tier of the CEBAF control system is much

more flexible than either the front-end or back-end tiers,
as is the case in most control systems. The software
executed in the middle tier is limited in scope because
there are no user logins. The interfaces they present to the
rest of the control system are well-defined, so replacing a
component of the middle tier requires only that it support
the same network interfaces.

Until 2000 the middle tier of the accelerator control
system was implemented entirely on HP computers. At
that time the lab needed to upgrade the systems hosting
the middle tier. It was clear that the most cost-effective
computing solutions could be found on commodity PC
hardware. Those systems had compute power and
memory capacity at least equivalent to the HPs then in
use, and were available at a fraction of the cost. On top of
those savings, the annual licensing fees were reduced
dramatically as well through the use of the linux operating
system.

The Jefferson Laboratory Archiver
The first step in migrating away from Hewlett Packard

computers involved the Jefferson Laboratory archiver,
czar. This service was chosen for two reasons. First, it
was simple to operate multiple, duplicate archivers, one
HP and one commodity system, in parallel. This made it
straightforward to execute performance comparisons on
real data. The second reason we chose the archiver was
that we projected significant increases in demands on the
system. A sufficiently-powerful HP computer would have
been more expensive than a commodity computer by an
order of magnitude; this would have been prohibitively
expensive.

Our experience was overwhelmingly positive. We were
able to operate dual archivers for a prolonged period.
When we were fully confident in the reliability of the new
hardware and the performance gains it presented, we were
able to transition without any impact on our user base.

Additional Services
Given the positive results from our first effort, it was

clear that this was the right long-term direction for the
laboratory. Over the following seven years the remainder
of the accelerator’s middle-tier services were migrated off
of Hewlett Packard computers. These included control
system-specific services such as model servers, orbit
locks, energy locks and database servers. Typically the
transition for these services was somewhat more difficult
than it had been for the archiver. Since only one of each
service can be operational at a time, testing and transition
time had to be integrated into the accelerator running
schedule.

BACK-END SYSTEMS
The CEBAF control system back-end computers

continue to be nearly all Hewlett-Packard, running X-
windows. Because the accelerator has been in operation
for more than 10 years, proliferation of user tools makes
migration away from HP more problematic than the
middle tier systems. A large set of software and files,
including not just binary executables but also scripts,
libraries and binary data files, have to be managed in an
operating system-independent fashion prior to the start of
a smooth migration. That process has been set in motion,
with roughly 80% of the total effort complete.

The exceptional back-end system is used to power the
large-format display wall shown in figure 2. The display
is an 8-cube array of DLP-based monitors, with a
resolution of 4096x1024 pixels. To the controlling
computer the array looks like a very large, single display.
The system is a standard Intel-based personal computer
with special graphics management hardware to provide its
unique capabilities. Graphics cards can be added to the
system to enable standard video outputs to be sent to
windows on the display. Each card supports four video
input channels, and four cards can be added to the system,
providing a total of 16 video windows integrated into the
standard display of the wall.

100

Figure 2: The CEBAF Control Room Display Wall

The display wall and control hardware enables
accelerator operators to exercise any of their standard
control tools and easily monitor the response on standard
video outputs, like those generated from viewers or
synchrotron light monitors. Future capabilities will
include the integration of remote camera outputs so that

operations staff can monitor the state of hardware and the
environment from the control room. This will enable them
to view, for example, conditions in the accelerator tunnel,
looking for leaks or unsafe conditions, without requiring
an access and radiation survey. The result will be
increased time dedicated to operating the accelerator, and
meeting the needs of the accelerator’s customers.

CONCLUSION
The last seven years have seen a significant increase in

the use of commodity hardware and software throughout
the CEBAF control system, from front-end data
acquisition and control computers to back-end monitoring
and display systems. These efforts have been consistently
successful. Looking ahead, we see many more
opportunities to take advantage of the inexpensive power
and flexibility that are possible with open architecture
hardware and software. Taking these steps will not require
making any concessions in functionality or performance.
Our experience to date has been that we can leverage the
work of other laboratories to obtain solutions that meet all
of our users’ requirements in a highly cost-effective
manner.

101

CONTROL SYSTEM STUDIO (CSS)[1]

M. Clausen, Jan Hatje, Markus Möller, DESY, Hamburg, Germany

Abstract
The current applications for operators working with the

EPICS toolkit have been designed, when UNIX

workstations were state of the art and X-Window

provided the preferred libraries to create graphical user

interfaces. The next generation of OPI's should be

designed to run on any operating system and for most

control systems. The look and feel of all applications

should be the same and it should be possible for the

operator to gain access to any relevant information across

the installed applications seamlessly. The Control System

Studio (CSS) is under development to fulfill these

requirements. It provides core functionalities like

management services (authentication, authorization,

application updates ...) and central logging services. A

common Data Access Layer (DAL) provides an interface

for transparent access to any control system data

interfaced to the DAL. Basic CSS design works and the

DAL implementation have been subcontracted for the

most professional implementation. CSS is implemented as

a set of plug-ins in the Eclipse Rich Client Platform

(RCP) and thus written in Java.

MOTIVATION

Today’s operator interfaces mostly consist of a set of

independent tools or programs. These kinds of programs

can only be executed on specific operating systems (OS)

like Windows or UNIX. They are tightly connected to the

control system they are written for. Programs written for a

specific platform can still vary a lot in terms of look and

feel or ease of use. The motivation for a completely new

design of a Control System Studio is driven by these

factors:

• Operating System independent

• Common look and feel

• Decoupling from control system specific interfaces

CSS DESIGN

An operating system independent implementation of

programs can be easily achieved by using Java as the

programming language. The selection of the development

environment and the implementation framework were

even harder decisions to make. Two market leaders share

the two regimes of Integrated Development Environments

(IDE) and runtime frameworks: Eclipse and Netbeans.

Eclipse as an IDE and RCP Framework

A thorough investigation was carried out between the

two candidates. As a result the leading IDE – Eclipse –

was chosen not only for programming but also as the rich

client platform (RCP) framework. Having made the

decision in 2005, the actual performance of Eclipse

developments and the rapidly growing community of

Eclipse programmers has shown that this was a good

choice. Last not least it also adds momentum to the

ongoing CSS-developments in the control system

community.

Common Look and Feel

Common look and feel is one of the basic design

features of the CSS. Eclipse already provides an

environment which eases the usage of sharable

applications. But it still leaves a lot of freedom to the

implementer how internal functionalities are implemented

and activated. This finally lead to the decision that CSS

applications should not be implemented as individual

Eclipse applications, but the applications should be

implemented as Eclipse plug-ins and be activated from

within the CSS. This approach provides a high level of

integration (see: Information ‘On Your Fingertip’; Drag

and Drop Data across Applications), but it still leaves the

freedom to activate applications (plug-ins) outside the

CSS framework – at a reduced integration level.

Information ‘On Your Fingertip’

There’s a saying that you do not have to know

everything – you just have to know where it’s written.

The same applies if you need to get access to detailed

information about control system components. The

‘Information on your fingertip’ – or ‘Object Aspect’ - can

be accessed by pressing the right mouse button (MB3). A

menu will pop up which shows all the applications which

can be called up to get more information about the

component you just click on. This way the user (operator)

can call up applications which provide access to

information stored in configuration files, LDAP servers,

relational databases or web pages. Other types of

applications comprise debugging- or configuration tools.

This functionality is implemented using an Eclipse core

functionality known as ‘contributions’.

Drag and Drop Data across Applications

Besides the MB3 control, another basic CSS

functionality will ease the use of multiple applications

within the CSS framework. Transferring data between

individual applications will enable a seamless integration

of applications. This functionality will allow dragging

data of a specific type into another application which has

implemented the complementary interface to accept this

type of data. This way it is only possible to drop data into

applications which are prepared to process them. The data

types span from simple device names up to complex data

structures like arrays of archived data.

Managing CSS Installations

Managing individually installed applications on a wide

spread set of PC’s and/or Thin Client machines can be a

nightmare if the tools to service these installations are not

102

available. Eclipse comes with a built in automatic update

facility based on Web-based update sites. This

functionality eases the synchronous update of all CSS

instances that have access to that Web site. In a controls

environment the requirements for updating individual

CSS instances can be quite different. While the update of

applications installed in the office area might be no

problem, updates in the control room might interfere with

current machines operations.

A mechanism will be part of the CSS-core functionality

to manage CSS updates and to monitor CSS instances for

bug tracking and their usage of system and/or control

system resources.

Interfaces - Interfaces

In order to keep CSS independent from specific

implementations – or even control systems, one of the

basic design goals is to leave out control system specific

code from CSS core. This way it will be possible to share

applications – as long as they are designed based on

common interfaces rather then specific implementations.

Even though it’s highly desirable to follow this design

pattern, it will not inhibit developers to write their control

system specific CSS plug-in. Specific interfaces are:

• The Data Access Layer (DAL):

The DAL provides a homogeneous interface for

CSS applications on one side and a control system

interface on the other side. The DAL

implementation supports channel based as well as

device based control systems. Collections of

channels can be comprised to devices on the DAL

level. The DAL is an CSS independent library.

• Authentication:

Authentication is one of the CSS-core interfaces.

CSS-plug-ins can be written to implement the

authentication scheme of the local site. Several

implementations for e.g. Kerberos, or even local

file access will be part of the basic CSS-core

package.

• Authorization:

Authorization is another CSS-core interface.

Example implementations include an LDAP

interface as well as a simple configuration file.

• Name service interface:

Name services and namespace browser will use

this interface. Based on JNDI it is easy to integrate

services like LDAP or other similar

implementations.

• Archive Access Layer (AAL):

The AAL is a similar implementation like the

DAL. Once the corresponding AAL-plug for the

specific local data archive has been written, it will

be possible to use the CSS archive viewing tools.

Authentication and Authorization

Most control systems provide their own security

mechanism. One might ask why another authorization

mechanism is foreseen for CSS. Many actions from the

operator panel need a very fine access granularity which

might not be based on the accessed device but on the

expertise of the user. This kind of access control can be

implemented on the application level itself. The interfaces

mentioned before provide the hooks to add access control

to the levels of graphical widgets and commands issued

from the graphical user interface down to individual

classes.

A secure store for passwords will add another support

level to the CSS core. This way the user can authenticate

for CSS usage and in addition for access control to other

applications or systems which shall be accessed from

within the CSS framework.

Collaborative CSS Development

Even though CSS developments have been initiated by

DESY, it’s desirable to keep CSS as open as possible for

collaborative contributions. This criteria is not only an

organizational aspect for the CSS design it also influences

the software design. For instance the choice to use the

authentication interface – including the login window –

must be left open to the software implementer – or even

the project manager – of the local site. Flexibility is key

to keep the acceptance for CSS high.

CSS APPLICATIONS

The flesh and blood of CSS are the applications which

are running inside the CSS environment. A lot of smaller

test and debug applications have already been created in

the current design and development process. But CSS will

only come to life when core applications are available.

Synoptic Display

The synoptic display can be clearly identified as the

‘killer’ application for CSS. Due to the importance of this

application, it has been outsourced to the Institute of

Informatics of the University of Hamburg. The

requirements have been collected in the course of a CSS

workshop held August’2006 [2] at DESY. Only a few of

the requirements can be highlighted here:

• Graphics can be created by non professional

programmers and thus are configured – or

graphically programmed as one might call it.

• The persistent store of configuration data is kept

in XML files.

• New graphic elements can easily be added to the

CSS graphic framework. Ideally new elements

have only to implement two extension points for

the edit mode and the runtime mode.

• Display call up must be accomplished within the

time frame of a second.

• Extended edit features. As a result of a survey of

editing frameworks - GEF has been choosen.

• Support for zooming, panning and multiple

graphic layers.

Alarm Displays

The CSS Alarm Displays are developed on the basis of

a new alarm scheme. An alarm ‘push model’ will be in

103

place to catch all alarms from the control system’s front

end controllers. An alarm system based on the Java

Message System (JMS) will pass alarm messages to

several different kinds of alarm destinations. One of them

being the CSS Alarm displays. The two basic displays are:

• Alarm Tree View. It is set up by reading the

configuration of a hierarchical device tree from a

JNDI-based store (like LDAP). The Alarm Tree

is implemented in a way that the top branch

shows the state of the most critical alarm of any

of the subsequent branches down to the leaves.

• Alarm Table View. It shows incoming alarms in

a table. The alarms are prioritized by the severity

and then ordered by the time of their occurrence.

This way the operator has always an overview of

the most critical alarms. Alarm

acknowledgements across several CSS instances

are handled as well as parent/ child relations

between device families.

Archive Displays

Good display tools for archive data are essential for

data analysis. The tools under construction use the AAL

interface to the archive store. A good example for the

collaborative approach in the CSS design.

CSS MANAGEMENT

In order to manager CSS instances it is necessary to

identify them. A central registry must be in place where

the CSS instances can register. This way the CSS

management console can query the registry for the

running CSS instances and approach each of them.

Depending on the management settings it is possible to

perform actions remotely. A basic set of remote

commands are:

• Setting the update flag to trigger the update

process from the update site.

• Query for system and/or application statistics.

• Exchange debugging information with remote

CSS instances.

• Last not least it will be possible to shutdown ‘left

over’ (iconized) CSS instances.

To avoid the implementation of a new registry mechanism

the XMPP protocol has been chosen to exchange

management information. XMPP is an open standard. It is

possible to select XMPP client/ server implementations

from a wide range of open source implementations.

Currently a Wildfire-xmpp server is in operation at DESY.

It can be accessed also as a (CSS) chat server (it’s basic

functionality) from: krykxmpp.desy.de.

NEW DEVELOPMENT STRATEGIES

We are entering new frontiers with the design and

development of the Control System Studio. Facing the

fact that the in-house resources would not be sufficient to

design and implement a complete application suite from

scratch, we decided to integrate external expertise from

companies and universities into the whole process from

the very beginning.

Collaborative Development

A basic requirement for a collaborative development

within a wide spread collaboration is the access to all

common resources. A cvs repository provides free access

to all program sources. Local and remote developers can

get access to existing programs and add their

developments into the repository. Documentation, a

tracking system including the story cards for the agile

development process are stored in a collaborative

development server based on CodeBeamer [3]

Wizards for easy CSS-Component Development

CSS developments can and will not be driven only by

one site. An active collaboration around CSS

developments is the final goal. To achieve this goal it is

necessary to ease the learning curve for developers. CSS

wizards will be in place to help understanding the CSS

structure and the essential interfaces.

Agile Programming Strategies

As mentioned above, part of the core developments are

carried out together with the University of Hamburg and

associated partners. In the course of this cooperation we

take the chance to learn and implement also new

programming strategies. Agile programming is a

technique that originated from eXtreme programming.

Requirements are defined in so called ‘story cards’. These

cards comprise required functionalities, the priority and

an associated cost factor. Throughout the development

process theses cards are revised on a regular basis. As a

result one will create products which a runable from an

early stage on while functionality is continuously added.

OUTLOOK

The CSS developments have left the conceptual phase.

Core applications are under development as well as utility

and management applications. The CSS collaboration is

slowly growing. Wizards for newcomers to CSS will help

getting up to speed. The collaboration with universities

and subcontracted design and programming tasks with

industry make CSS a very lively and interesting project.

A release of CSS core plug-ins as well as some basic

applications will be available end of 2006. We are looking

forward to a fruitful collaboration.

REFERENCES

[1] The web pages of the CSS project: http://www.cs-

studio.org.; http://css.desy.de

[2] Emma Shepherd, Minutes of the CSS Core Design

Meeting, DESY August 7 – 11 2006,

http://css.desy.de/content/e198/e253/e321/index_eng.

html.

[3] CodeBeamer – Collaborative Development Platform

http://elogbook.desy.de:8181

104

AUTOMATICALLY CONFIGURED CONTROL SYSTEM USING COMPACT

PCI SYSTEM

Y. Furukawa and T. Ohata, SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Hyogl, Japan

Abstract
An automatically configured control front-end has been

developed using compact PCI system combined with

Linux hot-plugging function. After selecting and inserting

control board into the system and powering on, the system

configured automatically and load not only device drives

but also control application programs that have to running

on the front-end. Application programmers for back-end

(client computers) can access the front-end system with

ONC/RPC call or simple socket using ready-made libraries

or applications without manual configuration of the

front-end. The system was successfully tested at the

BL01B1 in the SPring-8, which is dedicated for XAFS

experiments, to readout a 19-channel SSD with newly

developed counter boards. The system is useful for users

who are not familiar to the detail of the control system. We

are now developing the system adapt to real "hot-plug"

system, which provides dynamic configuration ability to

the system. Users can change boards and access with

simple method in spite of the system still running.

INTRODUCTION

In most synchrotron radiation facilities, many different

kind experiments are performed. At SPring-8, for example,

around one thousand experiments are performed in year.

These experiments spread to wide region of science and

technology. Requirements for experimental controls and

data acquisitions are also varied from an experiment to

other experiments. It becomes difficult task to adapt

control system to the frequently changed experimental

condition without control specialists, because most

beamline scientists and technicians are not familiar to the

control system. To modify the experimental station

controls flexibly, automatic configuration control system is

required.

We have developed automatic configuration control

front end with Linux operating system and compact PCI

bus system because there are useful tools for automatic

configuration for the Linux-OS such as “udev” and

“Linux-hotplug”. Compact-PCI brings hot-plugging

ability, which enables reconfiguration control system

without powering off the system. The automatically

configured system loads not only device driver for inserted

board but also application programs that controls the

board. Users can use the control front-end only inserting

control boards, starting-up the system and only sending

simple control message via network.

One of the most required I/O board for synchrotron

radiation experiments is a counter board. There are many

counter boards are available in the commercial market,

however they are not suitable for photon counting

experiments because of the general purpose design of these

boards, i.e. the input connector is not compatible with

analogue output of the NIM and/or CAMAC modules. The

connection box or conversion cables are required. This

spoils portability of the counter system. In addition, it is

difficult to realize gate controls and internal timer using a

generic counter board. We developed compact-PCI counter

board useful in synchrotron radiation experiments and

developed it device driver compatible with Linux

udev/hot-plug system. Combined with the automatic

configuration system and counter board, we have built-up

a portable counting system. Only installing required

number of board and powering on the system, users can

perform their experiments.

SYSTEM DESCRIPTION

The Linux udev system set up device special files for

installed devices properly. The Linux hot-plug system

configures the system using user space application written

in shell script. In the booting process of the Linux kernel,

PCI subsystem in the kernel initializes the PCI bus and

search PCI devices in the bus. The hot-plug calls a script

related to the device found by the Linux PCI subsystem,

and notify the device minor number using a environment

variable [1]. We have defined a new “class” [1] which

contains “class drivers” which describe the individual

device information such as device major/minor number,

etc. The Linux kernel core exports this information to the

user space via “sysfs” pseudo file system and executes an

udev application. The udev application makes a device

special file referencing the sysfs. Then the udev executes a

hot-plug script which name is “<class name>.agent”, and

the script starts control application programs then user can

access the boards using the applications.

We have installed the MADOCA [2] framework as a

control application, because the MADOCA is a standard

framework of the SPring-8 control system and because it is

flexible and scalable. The hot-plug agent script starts the

Equipment Manager Agent (EMA) which controls the

installed and configured by the Linux udev/hot-plug

system and when the script is firstly called it starts other

control framework programs, such as the Message Server

(MS) and the Command Interpreter (CI).

COUNTER BOARD AND DEVICE DRIVER

We developed a new counter board, specifications as

shown in the Table 1. For compactness, we chose 3U

height compact-PCI form factor. The board has four

channel counter input and one input/output selectable gate

control. These input/output terminals are lemo connectors.

105

The boards were made by Arkus inc [3], and put on a

catalogue as coded AxCPCI3901.

Table 1: Counter Board Specifications

Number of channel 4ch

Maximum counting rate 200MHz

Counter length 32bit/ch

Timer resolution 1MHz/100MHz

Timer length 32bit

The device driver provides primitive functions to access

the control registers of the board. Combined functions such

as staring/stopping counting, setting gate time, etc. are

programmed into the application program (EM). The

device driver has 8000 words internal buffer for each

channel to store the counting result to obtain millisecond

order interval data taking. An interrupt handling routine

stores all counter read out into the internal buffer at every

interruption. This realises multi channel scaler (MCS)

mode useful for quick XAFS experiment described later.

The device driver assigns a rotary switch setting on the

board as a device minor number, so users assess the correct

board with device special file. Lacking this function, the

device minor number will become independent to the

board configuration. For example, if the minor number

were assigned by the system finding order, the device

minor numbers were depends on the installed slot number.

In an initialization function, the device driver creates a

“class” axpci3901 and in a device initialization function,

the driver crates class drivers “axcpc3901_<n>” where

<n> is a device minor number. The Linux udev system

generates a device special file “/dev/axcpci3901_<n>”

automatically.

PERFORMANCE EVALUATION

Interrupt response

Interrupt response is important to realize the MCS mode

measurement. We measured interrupt response time using

counter function. We used the Interface Inc. CPU board

CTP-PM11A3F which had 1.1GHz Pentium-M processor

with 256Mbyte main memory and 20GB HDD and

Debian/GNU Linux 3.0 was preinstalled. We upgraded

Linux kernel to 2.6.16, because default kernel (2.4.x) was

not support udev system. We also installed the device

driver described above. 10 counter boards were installed

for the evaluation.

10MHz master clock was feed to two channels of a

counter board. One counters stopped by an internal gate

and the other still counting, the difference between these

counters in obtained in the interrupt handler indicates

response time. The measured response time distribution is

shown in the Figure 1. The measured mean response time

is about 5µs, it is short enough compared with the

quick-XAFS measurement period longer than 5 ms.

Figure 1: Measured interrupt response time distribution for

1,000 times trial.

Data transfer rate

For quick-XAFS experiment using 19 elements SSD, the

data transfer rate from counter to internal buffer is also

important factor. Measurement procedure was same as the

interrupt response measurement, but we installed 10

boards and measured count difference between the first

channel counts of the first board and the final channel in

the 10th board. The interrupts were generated by the gate

close event of the first channel. Differences include

interrupt response time and 40 channel readout time. The

measured result shown in Fig. 2. The data transfer time

calculated from the measurements was about 1.2 µs, which

was also short enough for the quick-XAFS experiment.

Figure 2: Measured 40ch data transfer time from counter

register to internal buffer for 10,000 times trial.

APPLICATION

As described in the previous section, one of the

important applications of the system is quick-XAFS

experiment, especially for the fluorescent mode. In the

quick mode measurement of XAFS, a monochromator is

continuously scanning an X-ray wavelength and measures

fluorescent X-ray from specified element in a sample with

0

1000

2000

3000

4000

5000

6000

7000

40 45 50 55 60 65 70

0

50

100

150

200

250

300

4 5 6 7 8 9 10 11 12

106

constant intervals. Typical time intervals of the

measurement are 5ms to 100ms. For a dilute element

measurement, wide solid angle detector is required. In

SPring-8, 19 element SSD is used for the quick-XFAS

experiment. For dead-time correction, total counts have to

be measured and to obtain the fluorescent yield, single

channeled counts have to be measured, so the two counters

required for each element, 38 counters are necessary for

the 19 element SSD. We installed 10 counter boards to the

system and measured Se fluorescent signals with 6ms,

60ms and 120ms intervals at the BL01B1 (XAFS

beamline) at the SPring-8. In the figure 3, result for 120ms

interval is shown. The result shows the system works well

for the quick-XAFS experiments. For the setting up of the

experiments, we only wired the counter output to our

system and booting up it. We could start measurement

easily.

Figure 3: Se fluorescent mode quick-XAFS result with 19

elements SSD and developed system.

SUMMARY

We developed auto-configuration control front end

system with Linux udev/hot-plug system on a compact PCI

and developed compact-PCI counter board. The system

was applied for quick-XAFS measurement successfully

and made it easy to built up user required control system.

We are now studying an actual hot-plugging of the devices

on the compact PCI bus. It will bring more flexibility to the

control system because the system can be modified

dynamically while the system under running.

ACKNOWLEDGEMENT

For the quick-XAFS measurement, Dr. H. Tanida and

Dr. T. Uruga helped us gratefully.

REFERENCES

[1] J. Corbet, A. Rubini and G. Kroah-Hartman, “Linux

device drivers, third edition”, O’Reilly, 2005

[2] R.Tanaka, et., al., Proc of ICALEPCS’95, Chicago,

USA, (1995) p.201

[3] http://www.arkus.co.jp/

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 100 200 300 400 500 600 700

Time (sec)

107

THE COMMON FIRMWARE PROGRAMMING INTERFACE FOR

FIELDBUS RELATED PROJECTS AT PETRA III

P.K. Bartkiewicz, S.W. Herb, DESY, Hamburg, Germany.

Abstract
The PETRA II storage ring at DESY in Hamburg is

currently used as a pre-accelerator for the HERA collider.

From 2009 on, after a major overhaul, it will run as a high

brilliance storage-ring-based X-ray source, PETRA III.

The new design requires a modern, flexible, and easily

configurable control system which will permit the

integration of commercial controllers with in-house

developed hardware. This document focuses on the

fieldbus subsystem and the common application interface

for newly designed microprocessor–based hardware,

explains why the CAN fieldbus standard was chosen, how

the CANopen application layer has been implemented,

and how the subsystem will be integrated with the rest of

the control system.

INTRODUCTION

The most popular fieldbus at DESY, SEDAC, invented

25 years ago, can no longer compete with modern

industrial fieldbuses. Although SEDAC was a very

successful data link solution during many years, it lacks

important features present in many industrial fieldbuses.

Analysing requirements of the control system for the

PETRA III, the high brilliance storage-ring-based X-ray

source being built now at DESY, we decided to establish

a new hardware development standard for next designs,

which unifies the communication on fieldbus level,

hardware interfacing to fieldbuses, communication

application software layer for device firmware, and

fieldbus management and configuration tools.

Standardization has to cover:

• The physical and data layers of the fieldbus, and

interfacing to the bus.

• A software source code library, representing the

application layer of nodes firmware.

• The data exchange mechanism between application

specific code and the communication code.

• Automatic management of the configuration of

individual nodes.

• Connection to the higher levels of a control system,

in our case to the TINE servers.

 For the fieldbus several requirements were specified.

We need a serial bus, which may be used for short

distances in order to connect modules inside a single rack

as well as for middle-range (up 100 m) distances,

connecting stand-alone modules, such as power supply

controllers, vacuum pump controllers etc.. There should

be a possibility for device hot plug and unplug, that nodes

can be added to or removed from the network without

affecting the communication of other nodes. There must

also be the possibility for communication participants to

detect the plug or unplug of a node. We require a

multimaster capability, because the fieldbus

communication participants must be able to take over the

ownership of the bus in order to generate requests for

certain data from other nodes, broadcast node-specific

data, and send urgent error or warning messages. In order

to achieve high reliability there should be a built-in error

detection mechanism. The selected standard should be

popular and commercially used, to guarantee availability

of fieldbus hardware suppliers - it is important for future

developments that manufacturers of the silicon interface

chips will support the fieldbus standard for a long period

of time. In order not to complicate inter-institute

technological cooperation it must be popular, or at least

recognized, by other high energy physics laboratories,.

Designers of the fieldbus node hardware should be

offered a wide spectrum of interfacing hardware: various

microcontroller types with the fieldbus support

functionality, stand-alone peripheral chips or IPs for

FPGA developers. The firmware part, responsible for the

fieldbus communication, should be standardized and

available as a ‘C’ source code stack, in order to permit

implementation for various types of microcontrollers.

FIELDBUS PHYSICAL AND DATA LINK

LAYER

Among various fieldbus standards the CAN (Controller

Area Network [1]) standard looks especially appealing.

Although the scope of this document can not cover the

entire description of the CAN protocol, some of the major

features should be emphasized.

Major features of CAN

 CAN offers a multi-master, real-time serial bus

architecture, with message-based transmission protected

by a very reliable error detection mechanism (message

CRC with Hamming Distance of 6, bit stuffing, message

consistency check). A corrupted message is automatically

retransmitted. The protocol defines the behavior of a node

which detects a failure, so the risk of bus traffic

disturbances caused by the faulty node is reduced. The

principle of node communication is based on broadcast

telegrams, so implementation of alarm messages or

important process data exchange messages is easy. The

message identifiers also serve as priority indicators for

non-destructive bus arbitration. The number of nodes is

limited only by the physical layer (usually up to 128

nodes). The flexible choice of transmission speed versus

bus length offers bus speeds up to 1 Mbit/s for distances

up to 40 m, and permits data exchange for distances up to

1000 m with a speed of 50 Kbits/s. Most of the major chip

manufacturers provide silicon solutions encapsulating the

CAN protocol features. A very wide commercial offering

108

includes 8-, 16- and 32 bit microcontrollers with one or

more built-in CAN interfaces and stand-alone CAN

controllers with convenient interfacing to the host logic,

such as microprocessors or FPGAs. In case of FPGA

based applications the alternative of using IP CAN cores

is also available.

Generic fieldbus interfacing hardware

Currently our CAN-related projects for the PETRA III

storage ring include designs for the Freescale

microcontrollers with built-in CAN controller (16-bit

HCS-12 and the 32-bit Freescale ColdFire 5282) and

Altera-NIOS FPGA with an external Philips SJA-1000

stand-alone CAN controller. Since the resources of the

selected microcontrollers, including internal program

memory, ADCs, timers, and serial and programmable I/O

ports, are sufficient for future projects, these

microcontrollers will play a role as default interfaces

between fieldbus and measurement or control

applications. For more advanced projects, requiring faster

data processing or complicated application logic, the

Altera-NIOS with an external CAN controller will be

used.

Current applications

There are several designs being made now with the use

of our generic fieldbus hardware solution: the Vacuum

Controller project based on HCS12, the Magnet Power

Supply Controller, and the CAN bus to SEDAC translator

(in order to utilize some of the existing Power Supply

Controllers), based on ColdFire 5282.

APPLICATION LAYER

Why do we need a generic Application Layer?

CAN as a standard brings very low level functionality,

corresponding to the layers 1 and 2 of the well known 7

layer Open System Interconnection model; it offers a

reliable mechanism for broadcasting messages containing

up to 8 bytes of data, but does not specify how these bytes

will be used. It also does not define how to use message

identifiers or how to send data blocks longer than 8 bytes.

For PETRA III projects we need a generic set of

services which support the automatic configuration of

CAN fieldbus nodes (including a possibility for remote

firmware upgrade), a standardized message identifiers

allocation scheme, a mechanism for node connection and

disconnection event detection, and advanced error

messaging: services belonging to the Application Layer of

the OSI model.

Why CANopen?

As was mentioned earlier, the selection of application

layers should be limited to well known industrial

standards. Currently the most popular standards are

CANopen, DeviceNet, SAE J1939, and CANKingdom.

CANopen [2],[3] fits very well to our requirements.

Proprietary devices can be combined with CANopen

devices into one network, and the implementation is

simple and scalable to needs; there is a large set of

optional functionality but only a small set of mandatory

functionality, so even very simple microcontrollers can be

used for CANopen compatible projects. The only

hardware requirements are one timer with millisecond

resolution and one CAN interface. The software stacks

are available for a reasonable price, or even free (open

source project). This is also the standard claimed to be the

most popular high level protocol. It is very popular in

Europe, so many “plug & play” devices are available

“off-the-shelf”. The technology is open and does not

require any payment or license fees. Additionally the

concept of the Object Dictionary with the associated EDS

(Electronic Data Sheet) makes updates and maintenance

easier, and DCFs (Device Configuration Files) help with

automatic configuration of fieldbus participants.

Implementation

In order to get a reliable implementation of the

CANopen protocol for selected hardware platforms, we

decided to buy a commercial software stack from the

Vector Informatik GmbH company [4]. So far the stack

has been ported to the Freescale processors; the port for

the Altera-NIOS is planned to be done soon. For

separation of the application firmware from the CANopen

stack, a set of callback functions were created.

Developing the firmware application now consists of

filling a very limited number of functions with user code.

There are two sorts of such functions. Simple callback

functions are called once, to obtain from the user

information such as selected bus speed or node ID needed

for a proper CANopen stack initialization,. There are also

callbacks called once to notify the user code that the

internal state of the stack has been changed. A second

group of callback functions are called cyclically, when the

CANopen stack is idle, or just after a single CAN

message has been processed. These cyclical callbacks are

the places where the firmware developer puts his working

code performing ADC or digital input line readout,

steering output lines, or doing necessary calculations. It is

worth emphasizing that the firmware developer does not

write a single line of code related to the fieldbus data

exchange; he concentrates on data collection and

processing, and the data transfer is done automatically by

the CANopen stack. Which data are transmitted and what

is the transmission triggering mechanism is described by

the few entries in the Object Dictionary structure. The

developer is offered some macros, which makes such

Object Dictionary manipulations easy.

Firmware development for CANopen compliant node

requires carrying out three steps:

• Make ‘global’ all variables, which should be

transferred over the CAN bus

• Using appropriate macros to connect them to the

Object Dictionary, and select the transmission

triggering mode.

• Fill the skeletons of the callback functions with your

code.

109

 In order to integrate the node with the control system,

one must perform a fourth step:

• Create an EDS file, which describes the data

available from the CAN bus and the data

transmission modes.

The EDS should reflect the entries in the Object

Dictionary structure, so for bigger and more complicated

projects the use of graphical tools, also commercially

available, is recommended. Such a tool usually leads the

developer through the process of adding entries to the

Object Dictionary and defining the data transmission

modes for selected variables, checks consistency of the

Object Dictionary, and automatically generates the EDS

file. For our development work we use the CANerator

program from the Vector Informatik GmbH.

CONNECTION TO THE CONTROL

SYSTEM

The fieldbus and its nodes are part of a larger control

system; measured data should be accessed by servers,

processed and delivered to the users, and nodes should be

configured for work with changing requirements. We

want also to provide a standardized solution for

integrating CAN bus and the CANopen protocol into our

control system.

Hardware and operating system

As a hardware platform for the servers connecting to

the fieldbus we decided to use the PC104, a well known

and popular industrial standard supported by many

manufacturers. PC104 can be easily extended by stacking

additional cards, including CAN cards. Since the PC104

is a PC-compatible platform (80x86 or Pentium

processors), it is possible to use Linux as an operating

system

Our current solution consists of a PC104 card produced

by the Kontron AG [5] and the dual channel CAN

produced by the PEAK-System Technik GmbH [6]. The

Peak company delivers Linux drivers for their CAN

cards. The stack of PC104 and CAN card is adapted to fit

in 3U Euro Crate. There are no mechanical hard drives;

we use a 32 MB flash disk. The Linux distribution is

ELINOS, an embedded Linux distribution from SYSGO

AG [7]. ELINOS comes with a package of configuration

tools which enable scaling and quick setup of the kernel

components, and makes transfer to the flash disk easy.

To increase reliability of the PC104 operations,

especially in harsh environments, the hardware watchdog

on the PC104 board is activated. To avoid problems with

potential disk data corruption caused for example by

power outages, the flash disk partition is normally

mounted ‘read-only’.

TINE server for fieldbus connectivity

The control system for PETRA III will be TINE [8], the

most popular control system at DESY. Since TINE

supports all popular operating systems, the server code is

easily ported to ELINOS. TINE’s footprint is small

enough to fit into the system equipped with only the small

flash disk. Programmers who use the embedded TINE

server can choose between using CDI plugs (Common

Device Interface [9]) or writing own CANopen specific

interface. In both cases they will deal with the very well

known TINE server structure, with its standard logic and

configuration files.

Besides connection to the rest of the control system, our

current implementation now offers very limited fieldbus

management, which however can not be treated as a

generic solution for future developments.

We need some additional functionality:

• detecting whether the node needs to be setup due to

reboot or having just been added

• carrying out the after-boot configuration process of

fieldbus nodes, which usually requires the parsing of

individual DCFs and sending individual settings to

nodes, or connection to an external data base which

stores such settings data

• large data block transfers for nodes which offer

remote firmware upgrades over the CAN bus

• generation of some CANopen specified messages,

such as NMT messages, SYNC, or time stamp.

We are now investigating whether we should buy

commercial code, or whether writing own CANopen

master components will give us better integration with the

TINE environment.

REFERENCES

[1] Wolfhard Lawrenz “CAN System Engineering.

From Theory to Practical Applications” Springer-

Verlag New York Inc.1997

[2] Olaf Pfeiffer, Andrew Ayre, Christian Keydel

“Embedded Networking with CAN and

CANopen”, RTC Books 2003

[3] http://www.can-cia.org

[4] http://www.vector-informatik.com

[5] http://www.kontron.com

[6] http://www.peak-system.com

[7] http://www.sysgo.com

[8] http://tine.desy.de

[9] Philip Duval, Honggong Wu “Using the Common

Device Interface in TINE” Proceedings of this

conference.

110

UI-ORIENTED APPROACH FOR BUILDING MODULAR CONTROL
PROGRAMS IN VEPP-5 CONTROL SYSTEM

D.Bolkhovityanov∗, The Budker Institute of Nuclear Physics, Novosibirsk, Russia

Abstract
Specialists combining good programming skills with

perfect physics are usually in deficit. So, often physicists
prefer to write control programs themselves.

But, besides the “meat” — application control logic —
a program must include some routine “spells”, like stan-
dard GUI programming, conversation with data server, etc.
These lay extra burden on a developer, and, while simi-
lar in most applications, these “spells” are hard to move
into a separate library, since they are usually too interwined
with application logic. However, such separation is highly
desirable: common parts can be implemented bullet-proof
and feature-rich by professionals, leaving only tiny specific
parts for particular application developers.

So, a modular plugin-based architecture was developed
for VEPP-5[1] control system, which separates program
data description from its implementation. Thus it allows
to store this UI-oriented, but GUI-free description in a
database. This description is also used by health monitor-
ing, data archiving and web-publishing tools.

COMMONLY USED APPROACH
Large portion of most facilities’ control systems con-

sists of “screen instruments” — meters and control knobs,
which are directly mapped onto ADC inputs and DAC out-
puts.

To simplify development of applications which are con-
stituted entirely of such screen instruments, most control
systems provide so-called “display managers”, which take
care of interaction with operator, thus eliminating a need
to write any code. These are MEDM[2]/dm2k[3] in EPICS,
ddd[4] in DOOCS, etc. VEPP-5 is no exception here —
its control system CX[5] includes such “screen manager”,
called chlclient.

“Display managers” generally take some descriptions,
which specify lists of display components, including their
kind (text fields, menus, graphs, etc.) and positions, plus
mapping of those components onto hardware channels, and
build user interface “screens” accordingly.

VEPP-5 Specifics
VEPP-5 is under construction now, changes are frequent,

so, instead of “visual”, “symbolic circuit” view, a “system-
centric” approach is used: one window shows vacuum sta-
tus of the whole facility, another one is devoted to ther-
mostabilization, etc.

∗D.Yu.Bolkhovityanov@inp.nsk.su

MEDM/dm2k, DDD and many others use “canvas”
model, which allows a user to put components into arbi-
trary places of a control window. VEPP-5/CX’s main ap-
proach is grid-based (see Fig.1): components (“knobs”) are
laid out in a regular grid, with row/column labels added if
necessary; “towers” of rows (called “stairs”) are wrapped
into several sub-towers if required. (“Canvas” model is
also supported, but is little used yet.)

Figure 1: A typical VEPP-5 control application — linac
magnetic control. There are 3 screen “elements”, upper
two are two-“tower”.

CX applications’ screens consist of 3 layers (see Fig.2):

Element 3

Element 2Element 1
Grouping (application screen)

Knob Knob Knob

Knob Knob Knob

Knob Knob Knob

Knob Knob Knob

Knob Knob Knob

Figure 2: 3-layer structure of applications’ screens.

1. Display knobs themselves.
2. Knobs are grouped into elements — also called con-

tainers, which place “streams” of knobs into grids, la-
beling and wrapping as required.

3. A set of elements is called grouping, which essentially
is an application’s screen. A grouping performs sim-
ple automatic layout of elements — by rows or by
columns, wrapping as needed.

Elements can be nested — any cell in a grid can be occu-
pied by a sub-element instead of a knob. That sub-element
can also contain sub-elements, and so on. This allows to
build display hierarchies of arbitrary complexity.

111

So, description of an application’s screen is a tree. And
these tree-like descriptions can be stored separately.

THE CHALLENGE
But: if something more than a trivial display of hardware

channels is required, notably one of the following:

• Some computations beyond trivial arithmetic.
• Data must be displayed in some unusual way, so that

built-in components aren’t sufficient.
• One-to-many relationship of control channels: when

change of some display knob must result in modifica-
tion of several hardware channels.

• Some specific data processing, feedback, etc.

— then “display manager” can’t be used and such applica-
tion must be coded “by hand”.

VEPP-5 Specifics, continued
CX supports regular, scalar channels and more complex,

array channels (fast ADCs, CCD-cameras, etc.; those are
called “big channels” in CX) in a different manner, due to
a different nature of tasks.

Moreover, in any control system, array channels of-
ten have to be displayed in some specific way — just a
graph/histogram isn’t sufficient.

But it is hardly possible to equip a “display manager”
with more or less unified display components for all fla-
vors of array channels — display requirements are usually
too diverse, and often a specific way of data display is the
essence of a respective program.

So, all CX applications, dealing with “big channels”, had
to be coded individually.

THE SOLUTION
The Idea

A similar problem had existed in many areas; the most
widely known example is WWW — how to handle mul-
timedia content — and that problem has got an adequate
solution: plugins[6]. A browser doesn’t know what to do
with, e.g., Flash animation, but it looks at information, de-
scribing .swf file as “application/x-shockwave-flash”, to
select appropriate module, called plugin, which does know
how to display such a file.

A “display manager” can work in a same manner: when
it encounters a component, which isn’t tagged with one of
built-in types, a search for plugin is performed, and that
plugin is used just like built-in types.

Different “Classes” of Components
The initial goal was to enable placement of diverse user-

supplied visualizers of array channels into “display man-
ager”s screens. But making other kinds of display com-
ponents also “pluginizable” gives many advantages. These
“classes” include:

Figure 3: Example of a plugin-based application: BPM dis-
play. It is a mixture of standard knobs (top element) and
plugins (bottom one). Pale-gray circle beside the beam po-
sition is a “shadow”, showing previous position. The bot-
tom element is another example: “tabs” are provided by
container-plugin.

• Scalar channels. So, new kinds of knobs (like “wheel-
switch”) can be added easily.

• Array channels.
• Containers. For example, a “worksheet with tabs” (see

Fig.3). Or, a “virtual damping ring”, which automati-
cally lays out its sub-components in a ring.

• Decorations — data-less components, which just ap-
pear.

• Groupings. So, a generic “vacuum system” grouping
would enable switching between a regular bar graph
view and a detailed numeric view of all ion pumps’
data (which is frequently requested by technicians).

• User-type components — when the task can’t be re-
duced to simple on-screen work with one scalar or ar-
ray channel; or requires some specific processing or
feedback; or just something else, not falling into one
of the above classes.

“Fallbacks”
There is an important difference from e.g. web browsers:

nobody except Flash plugin can handle Flash files, but
since there are only few “classes” of components in control
system’s displays, a fallback mechanism can be used. Text
field would be a reasonable replacement for any scalar-

112

channel-plugin, a graph can be used for array channels, etc.

Two “parallel” trees
First, the data tree is created, which contains complete

information about used channels (references to hardware
channels, limits, names, labels, etc.). Then the display tree
is “rendered” accordingly with that data.

In cases when only data or just a cumulative status is re-
quired (see “Additional Bonuses” below), creation of dis-
play tree can be omitted — the data tree is completely func-
tional in its own.

Some Details
CX “display manager” — chlclient — is just a mere

frontend to a set of GUI libraries: libChl (stands for “CX
high-level”), providing a general application functionality;
libKnobs, providing knobs API and a default set of display
knobs; a tree-management library, libCdr, which can also
be used in non-GUI applications (see “Additional Bonuses”
below).

Internally, there’s very little difference between standard
components and plugins. Both make use of the same knobs
API, and when libKnobs searches for appropriate display
component, it just looks through several tables, instead of
one.

In fact, the “canvas” display model is implemented as
plugins in CX: the “canvas” itself is a container-plugin,
while various decorations (rectangles, ellipses, lines, etc.)
are decoration-plugins.

ADDITIONAL BONUSES
Since display channels’ specifications are separtated

from code and are stored either in files or in a database,
these descriptions can be directly used by various generic
control system tools. These include:

• “Control center”, which works as control system’s
start menu and as health monitor (see Fig.4).

• Web-publisher.
• Data archiver.

So, any control application (which is usually a reflection
of some subsystem of a facility) automatically becomes
fully integrated into control system’s environment.

VEPP-5 USE
As more and more VEPP-5 subsystems are put into reg-

ular operation, demand for various specialized, not-just-a-
grid-of-text-fields applications, grows.

In the last two years the majority of such applications
in VEPP-5 control system are implemented in a plugin-
based fashion. This quickened the development and made
the control system more flexible.

Figure 4: CX “control center” — CX-starter. Round leds
in “Srv” column show status of appropriate device servers,
square leds in “?” column signal channels’ status (cumula-
tive for a subsystem).

REGARDING NOVELTY
While tree-like descriptions of control screens aren’t

new — such approach has wide use, from Visual Basic to
LabVIEW — there are two significant differences in the
approach presented above.

First, a data hierarchy exists separately from a display
hierarchy. These trees are either “parallel”, or display tree
doesn’t exist at all.

Second, plugin-architecture with “fallbacks”, where
plugin displays can be provided for scalar channels,
array channels, decorations, containers and “generic”
user/application-specific components, enables to turn any
control application to a unified form.

CONCLUSION
UI-oriented approach for building modular control pro-

grams proved to be very useful. It significantly eases devel-
opment of control applications, and makes the whole con-
trol system more structured and modular. This approach
will get further wider use in VEPP-5 control system.

REFERENCES
[1] M.Avilov et al., “Status of Work on the VEPP-5 Injection

Complex”, Atomic Energy, Volume 94, Number 1
[2] “EPICS MEDM: Motif Editor and Display Manager”

http://www.aps.anl.gov/epics/extensions/medm/

[3] Thomas Birke, “dm2k”
http://www-csr.bessy.de/control/SoftDist/dm2k/

[4] Kay Rechlich, “ddd: The DOOCS Data Display”
http://tesla.desy.de/doocs/doocs gen/ddd.html

[5] D.Bolkhovityanov et al, “Evolution and Present Status of
VEPP-5 Control System”, Proc. PCaPAC’2002,
http://www.lnf.infn.it/←↩

conference/pcapac2002/TALK/MO-P15/MO-P15.pdf

[6] “Plugin”, Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Plugin

113

A DEVICE SERVER GENERATOR FOR CONTROL SYSTEMS

J. Wilgen, P. Duval, DESY, Hamburg, Germany

Abstract
The device server generator is a wizard-like tool which

substantially minimizes the efforts needed to build device

servers used in control systems. It defines a common

model for the device server and its interaction with the

underlying control system protocol. The current prototype

focuses on Java-based device servers using the TINE pro-

tocol [1]. Interface specifications can be defined with a

GUI, and TINE-specific code is generated automatically.

INTRODUCTION

The device server generator has the purpose of

standardizing device server programs and interfaces and

simplifying the work of device server programmers. Up to

now, device servers were individually stylized. The

existing code generators [2] created device server code

which served more or less as a template and had to be

extended by programmers in order to do something

useful. To be sure, this must always be the case.

However, in the past considerable knowledge of the

device server logic was required to make the necessary

extensions. The new device server generator creates a full

framework in which only the device logic needs to be

supplied by the device programmer. The framework

consists of a generic part in form of a runtime library, and

a generated part which includes specific classes and

TINE-related code.

MAIN FEATURES

Common Logic is Encapsulated in a Framework

A great part of the program logic and structure of

device servers can be generalized by a common frame-

work so that programmers do not have to continually

supply recurring, similar logical constructions.

TINE-Specific Code is Hidden

A considerable part of a TINE device server consists of

code which is needed to implement the TINE interface.

The TINE-related code is now generated and hidden in

the framework. The programmer need only be concerned

with the implementation of device logic and functionality.

Standardized Network Interface

Since the framework is responsible for the server’s

network interface, a common interface structure can be

used. This makes it easier for clients to interpret a server’s

network interface.

Wizard GUI

A graphical user interface is used to define the server’s

components and to generate the code. Generated code can

be reworked at any time.

THE BASIC MODEL

A device server framework must be based on a

structure which is applicable for a majority of cases

without being overly complicated. It must also be

possible to map this structure easily into a TINE interface.

We found that device servers have quite different

structures, but most of them can be described sufficiently

with the following simple model.

A device server can contain one or more device groups.

Every device group contains elements of a common

device type which defines the device’s interface. Every

device in the group must implement this interface. A

device interface consists of properties (= methods which

input or output data of a simple or pre-defined type) or

operations (= more complex methods).

Although it is not possible to map this model exactly to

TINE, it can be done if the device server above has a one-

to-one correspondence with the device group. A device

group corresponds to a TINE equipment module, and

properties and operations are mapped to TINE properties.

THE PROGRAMMER’S WORKFLOW

For the specification of the device types and device

groups in a device server, programmers use a wizard GUI.

The result is a device server model which can be stored

independently. From the GUI, a code generator can be

started which generates source code which includes parts

of the device server framework as well as stubs for the

concrete devices which have to be implemented. The

114

same tools can be used to revise the stored model and re-

generate the code later.

LIMITATIONS

Applicability

The device server generator is a suitable tool for many

cases but is not a solution for everything. There are still

device servers which do not fit into the specified

structure, or have very special requirements which cannot

be satisfied by a generic framework.

Encapsulation vs. Customization

Since the framework keeps TINE-specific code away

from the programmer, it is impossible to customize TINE

interfaces directly. The ability to overload TINE

properties, handle calls from the local archive or alarm

sub-systems differently, make use of device name

patterns, for instance, is no longer available.

Standards vs. Flexibility

By means of structures, rules, and simplification, the

device server generator makes device server

programming clearer and easier for those focusing solely

on the device logic. Programmers who want to use the

total flexibility which TINE offers will be better off

building device servers manually.

CONCLUSION

The device server code generator presented here is

currently available only on java platforms. It is targeted

to conform to a general set of TINE device server

specifications, but is by no means limited to TINE, and

can be used with other systems with a similar device

naming hierarchy. As a number of TINE features are

encapsulated away from the use, they are simply

unavailable. This ultimately means that the generated

code will satisfy the needs of ‘simple’ device servers,

where there are no demands for complex business logic.

Nonetheless, there is generally quite of few of such ‘data-

acquisition’ based server, where the server requirements

do not go much beyond acquiring data from, say, a group

of temperature sensors, setting thresholds, etc. For such

cases, the device server generator is ideal, as the work

involved in making the data available to the control

system effectively shrinks to zero, freeing the control

system staff for the more demanding needs of the

complex device servers.

REFERENCES

[1] http://tine.desy.de

[2] P.Duval and V.Yarygin, “The Use of Wizards in

Creating Control Applications”, ICALEPCS Proceedings

2001; See also Ref [1].

115

LivEPICS – An EPICS Linux Live CD for small applications, training and fly tests.

M. Giacchini, G. Bassato, INFN-LNL, Legnaro, Italy

Abstract
EPICS is a software tool-kit originally developed at

Los Alamos National Laboratory and Argonne National
Laboratory for the control of accelerators and large
experiments. Since the version R3.14.1, released in 2002,
EPICS was ported to different hardware and software
environments and now it is available for many kinds of
processors and operating systems.

Despite the installation of EPICS is usually done by a
well proven set of automatic procedures, its configuration
is not always straightforward for a beginner. To help a
new user to get familiar with EPICS tools without
installing them on the hard disk, we developed a Linux
based live CD that includes most of the EPICS features.

LivEPICS is a bootable CD, which contains a pre-
configured EPICS development environment. After
booting, the user can access all the utilities required to
create a simple control application; at the end of the
session he can save his application on a USB mass
storage device.

EPICS BASICS
 The basic idea underlying EPICS[1] architecture is the
implementation of a software bus. Process variables are
declared, through a graphic tool, as records of a real time
data base. The record properties define the method by
which the record is processed: usually, a record is
associated to a particular hardware device and processing
a record means to call a device driver that acquires the
variable and writes it in the data base. Record processing
is realized by a software module named IOC. Once a
variable is stored in the data base it can be accessed by
multiple clients through a network infrastructure called
Channel Access. Provided the device support for the
hardware already exists, a control system can be designed
and tested with no need of writing program code.
The toolkit includes a lot of utilities: i.e, the Motif Editor
and Display Manager to generate graphic panels, the
Alarm Handler, the Data Archiver, the Channel Access
Probe and many interfaces to make available the data base
variables to non-Epics applications.

LIVEPICS FEATURES
LivEPICS[2] is a Linux live CD that includes: Epics Base
(release R3.14.7), Extensions tools, introductory
documents and manuals. It has the complete functionality
to develop a small control system, but it is mainly
intended for training classes or to monitor and supervise
an EPICS network.

The goal of LivEPICS is:
• Allows to use EPICS without installation on the hard

disk.
• Automatic setup of environment variables to compile

and test new applications from scratch.
• Includes the basic tools (MEDM, VDCT, etc.) with

the related documentation.
 The iocBaseApplication (the utility that creates the
directory structure necessary to develop an application)
can be launched immediately after the boot. The OPI tool
included in the CD is MEDM (Motif Editor and Display
Manager), the alarm manager is AH (Alarm Handler)
while the IOC database configuration tool is VDCT[3]
(provided by Cosylab). The Channel Access Probe is
available to test the status of a record on the network.
Asyn and MSI packages allow to create device support
applications and medium-sized EPICS DataBases. The
CD includes the following documents: Application
Developer Guide, IOC Application Building, Record
Reference Manual, Channel Access Manual, Channel
Access Protocol, State Notation Language Manual.
 To develop this live CD, we used, because of its reduced
size, Linux SLAX (based on Slackware[4] with kernel
2.6). The file system on the CD is SquashFS, a highly
compressed read-only file system that is specifically
designed for tiny Linux systems.

In the CD, the standard directory tree of the SLAX
Linux filesystem is compressed to a standalone file; all
files that constitute the EPICS base tree are installed,
compiled and compressed to a module named EPICS-
3.14.7-base_Asyn_msi_VDCT.mo not larger than 33MB.
This directory structure significantly improves the access
time to the files most frequently used in the development
process.

CONCLUSIONS
We have created a bootable CD that can be useful for
training or monitoring purposes. We will also develop the
driver support for a generic binary device connected to
the PC parallel port to run a real demonstration of a
control application.

REFERENCES
[1] EPICS, www.aps.anl.gov/epics
[2] LivEPICS, www.lnl.infn.it/~giacchini/upload/file.php
[3] R.Sabjan et al., “Visual DCT – EPICS Databases can

be Fun”, PCaPAC 2002, Frascati, Italy, October 2002
[4] Slackware, www.slackware.com

116

FAULT-TOLERANT EPICS DIRECTORY SERVICE*

I. Habjan
#
, K. Zagar, M. Sekoranja, Cosylab, Teslova ulica 30, SI-1000 Ljubljana, Slovenia.

Abstract
Experimental Physics and Industrial Control System

(EPICS) [1] is using the Channel Access (CA) [2]

protocol to discover and remotely access records and their

individual fields (process variables, alarm states, ...). For

discovery, the client-side CA issues a broadcast on a

subnet, to which an input-output controller (IOC) hosting

the record responds with the location (host and port

number) of the record. This is a very convenient method

for discovery, as no initial setup is required and there is

no single point of failure. It does, however, have

disadvantages, such as large amounts of network traffic

produced and error-prone configuration in networks with

several subnets.

In this paper, we describe an approach based on a

Directory Service (DS) that addresses these disadvantages

while introducing additional features. Among the new

features are load balancing, attribute-based discovery,

support for redundant channels and extraction of client-

server topology in an EPICS system. To avoid the

directory service from becoming a single point of failure,

it is replicated using techniques developed in the

Dependable Distributed Systems (DeDiSys) [3] project,

co-founded by the European Union. The directory service

can be introduced in a running system with simple

reconfiguration of nodes, but without requiring any

change to existing implementation. The prototype

implementation of the directory service is EPICS V3

compatible, and the design has been made with EPICS V4

in mind.

INTRODUCTION

An EPICS based distributed control system must

consist of at least one Channel Access Server (CAS).

Usually this is an EPICS process called IOC. The

computer running the process is attached to input and/or

output devices of technical equipment. This is interfaced

using the EPICS database of records. The data is within a

record contained in its VAL field and is made accessible

via process variables. This provides logic to acquire the

value from a sensor or to impose a value to an actuator in

a physical processing environment. Such is the

association of PV values with the results of the

input/output operations. The set of all PVs distributed

over several IOCs establish a distributed real-time

database of information and control parameters. A

synonym for PV is channel.

Channel Access Name Resolution

Channel access is a TCP/UDP/IP based communication

protocol used by EPICS. CA allows Channel Access

Clients (CAC) to require access to PVs. Client may see

and change values or monitor value changes. As PV is

referred to by its name, CA needs that name to access

data.

To connect to one PV the following search procedure

must be used to discover its location (Fig. 1):

1. Client broadcasts a sequence of UDP packets on a

subnet.

2. All IOCs receiving the broadcasted message check

whether they host the sought channel.

3. The IOC that hosts the channel responds to the client.

Figure 1: Channel access name resolution.

Even though this is a very convenient method to initiate

a communication it is one of major problems with EPICS.

To target multiple IOCs the search requests have to be

broadcasted. Broadcast can only be done via UDP and is

thus unreliable. To cope with possible message loss

(requests or responses) the latter are repeated. The search

request itself therefore consists of a sequence of UDP

packets (up to a 100, sent over period of 8 minutes). This

is carried trough only with non-existent PVs that do not

render a response. Nevertheless re-transmission may lead

to excessive network traffic – also known as network

storms. Each IOC has to check its inventory with every

packet. Another thing with broadcast is that it works only

on the local subnet.

EPICS environment variables may be used to

reconfigure the CA [4]. To override the default broadcast,

EPICS_CA_ADDR_LIST may be set to list specific

search addresses, also of other subnets. In combination

the EPICS_CA_AUTO_LIST must be set to NO in order

for the default broadcast not to be included automatically.

System reconfigurations require that all clients are

properly configured, which can be tedious in large

deployments.

This design makes construction of a directory service

(also called naming service) possible without requiring

modifications to the existing code. Furthermore, a

directory service will be possible to deploy by simply

reconfiguring the system.

IOC1

IOC2

IOCn

Client 1

1: Search “CH1.VAL”

(broadcast)

2: Have

channel?

2: H
ave

channel?

2: Have
channel?

3: Response: “CH1.VAL” at IOCn

*Work supported by European Union within the Framework

Programme 6 under Contract number 004152.
#igor.habjan@cosylab.com

117

REQUIREMENTS

Currently, EPICS does not feature a directory service.

In preparation for the next version, V4, its requirements

are discussed in [5]. The principal function required by

the EPICS collaboration is the name resolution. And

beyond, the following:

• Minimal setup effort: The directory service should

configure itself on-the-fly if no configuration is

given (e.g., by establishing name—IOC mappings as

they are requested using existing name resolution).

• Lookup performance: The lookup performance

should be up to an order of magnitude slower for the

first lookup, and as fast as without the DS for

subsequent lookups.

• Redundant directory services: A hot-standby backup

DS is available, which takes over name resolutions in

case of primary’s failure.

• Bind performance: The performance of a bind can be

up to an order of magnitude slower than the

performance of a lookup without the DS.

• Scalability: The DS should not have any particular

scalability bounds. It should be capable of handling 1

million PVs. The algorithms for binding and lookup

should be better than O(N
2
).

• Wildcard searches: Clients should be able to resolve

channels to IOCs using wildcards. Instead of

wildcards, regular expressions could also be used.

This will significantly reduce effectiveness of

lookups from O(1) to O(N).

• Report on number of channels per IOC: The DS

should be able to report how many channels a

particular IOC is hosting.

• Redundant IOCs with the same PV: The same PV

can be hosted on more than one IOC. The DS is

capable of redirecting clients to the IOC most

capable of serving a PV (e.g., the active IOC, or the

one with least load).

The main purpose of the directory service is to reduce

the loads imposed on the IOCs with processing all the

broadcasted searches in particular of non-existent PVs.

Achieving a more global overview of the system, this

could also reduce excessive loads on the network and give

feedback on bad application configurations. The main

goal is to eliminate invalid PVs. Further value-added

services may leverage on the implementation.

IMPLEMENTATION

In EPICS, the name of a channel is encoded as string of

ASCII characters. For every channel, the directory service

keeps track of all IOCs that host a channel with that

name. Typically, a channel is hosted only on a single

IOC, however the directory service shall assume that

there can be more than one. An IOC is defined by the host

and port where the IOC process is listening.

Channels are associated with the IOCs in a simple

directory data structure with operations presented in Table

1:

Table 1: Directory operations

Operation Description

Bind Associates the name with the IOC.

List Returns a set of all administered IOCs and further

a set of names of all channels hosted by the

specified IOC.

Resolve A set of all IOCs which host a channel with the

requested name is returned.

Unbind Removes the association of a name to the IOC.

Figure 2: Fault-tolerant EPICS Directory Service.

IOC1

IOC2

IOCn

Client 1

1: Search “CH1.VAL”

(unicast)

4: Have

channel?

4: H
ave

channel?

4: Have
channel?

5: Response: “CH1.VAL” at IOCn
EPICS Directory Service

(passive replication)

3: Search “CH1.VAL”

(broadcast)

2: C
h
ann

el

kn
ow

n
?

6: Response: “CH1.VAL” at IOCn

Performed only if the

channel is requested for

the first time

118

Configuration

The EPICS Directory Service is introduced as a channel

access server. As such, it is listed in the

EPICS_CA_ADDR_LIST of every client (EDM screens,

IOCs with links over CA, etc.). This directs the searches

to the single address. In most cases the DS will know

where the channel is located, or will know with certainty

that a channel does not exist. If so, it will immediately

reply to the client (see Fig. 2, step 6). If queried for a

channel for the first time, it uses standard CA procedure

to discover the channel (Fig. 2, steps 3 thru 5). The

response message is used to obtain the IP address and

port. Binding is created for the requested channel. The

client is also notified of the discovered location.

By monitoring the beacon heartbeats the service may

discover that an IOC is down or rebooted. If so, it will

unbind all channels from that IOC.

FAULT TOLERANCE

Fault tolerance is provided through DeDiSys

framework. The framework considers a network that

suffers from node and partition failures (e.g. router or

network cabling failures) form time to time. With that

considered, the aim is to enhance availability. Fault

tolerance is achieved by replication.

This fits quite well into the EPICS scenario, because

single EPICS DS poses a potential single point of failure.

This may be copped by replication:

Several instances of service can exist simultaneously.

All instances are active at the same time, listed by clients

in their EPICS_CA_ADDR_LIST. In order to further

retain network traffic low, processing is handled only by a

selected worker instance. Every change is afterwards

propagated to other instances keeping them synchronized.

At the time link failures appear, groups of nodes might

become separated. Careful positioning of replicas will

preserve each group sustained: comprised of number of

CA clients and servers with one, preferably several,

instances of DS.

The novelty of the DeDiSys approach is that it enables

replicas to recover from the failure and to continue to

perform normally. Ability to do so is required by the

scenario, because EPICS control system continues to

operate in need of a DS despite failures. States in

partitions evolve independently and for this integrity

constraints have to be relaxed. As this was not always the

case it is experimented by DeDiSys with primary-per-

partition-protocol (P4). By the protocol, further

degradation is dealt with similarly, also the loss of a node.

When a node recovers, it obtains latest state from the

other DS instances. With reunification of partitions the

states of all instances are automatically reconciled to

obtain the state of the full system.

CONCLUSIONS AND FURTHER WORK

The EPICS Directory Service talks channel access and

is platform independent. Its function, performed as a

custom CA server, is to know the name of each PV. It

enables a CA client to find a PV, even on another subnet.

Introduction into EPICS based control system preserves

the main advantages: distributed, fast, efficient and

reliable. Such are also the characteristics of the DS.

Injected with the DS, the control system continues to

operate continuously. Reduced is the CPU load on IOCs:

the processing on name resolution is removed from IOC-

dedicated piece of hardware to a platform independent

server machine. As a side affect the network traffic is

reduced considerably. Search procedure communication

is no longer broadcasted. Name resolution is targeted to a

centralized service. Even though centralized, the service

does not compromise the system. This is due to its

distributed, fault-tolerant architecture.

Directory service is more than a plain name resolution

service. It is a directory: a searchable, up-to-date list of all

channels in use. And for more conclusive identification of

non-existent channels: a list of all non-existent channels,

along with which client requested them. Designed with

extensibility from the bottom up it features a web service

to display the bindings.

Further work includes even further exploitation of the

presented features. Redundant channels may be used for

channel load balancing and fault-tolerance, by simple

redirection of the name resolution. The collected real-time

information may be enriched with meta-information,

obtained from SQL databases, LDAP servers, text files,

etc. Centralized management of an EPICS deployment

(e.g., current status of IOCs) is a next step.

Most importantly, compatible with EPICS 3.14, it

requires only a simple reconfiguration: no modification of

existing clients or servers is needed; no setup is required,

as the list of channels is populated automatically.

The prototype implementation of the design is available

for download at:

http://www.cosylab.com/Cosylab/EPICS_directory_service

Feel free to try it out. Eliminate your non-existent PVs!

REFERENCES

[1] Experimental Physics and Industrial Control System:

http://www.aps.anl.gov/epics

[2] A. Pucelj, “Channel Access: Protocol Specification”,

Cosylab, 2004, http://epics.cosylab.com/cosyjava/

JCA-Common/Documentation/CAproto.html.

[3] Dependable Distributed Systems (DeDiSys), 6th

European Framework project of the Information

Society Technologies (IST) priority, under Contract

number 004152: http://www.dedisys.org

[4] Jeffrey O. Hill, EPICS R3.14 Channel Access

Reference Manual, 2004, http://www.aps.anl.gov/

epics/base/R3-14/6-docs/CAref.html.

[5] EPICS V4 Name Server (Wiki discussion),

http://aps.anl.gov/epics/wiki/index.php/

V4_Name_Server.

119

JAVA DEVICE API AND COSYBEANS IN THE GSI CONTROLS SYSTEM

G. Fröhlich, K. Höppner∗, U. Krause, V.R.W. Schaa, GSI, Darmstadt, Germany
I. Križnar, M. Pleško, J. Bobnar, Cosylab, Ljubljana, Slovenia

Abstract

Rebuilding central parts of the GSI control system will
replace proprietary components by well established stan-
dards. Network access from applications to the front-end
device servers is the core of the renovation. The former
home-made communication protocol is replaced by an ac-
cess based on CORBA. This broadly supported standard
opens the GSI control system, formerly restricted to Open-
VMS with software mainly in procedural languages, to a
broad range of operating systems and languages. A project
was started to rewrite GUI controls in Java. Best available
solutions, like Abeans, CosyBeans and other community
driven solutions are evaluated in the process. The flexible
operation of the GSI facility which handles several beams
in parallel on a pulse-to-puls basis requests thorough con-
sideration of the data access and device model API. We will
report about the experience and will present the derived sta-
tus.

GSI CONTROLS SYSTEM

Architecture and Software Structure

Though the recent GSI controls system is already de-
signed as a decentralized distributed system, it suffers from
the dependency on in-house communication and network
protocol, current hardware and software.

The front ends use Motorola 68000 single board com-
puters with VME bus running on pSOS, while the applica-
tions for accelerator operation are running on Alpha work-
stations running OpenVMS. Most of the applications are
written in Fortran or Pascal, some in Nodal.

The GSI controls system models the equipment of the
accelerator as independent devices with “properties”. Call-
ing a property means supplying the device with new data,
like setting the reference current, reading data from the
device, or initiate an action like reset. They are imple-
mented as functions on the front end computers, called user
service routines (USR), which handle all activities which
are specific for the particular type of devices. Properties
are grouped to “equipment models”, one for each type of
devices. Although implemented procedurally, the struc-
ture reflects well the object oriented paradigm. Equipment
models correspond to classes, properties to methods. The
equipment of the accelerator is represented in the control
system by object-like devices on which properties act.

∗k.hoeppner@gsi.de

Front End Level Upgrade
On the front end level, the upgrade to VME boards

with PowerPC CPUs running embedded Linux and using
CORBA as middleware is in progress [1]. Meanwhile, de-
vices are implemented in an object oriented approach, us-
ing a set of generice C++ classes (AccDevice, AccData)
that is independent of CORBA as communication interface.

The USR code for the old equipment models is mostly
reused in the new equipment models as methods of the de-
vice classes. Thus, a large set of equipment models could
be migrated successfully to the new device classes (see
Fig. 1).

Client

TK1MU1
proxy

Linux, VMS, Windows

Embedded Linux

CORBA

TK1MU1

callreadField

writeField

readStatus

Request

Figure 1: Access to new devices using CORBA as mid-
dleware. Old USR code is reused as methods of device
classes.

Upgrade of Operating Level
Since most of the applications for accelerator operations

are written in Fortran or Pascal, heavily using VMS system
libraries, many efforts have to be made for an upgrade of
the operating level.

Currently, the usage of commercially available VMS
emulation libraries is under evaluation, hopefully provid-
ing the opportunity to migrate legacy applications to Linux.
On the other hand, for new devices being used as part of
the current accelerator, they have to be accessible from the

120

current applications running on OpenVMS via the in-house
communication protocol called Userface. A new Userface
server under Linux is under development [2]. It will act
both as a traditional Userface server providing access to
old devices and translate Userface requests to CORBA re-
quests for new devices on the fly.

In parallel, the development of client interfaces indepen-
dent from the old VMS applications is in progress. For
example we created a Python API in addition to the C++
client interface that might be used as an successor for Nodal
scripting in the future [3].

JAVA API TO ACCESS DEVICES VIA
CORBA

First Approach
In parallel to the new Python client interface, we wanted

to get a Java API to access new devices via CORBA. It
was implemented by Cosylab on top of the CORBA to Java
bindings produced by the Java IDL compiler. This is meant
as a first step for future Java applications for accelerator op-
eration. Though currently dependent on CORBA as mid-
dleware, it is implemented as a semi-abstract layer for de-
vice access. So extending the Java API to support other
communication protocols should be possible quite easily.

The design of the IDL interface for CORBA access was
done with having the coexistence of old and new devices in
mind. Thus, a narrow interface was chosen for compatibil-
ity reasons. This lead to strong consequences for the im-
plementation of the Java API. Since it provides Java Beans
supporting a wide interface for device access, it has to map
the wide interface to the narrow CORBA interface inter-
nally.

Problems During Implementation
Some of the problems that occurred and were solved dur-

ing implementation of the Java API were owed to the spe-
cial kind of operation at GSI.

GSI is operated in a pulse-to-pulse mode switching be-
tween different ion sources and several experiments in par-
allel (see Fig 2). This special multiplex mode was mapped

Figure 2: Pulse-to-pulse operation mode at GSI.

Figure 3: Table with the states.

to a concept of so called virtual accelerators in the current
GSI controls system. The Java API has to take this concept
into account, i. e. the Java API provides the possibility to
set reference values or measure actual values for current,
field etc. for a given virtual accelerator.

Another problem occurred from the fact, that in the cur-
rent GSI equipment models the device properties don’t con-
tain additional information. No description of the proper-
ties like minimum and maximum value, alarm or warning
levels is available from the device itself, since they are cur-
rently provided by the central operating database on Open-
VMS. Since the new C++ device classes on front end level
reuse the existing code from equipment models, this infor-
mation is inaccessible to the Java API for device access.

We plan to extend the new equipment models and the
CORBA IDL definition. Then, device servers will provide
additional information about the properties that can be used
by Java clients e. g. for choosing ranges of axes or for trig-
gering alarm messages.

APPLICATIONS USING COSYBEANS
Cosylab implemented some applications using Cosy-

Beans on top of the new Java client API. These applications
give a first look on the potential of Java GUI applications

Figure 4: Panel for a power supply.

121

for accelerator operation at GSI.
Some effort had to be made to reproduce the typical style

of GUI applications at GSI that normally use one widget
switchable to many devices. Additionally, the CosyBeans
application support the concept of virtual accelerators used
at GSI. Some screen shots are shown in figures 3 and 4.

In the current state, due to the “dumb” properties of the
GSI equipment models, some manual configuration of the
applications is necessary, e. g. the display range of gaugers
has to be set manually. As said before, it is planned that de-
vices will provide additional information about the proper-
ties in the future, so in upcoming releases the configuration
of CosyBeans widgets will be done automatically.

REFERENCES
[1] K. Höppner, L. Hechler, P. Kainberger, U. Krause,

“Embedded Linux and CORBA in GSI Controls Sys-
tem”, PCaPAC 2005, March 2005, Hayama, Japan,
http://conference.kek.jp/PCaPAC2005/.

[2] G. Schwarz, L. Hechler, P. Kainberger, U. Krause,
K. Höppner, G. Fröhlich, V.R.W. Schaa, to be published.

[3] L. Hechler, K. Höppner, P. Kainberger, U. Krause,
G. Schwarz, “Replacement of Outdated VME Boards
as Starting Point for Controls System Modernization”,
ICALEPCS 2005, September 2005, Geneva, Switzerland,
http://icalepcs2005.web.cern.ch/icalepcs2005/.

122

�������	
���������

��
���
������
������
�����
������

�������	
�������
�����������������������������������
	������������������������������
������������	 	����!"##$#��%���	��

��������	
&����'��()� *�
���� �+�����,��� -��	.
�-� /#� +����

�.�� ��� 0���0(���-� *�
���� �+����� 123�� ���� ��	��
��	�-� �4� �	��� ���� �5�	���
��� 4�� ���� *�
����
�����	�
��	
*����-��	.
	4	*�
��+��&����6��	��
����
�
�	.����*	�	�
���������
����4� (����
��
-� (�����
�
�5�	�� �6�*��+� �
�,� ���� �
�.+� �4� ���� ���	*����
,�	*��-���
-���
��������4��**�����������������7���
����08��	
��.��	�
������'��()�*�
�����+�����	��4���+�
�-�5�����4����������
��-�+����������*�
���������'��(
)�4�*	�	�+��&�����	
.��4��08������,��������-������������
�+������ 4���	.����*	�	�
���������
����4� ���� ����
��������� �
-� �������	*� *�
���� �4� ���� �**�������
�����	�
���

����	�����

&�������� 	�����
�� 4�*��� -����	
	
.� ���� ����.��

�
�.+� �4� ���� *	*����	
.� �
*���� ���	*���� 	
� ����
�'��()�� *���	-�� 	�� ���� ���������� �4� ���� -	�����
��.
����1/3��
&���	
��.����������4�������.
��	*�4	��-�	
����� ����

� 	�� ���� -���
-�� �
� ���� ��.
��� -	��
�	�
��� ,�	*��
-���
-� �
� �� ����������� &����� 4�� ���� ���	���	�
� �4�
���� ����.�� �
�.+� �4� �
*����� 	�� 	��
�*����+� ���
������� ���� ���������� �4� ���� ��.
��	*� �����
���
��*	���+� �
-� ��� ���	-�� ������� ��� 	�	�+� �4� ���� ����
��.
�����
&��� �����	
.� �4� �����'��()� *���	-�� %9� *��	�	���

����������� 	�� 	�����
�� ������ &��� %9� *��	�	���
���������� 	�� ��� 	�	��-� ,	��� ���*	��� �+����� 1"3� 	
�
�-��������	-���������*	����	�
���4����� ������
&������*	����������	*��+�����,���-�������-�	
��-��

��� ����
�� -���.�� �4� ���� *��� ��� &��� ���*	���
���*��
	*���
-���.���	
��0�1)3�	
-	*����������
*��
�4� ���� ������ ��*	����	�
�� �
-� ��
-� 	
4����	�
� ��� ����
*�
������.���,�	*������������*��
��� �����������

���
���������
�
���

�����������
�����������

������

&���
�,� �'��()�� ���������� ��������
��

�+����� ����� �
� ����� -�������-� "/� *��

���
���������� *�
������� ��	
.� :	.�(��*	�	�
� 7	.	����
&���������� 7�2!"2�,	��� ���� ������	�
� #�#!/;<� 0�
1;3��

������������	�������	�����������	
������	

7�2!"2� 	�� ��-�*�-� +� ��=��>7�??���
0����
+����
��8���	
*	����4���������@�

�� 7�2!"2����	-���A#�;B�0��**��*+�,	��	
�#B�0�
������CD#B�0��
.�E�

�� �����	
.������������
.�@�F;;B0����C2/;B�0E�
�� ���������� ��������
��� �5�	��
�� �6��
���

*����
�
��E�
�� ������� ������	�
� 	�����(����*�� ��� ���$��2#��22�

�� 2/� 	��� G2/� 	��� ������	�
� *�����
-��
#�#!/;B�0HE�

�� ,	-����,�������+��
.��G/�D�����;�;�HE�
�� *�
����� ���������� ���-	.	����,�-� 	
�D;#����

G��6HE�
�� -���� 	�� ��->,	���
� ����.�� /F,	�� ��	���

	
��4�*���

���	������	�����������	����������	
"/(*��

���&���������0�
������,���-�������-�	
�

�����G����9	.��2H��0�
�����8��4�
*�	�
����@�
�� -����	����-�4�������������������
�������+�

��*�
-� �
-� 	�� ,	���
� ��� ���� ����+� �4� ����
*�
�����E�

�� �������	*� *��*�� �4� ���� ���������� ������ �4�
��*�� ��
��� ��� �� 	
�	-�� ���� ���*	4	�-�
�����������
.�E�

�� �,	�*�	
.� �
� ���� ���+� 	
����*�� 	4� ����
����������	�������4��������*	4	�-��
.���

9	.���2@�&�������������*�
�����@��
2�(���
��� ��-E�/�F���
���	
�	-����������*�	�
�*�����

0�
������ 	�� *�

�*��-� ,	��� ��
���� ����.�� 4��(
,	������	(-�����	����	
���������+� ��*�

�*��-�������
�	.��� ��
���� 	
� �
�� �	
�� �4� /#� ������ ��
.����
&���������������� ��� �
�,�-� 4�� ���� ���� ��
�����4�
��*�� *�
������ �
-� ����-� ��� ���� *�
�����8������+�
���+���*�
-��������	*���+��

123

�

9	.���/@�?�+(�����4�����
�,��'��()�������������+�����

�4� ����� �4� ���� ���������� ������� �6*��-� ���*	4	�-�
���������� �	�	���� ���
� ���*	4	�-� ���+� *�
��*�� 	��
*����-��������	*���+��%���+�	
����*��	��������-���� ��
���-� ��� ����
�� ���� �'��()�� ��.
��	*� �����
���
�������	
.��&�������������2/����	-(���������+��	
��
��
*�
������� �0� ��.��� ��-�� 4��� �
-� ,	���� ���
*�
������ ���� ���*	4	*��	�
�� 4�� ���+� *�
��*�� *�������
0�
������ *������ ���+� *�
��*��� �������	*���+� ��	��
���*	4	*��	�
� ���*�
8�����
��	������������� �����
� +�����
*�
��������	*��	�
��

	
.�	
��0��

��	�����������	�����������	������	�������	
�����+� ��*�

�*��-���� ���"#�*�
������� 	
���������

����
���	
���	����	�������	
��0��&���-	���
*��4����0�
��� ���� ����� *�
������ 	�� ��� ��� 2/##� ������� 9	.�� /�
	����������������
�����
-�*�
�������-	��	 ��	�
��������
�'��()��	
.��
%�()I;>%�(/"/� 	
��4�*�� �
-� ���*	���+� -�������-�

����*��� ��� ���-� 4�� ���� *�

�*�	�
� ��,��
� ����
����������*�
�������
-������0��
&��� ��

��� �	� �
-� ��

��� ,����� ����������� ���

������-� 	
� ������� ��	
��� 	
� �-�� ��� ���	-�� ����
���	���	�
� �4� ���� 	
.� .�����+�� '�*�� ��.
��� 	��
������-�	
��,����	
��@��
�������
-�-�,
�������4�����
+�����&�����.
���� ����������������� ��� ���	
.� 	
���
�**��
�� 	
� ���� 4	��-� ����	��� ���	���	�
� ��,��
� ����
�
�.+� *��	 ��	�
��� &��� ����������� �4� ���� ��	
�
 �
-	
.�4	��-���,�������+��
-� ���������	
.�*��
��
���
�����	�����
��4�������
�.+����	���	�
��
&���������������4�*���	
.�,������������	�����
��

4�� ���� �
�.+� ���	���	�
�� ��� ���� *���	
.� ,����
���������� 	�� ������-� 	
� ������� ��	
���� &��� 	
����
�
-� ������� *���	
.� ,���� ���������� 	�� ������-� 4��
��*�� %9� *��	�+� 	
� �-�� ��� *��*�� ���� ����������
��� 	�	���	�
��+������

���
�����������
������

�������

&�����.����

	
.�	
��0���-������-����4�������
���� *�
������� �
-� ,	���� ���� -���� ��� ����.��J?�
-��� �����
*������	
�����&�������-�����������-����
������-�4���������	*�����
�.+����	���	�
��	
������	.��
�
�.+��6��	��
����
&��� .���	*� 	
��4�*�� ���	-��� �,�	
.� �4� ����

����������-	�.�����4���������*��-���
���������
+�
��	�-� �4� �	���� &��� �+�	*��� ���������� -	�.���� ���
����
��-�	
�9	.��"���
&���*�
4	.���	�
��4�����*�
��������
-���
�������

����-� 	
��� ����.��J?�-��� ���� �����&�����
	��	
.�
��.�����-������*�
4	.���	�
�-����4�������-��� ����
4�� �
�,	
.� ��	�-	*���+�� ��� ���	-��� ����
�
��
��������
���
-����	
.��4���������������-����	4�����
��������
���+�����	����-	4	�-������������.�����
�
�
-��?	
�6��
-��������	48���	 �+��

���
����
�����
���������

��������
������

������	��� ���������	
9�� ���� ������� �4� ��
	��	
.� �4� �+
*��(�����
�

���
�
*��� �
-� ������ ��*	����	�
��� �
-� ���-+	
.� �4�
 ���� *����*�	��� �44�*��� ���� 9���� ��4	�������� G9��H�
 ���-��
�:�����&�K�����	(�
�-�����������	��	��
�� ��,��� -��	.
�-� 	
������ 1)3�� 9��� 	�� �� ���� �4� ����
�'��()�����	*���-	�.
���	*��+�����1!3���
-�	��*�
�	���
4�������2!(*��

�������	(�
�-�����������	��	�����4����
2/(+��� �70�� �� *�
������ ,	��� 	
��
��� ����+� �4�
)� ���
-�2##�� �'���
��� 	
��4�*���9���*�
��*�-�
����2#####���4	�����4��� �������2!���	
�����������,��

124

�

9	.���"@�&�������*	*�	��*���	
.�,���������������-�	
.��,���
-����4���
�����
G�-��	
��F����(����������������� ��*���	
��F�	
(���������������H��

��� ��� �
��+��� ���� 4�5��
+���	����	�
��4� �� ���� 	
� ����
�
.�� 4��� 2#� :�� ��� ��� 2�:��� &��� �*����� �4� ����
��������
���+�����	�����,
�	
�9	.��)��

9	.���)@�&�����������*	����	�
����
	��	
.��+�����
�*������

������	���������	
&�����������*	����	�
����
	��	
.��+�����������������

�-	������	�	�
��4����� �����
-��6�*�����9��	���
��+�	��
�4������	.
����4�����*���4�����2!�*��

��������
�
��+��
&��� ��6	���� ������ �4� ���� 9��	�� ����
	*��
*�����
-	
.� ��� �+
*����
� ��*	����	�
�� 	�� *��*�����-�
4��������	.
���*��	
.�4����������������	��	��*��

���
,�	*�� *����-�� 	�� *�����
-�-� ��� ���� ���� �-.�� 	
�
��
���������
���&���-	�.����4�����	
-	*���-���*	����	�
��
	�����,
�	
�9	.��;��

9	
9�.���;@�&�����������*	����	�
������
	*���

&��� ��6	���� ����
	*�� ������ 	�� ��
�� ��� ���� �'��()�
*�
���� �+������ L��
� ���� ��*	����	�
�� ������ �
-� ����
������-�����
	��������6��-����������,� �������������

 ���� *�
���� ����	*��	�
� �

	
.� 	
� �-�
��� *�������
������ ���� *��
��� ����� ������ ��� ����
��� ���� -���*���
-	4��*��� ��4�������	�	*����*�	*���-	�*��.	
.��

��������

&�����	
.��4��08������,��������	��������������	 	�	�	���

�4������'��()�*�
�����+�������
&���
�,� ���������� ��������
�� �+����� ,���

-�������-� �
� �����'��()�� *���	-�� 	
� �-�� ��� ���	-��
������*	����
-�*�
�	
����� ������������������
����4�
��������	�����
������������
-�������,�	*���44�*���
�����
 ����� �
�.+�� K�	
.� ���� ���
�
�� -�����	���	�
�
��*�
	5���	������,�����������	���������
�
��+����� �����
�
�.+�,	��������**��*+�������;�6�2#(!�G2#����H�1D3��
&���
�,� 4������� �4� ���� ���� �����	�
�� �������	�
�

����,���� ���*�+����� ������	����4� (����
��
-� (�����
�
�������������
���6��	��
����
������'7%�-���*����

����������

123� ������������ ��� ����� M�'��()� 0�
���� �+����N��

�0�?'�0�O$;��0�	*�.���K����
1/3� ��'����	
�������������M� �������*��	 ��	�
��4����	*���

�
�.+� ��� �'��()�N�� ��*���� �
�����
��� �
-�
�����-��	
���+�	*��%����*������/##/��)$)�G2("H������
I2(I;��

1"3� '�P���	.	
���+�����������M��
�.���
��	
�����������
�4� %9(*��	�	��� �4� �'��()�� '��*��
(���	��
�
9�*	�	�+N��������
��0���08/##!��

�1)3�����������������������M����	*��	�
��4����� ������4	���
��
	��� 4�� ���� �'��()�� ��
	
.N�� ����� �
�
'��08/##!�Q��

1;3� ����@>>,,,���6	�(*�*��>�����*4�>�>7�2!"2�
1!3� ��� ��� �������� ��� ����� M&��� ��.�-�-� ���	*���
-	�.
���	*�� �4� ���� �'��()�� *���	-�N�� ��*��-	
.�� �4�
'��0�/##)��?�*�
����,	�����
-������/D"$(/D)2��
1D3� �����
���	
����������M��,���*	�	�
���������
����4�

���� R>�� �
-� �8� ����
� ������N�� ��+�	*�� ?�������
/##"�����;D"����!"(D$�����(�6>#"#!#;#��

125

BUILDING AND DEPLOYING LOOSELY COUPLED CONSOLE
APPLICATIONS

Andreas Labudda, Deutsches Elektronen-Synchrotron DESY in der Helmholtz-Gemeinschaft,
Hamburg, Germany.

Abstract
The set of computer platforms foreseen for the new

accelerator Petra III [1] is much more heterogeneous than
that of Petra II [2]. DESY expects to use Petra III clients
in several administrative contexts as well. The goal is to
build platform independent client applications and deploy
them irrespective of the user requesting the application.
The resulting strategy should have as little impact on
application development as possible and make use of
existing technologies where they exist.

In order to remain platform independent JAVA [3] was

selected as the development language and Eclipse [4] as
the development tool. The applications will be deployed
over the boundaries of administrative contexts by
anonymous http and Java Web Start [5]. To support the
application development a “quick start” wizard
application was designed, which collects the application’s
metadata. This information is used by a customized ANT
[6] script which builds, signs, and deploys the console
applications. In this paper we describe “quick start” and
the four targets of the DESY ANT script.

OVERVIEW
In the process of building a new control system for the

new accelerator PETRA III, the control system software
for existing accelerators will also be updated. The project
plan is tight. To get ready in time, already existing hard-
and software components are used for development. For
example the developer PCs are supported by the central
IT staff just like other office PCs and central file space is
used, including central backup. Software packages like
Eclipse have been distributed with a DESY common
configuration.

The design decisions for support of the accelerator
operations are very different from those for the developer
environment. For operations the main point of interest is
not using existing components, rather the availability of
the control systems. Third party services (such as those
from central DESY IT) will not be used in accelerator
operations if there is no service caching algorithm or if
interruptions to the service are not acceptable.

To enable the developers to focus on designing and
implementing applications the deployment process has to
be transparent. Setting up a new project is like starting
any other console application in the control system. An
application, the so called “New Project Wizard”, is
launched via control systems launch mechanism. The
“New Project Wizard” generates a new Eclipse project.
The generated project complies with all requirements of
the “Common Build and Deploy” process. Each console

application in the “Common Build and Deploy” can be
released by one click without regard for other console
applications, administrative boundaries or destination
operating system.

BUILD AND DEPLOY ENVIRONMENT
The build and deploy environment consists of several

parts. The parts are just used like the DESY IT
infrastructure, but installed and configured like the source
code versioning system or custom made like the “New
Project Wizard”

DESY IT infrastructure
The developer environment is largely integrated into

the DESY IT environment.
deployment Build And Deploy

Serv ers::File Serv er
Serv ers::Subv ersion

Server

Serv ers::WebServ er

«execution environme...
User

(from Clients)

«execution environment»
Dev eloper

(from Clients)

IIS

Apache

Eclipse

Jav a Webstart

Jav a Webstart

Source
Repository

Central Backup

Runable Master
Repository

Central Backup

Runable
Repository

HTTPS

SMB

HTTP

SMB

SMB

«use»

HTTP

Figure 1: Developer PC as embedded in DESY

infrastructure

The DESY IT division offers support for
• System setup for installation and configuration of the

operating system.
• Application installation and configuration. Office,

Java SDK, Eclipse including some major plug-ins.
• Disk space on file and web server.
• Backup Service.
• Login service and account management.
There is no central source code versioning service

available. This service is made locally by DESY-MST.

New Project Wizard
The “New Project Wizard” is a custom java application

available from the control system launch service. The

126

wizard enables a “quick start” to create a new project and
integrate it into the build and deploy process. A folder
structure is created and files are generated by the wizard.
Folders and files contain all information needed by the
build and deploy process to make an application available
for a console.

Build and Deployment
As at CERN [7] the “Build and Deployment” process is

made by ANT. The process consists of two parts. Part one
is a “Private Build and Deploy” project script. It is created
by the “New Project Wizard” in each new projects folder.
The “Private Build and Deploy” script declares four jobs
or public ANT targets to be done. Within this file inside
the project folder Eclipse is able to display these four
targets and use part two of the build and deploy process.
The second part is also an ANT script, the “Common
Build and Deploy” script. It implements the targets
defined by the project’s “Private Build and Deploy”
script.

Versioning
Subversion [8] was selected as code versioning system.

It is commonly used via Eclipse plug-in, but other clients
are also available. Source code is going to be committed
on every release of the project, irrespective of the kind of
release. If the project is released for production a new tag
is created.

Launch
The launch mechanism depends on “Java Web Start”.

Java Web Start consists of server and client parts. The
server has to support Hypertext Transport Protocol
(HTTP) and make available the Java Network Launching
Protocol (JNLP) [9] files and the required Java Archive
files.

The client computer has to provide a JNLP client. In
this environment the Sun Microsystems, Inc “Web Start
Client” is used. The client caches downloaded files if a
newer file exists on the web server. To start and run
already downloaded code the web server is not needed.

NEW PROJECT WIZARD
The New Project Wizard enables a developer to include

a new Project into the build and deploy process in an easy
way. The minimum information the wizard needs is

• Selection of the accelerator to which the new
application is dedicated.

• Selection of an available subsystem or the
name of a new subsystem.

• The name of the project.

Figure 2: Screenshot of the “New Project Wizard”

After collecting this information the wizard creates a
new Eclipse project with the following properties:

• A source folder with a default package
structure.

• Basic source files
• Subfolders for compiled sources, java doc

files, test classes, deployable files.
• Files to start and control the build and deploy

process
• Eclipse project files

BUILD AND DEPLOY WITH ANT
ANT is integrated into Eclipse. ANT targets are easily

startable by using the Eclipse ANT view. In this
environment four public targets are defined.

uc Build And Deploy Script

Build And Deploy Script

Dev eloper

Filesystem

Version Control System

Show Systems
Version

Create Trial
Version

Create Release
Version

Roll Back Release
Version

Commit Changes

Increment Current
Version

Copy to Filesystem

Test Softw are

Read Dev eloper
Env ironemnt

Create Version

Create
Documentation

Compile

Sign

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Figure 3: Public ANT targets and used private targets

Version Information
The target Version Information shows the version of
the build process. Because the implementation of the
build process will change, the user has to have an idea
of the state of the implementation.

127

Trial Release
Release for evaluation enables the developer to offer a

new version of an application without interfering with
accelerator operation. This target consists of the following
private targets

• Compile all existing sources.
• Execute JUnit [10] tests if available.
• Create jar Packages including sources,

resources and binaries.
• Commit changes into versioning system.
• Sign the package.
• Create JavaDoc [11] files
• Deploy to web servers

Production Release
Release for production releases the application for

accelerator operations. The next time the application or
lib is loaded; this new version will be downloaded from
the web server. Release for production extends the release
for trial to enable version numbers. Each release for
production increments the version number of the project
and creates a new tag in the subversion repository.

Rollback
Rollback is to be used to make the previous released

version of the project available for accelerator operation.

FURTHER DEVELOPMENT
One of the design goals of the build and deploy process

is the ability to change implementations in case of
increasing knowledge. The basic components like
Eclipse, ANT and Web Start are hardly subject of change.
It is also not easy to change the number and names of
public ANT targets in a large number of existing
independent projects.

Because the ANT script is split into “Private Build and
Deploy” and “Common Build and Deploy” sections it is
easy to change the implementation of the common targets.
Because the “New project Wizard” is launched via Web
start it can be updated frequently.

ANT script improvements
The first version of the ANT script was built to use

within Eclipse 3.1. The ANT tasks shipped with Eclipse
3.1 does not satisfy all requirements so some ANT tasks
had to be downloaded from the open source community.
Now Eclipse 3.2 is available. In contrast to the previous
version of Eclipse more ANT tasks are included inside the
current version of Eclipse. It must be checked whether
some of the separately downloaded ANT task are obsolete
or could be replaced by smarter ANT tasks shipped with
Eclipse 3.2.

Wizard integration
To increase development performance and maintain-

ability a device server wizard [12] was created. Up to now

they are separate projects. In future they should be
integrated with each other.

REFERENCES
[1] R. Bacher, P. Duval, S. Herb, U. Lauströer, R.

Schmitz, W. Schütte, “PETRA III TDR Chapter 3.12
General Control System”,
http://adweb.desy.de/mst/PETRA_III_Kontrollsyste
m/TDR_22_10_03.pdf

[2] Rüdiger Schmitz “A control system for the DESY
accelerator chains”,
http://adweb.desy.de/mst/Mst_content/Vorbeschleuni
ger_control_systems_1999.pdf

[3] Sun Microsystems, Inc, Java, http://java.sun.com/
[4] The Eclipse Foundation, “Eclipse - an open

development platform”, http://www.eclipse.org/
[5] Sun Microsystems, Inc, “Java TM Web Start”,

http://java.sun.com/j2se/1.5.0/docs/guide/javaws
[6] The Apache ANT project,

ANT, http://ant.apache.org/
[7] Grzegorz Kruk, CERN, AB/CO/AP , “Development

Process of Accelerator Controls Software”
http://icalepcs2005.web.cern.ch/icalepcs2005/Present
ations/14oct_Friday/FR2/FR2_5-6O.ppt,
ICALEPS 2005

[8] Tigris.org, Subversion, http://subversion.tigris.org/
[9] Java Community Process, “Java Network Launching

Protocol and API”, http://jcp.org/en/jsr/detail?id=56
[10] Junit.org, Junit, http://www.junit.org
[11] Sun Microsystems, Inc

Javadoc, http://java.sun.com/j2se/javadoc/
[12] Josef Wilgen, DESY, MST, “A Device Server

Generator for Control Systems”, See this
proceedings.

128

RF SYSTEM HIGH POWER AMPLIFIER SOFTWARE CONVERSION AT

JEFFERSON LAB

George Lahti, H. Dong, T. Seeberger

Jefferson Lab, Newport News, VA 23606, U.S.A.

Abstract
Jefferson Lab is in the process of converting the RF

system from analog RF modules and non-smart high

power amplifiers (HPAs) to digital RF modules and smart

HPAs. The present analog RF module controls both the

RF signal and the non-smart HPA hardware. The new

digital RF module will only control the RF signal, so the

new HPA must include embedded software. This paper

will describe the conversion from a software perspective,

including the initial testing, the intermediate mixed

system of old and new units, and finally the totally new

RF system.

HISTORY

The original HPA had no firmware. The

digital/ADC/DAC control was handled via the analog RF

Module and the EPICS IOC, or by the TACL Controller

in the early days. The IOC handled only the on/off digital

controls and, a few (3 or 4) analog monitored signals, and

one interlock. The RF Module handled all other signals,

both set points and measured values, as well as all other

HPA interlocks.

The present analog RF Module has two purposes. The

primary purpose is to generate stable RF that is amplified

by the HPA and sent to the RF cavity. The secondary

purpose is to do most of the software control of the HPA.

It has an embedded Intel 80186 processor using C

language software with no operating system, and was

developed in 1989. [1]

PRESENT PROTOTYPE GOAL

The goal for this part of the project, for both hardware

and software, is to cause as little disruption and change to

the whole RF system as possible, while testing the new

HPA prototype. All, or most, of the existing signal names

will remain the same, so that the screens remain the same,

except for any new functionality.

The HPA software that is in the RF Module will remain

unchanged. However, the interlock trip point software

limits will be set out of bounds, so that we will never get a

fault trip. The cable to the RF Module DACs will be

disconnected, and will go to the new hardware/firmware

HPA module. The cables to the old Module ADCs will be

disconnected also, and a "shorting" cable plug will be

used so that all the ADCs voltages are zero, ensuring that

there are no false interlock trips from the RF Module.

Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE

Contract No. DE-AC05-06OR23177. The U.S. Government retains a

non-exclusive, paid-up, irrevocable, world-wide license to publish or

reproduce this manuscript for U.S. Government purposes.

The Epics IOC Idle/Filament/High_Voltage/Rf_On

state machine will be modified, so that the Filament and

High_Voltage commands go to the new HPA module.

Since the present RF Module will not be altered,

"dummy" Filament and High_Voltage commands will

also be sent to the module, so that it can stay in sync with

the new HPA module and be able to go into the Rf_On

state (i.e. the present RF Module requires to be in the

High_Voltage state before it can go into the Rf_On state).

The original requirements are still to be used, but with

additions of new functionality that is provided by the new

HPA module. Also, as much as possible, we will reuse the

present RF module code that deals with the HPA.

Since the new HPA will have firmware, a new feature

must be added to the Epics state machine to keep it in

sync with the HPA hardware, when the user puts this

hardware into local mode. Any changes that the user

makes in local mode will have to be made to the state of

the Epics state machine, so that when the user goes back

to remote mode, there will be no bump. This bumpless

transition will also have to be honored for an Epics IOC

reboot, just in case the HPA was put into local mode and

changes were made while the IOC was turned off. When

the IOC is rebooted, it will read the state of the HPA

hardware and set the state of the IOC state machine to

match. This feature will allow the IOC to be rebooted

without turning off filaments or high voltage, which will

save time by not waiting for the filaments to warm up.

Since the new HPA module will handle all machine

protection interlocks for the HPA, there will be no

potential harm to the hardware when the IOC is off.

To roll back from the prototype, we would do the

following:

(1) Unplug the new cables and plug in the old cables.

(2) Roll back the software in the IOC via a reboot.

(3) Download the operational trip interlock levels to the

present RF modules. No reboot is required.

The prototype HPA module will communicate with the

Epics IOC via the CANS Serial Bus.

Three major items that are presently handled by the

Epics IOC or external UNIX programs will be moved to

the new HPA module.

(1) Miram filament voltage optimization process,

(2) Interlocking of run away klystron mod anode current

(KMAI) to protect the klystron hardware from damage,

and

(3) AC power line usage economization by varying the

mod anode voltage so that the klystron is not running at

full beam current when not needed for the present

operating point.

Three new major items will be added to the HPA

module, which the present system doesn't have: (1)

129

statistics, (2) full diagnostics mode, and (3) improved

fault recording.

The new HPA will keep statistics, such as the hardware

serial numbers, firmware version number, and on and off

times for both filaments and high voltage. These will be

stored both in the HPA module and in some external

database.

The new HPA will have improved diagnostics

capability and fault recording. The firmware and hardware

will be able to perform self tests, go into simulation mode

(with the required safety and hardware protection

interlocks), and run various diagnostic monitoring. There

will be high speed internal ring buffers for all key

hardware signals. When a fault (i.e. trip off) occurs, the

buffers will be turned off and an analysis done to see what

the first fault was and possibly what event caused it.

These buffers can be sent to Epics so that we can view

these waveforms on the screen.

FUTURE INTEGRATED GOAL

The final transition step would be replacing the present

analog RF modules with the new digital RF modules [2].

Then replace the prototype HPA module with the final

HPA module. The final HPA module will contain its own

built-in Epics IOC, and communicate over the Ethernet.

For any interlock communication between the RF module

and HPA module, there will be a direct hardware line, not

via Epics Channel Access. The goal is to keep the RF

running even if communication is lost with the main Epics

IOCs.

Since the digital RF modules only handle RF, it only

has two states: Rf_Off and Rf_On. The HPA state

machine will not have to send dummy states commands

that were needed for the present analog RF modules. This

state machine separation between the RF and HPA will

allow a cleaner user interface on the screens and better

organized maintenance and diagnostics.

By having both the digital RF Modules and HPA

module connected directly to the Ethernet, they can be

more self contained and independent from the rest of the

global Epics IOCs. That will improve uptime, since these

global IOCs could be rebooted without bringing the RF

system down, so not having to wait for the filaments to

heat up, nor having to turn off the accelerator beam in

some cases.

REFERENCES

[1] George Lahti, C. West, I. Ashkenazi, “Embedded

Software for the CEBAF RF Control Module,” Poster

compiled for Particle Accelerator Conference, San

Francisco, Calif., May 6-9, 1991. (PAC 91),

lahti@jlab.org

[2] C. Hovater el al, “High Gradient Operation with the

CEBAF Upgrade RF Control System,” 2006 LINAC

Conference, Knoxville TN, August 2006

130

ADVANTAGES OF THE PROGRAM-BASED LOGBOOK SUBMISSION GUI
AT JEFFERSON LAB*

T. McGuckin, Jefferson Lab, Newport News, VA 23606 U.S.A.

Abstract
DTlite is a Tcl/Tk script that is used as the primary

interface for making entries into Jefferson Lab’s
electronic logbooks. DTlite was originally written and
implemented by a user to simplify submission of entries
into Jefferson Lab’s electronic logbook, but has
subsequently been maintained and developed by the
controls software group. The use of a separate, script-
based tool for logbook submissions (as opposed to a web-
based submission tool bundled with the logbook
database/interface) provides many advantages to the
users, as well as creating many challenges to the
programmers and maintainers of the electronic logbook
system. The paper describes the advantages and
challenges of this design model and how they have
affected the development lifecycle of the electronic
logbook system.

INTRODUCTION and HISTORY

The “Downtime Log lite” (DTlite) was originally written
by an operator in the Jefferson Lab control room (MCC)
to assist in making reports of accelerator downtime to the
html-based electronic logbook. It was a very straight-
forward tool, allowing input of times, a location,
keywords, a description of the problem and capturing of
no more than two images.

Fig. 1: v1.0 of DTlite

 One of the key features of this earliest version of
DTlite was the ability to grab screen shots from the
EPICS computing environment. This allowed operators to
capture key information and diagnostic screens for system
experts to review later.
 This was accomplished by having DTlite (itself a Tcl-
script) execute a shell command to launch a screen
capture tool (xgrabsc) and save the picture to a file and
then inserting an html-reference to the file into the
logbook entry.
* This work was supported by DOE contract DE-ACo5-84ER40150
Modification No. M175, under which the Jefferson Science Associates
(JAS) operated the Thomas Jefferson National Accelerator Facility.

Other scripts were also available including a table
generation and data gathering script. Further incremental
changes were made over time to the script to provide
additional features.

Fig. 2: v3.0 of DTlite demonstrating several upgraded features

- Logbook Selection buttons across top allow entries to
multiple logbooks

- Static Area/Component/Problem menus provide clearly
defined guidelines for correct information

- Color coordination to provide easy visual identification of
log type (red = downtime)

In January of 2002 a major upgrade of the electronic

logbook was done, converting it from a series of linked
html entries to a full database structure.

Concurrent with this, version 4.0 of DTlite was
upgraded to be compatible with the new database logbook
structure. Version 4.0 also included dynamic menu
structures that were generated by querying the database
when a downtime entry was started.

 Several other features were also added shortly after
this:

- The old limit of two screen captures was
removed, allowing any number of pictures to be
attached to an entry

- Time checking to confirm that correctly
formatted and ordered values are provided

- Enhance email functionality (to email entries to
system experts)

- Linking of entries so that similar entries contain
links to each other in the database

The next major change occurred in August of 2004

when the Jefferson Lab control room was renovated and a
new video display wall was added.

This change required several feature upgrades to
DTlite. The most important of which was the ability to
“share” open log entries such that one operator could start
an entry, then it could be stored (referred to as “walled”
because the entries are pushed to the display wall) and

131

then fetched by another operator to be updated/submitted.
This was especially important for entries that would span
multiple shifts and therefore had to be stored somewhere
other than on a user’s local account.

Fig. 3: Renovated MCC control room featuring the Display Wall.
Operator #1 can “wall” an entry; later Operator #2 can “fetch” the entry,
modify it, “re-wall” it or submit the entry to the logbook

 Along with this upgrade several tools were added to
retrieve “lost” entries (due to machine crashes or
accidental user action).
 One of the most important features that were
developed in this same time period was the addition of
system-expert-provided guidance to the problem reporting
system of DTlite. The purpose of this system is to provide
a first-level of support for operators for common
problems encountered in the accelerator.

Fig. 4: For a given component selection for a problem report, experts
can make guidance available, either on what information to gather, or on
how to troubleshoot the problem

 Shortly after this (Sept. 2004) the DTlite program was
added to the cvs-based Control System User Environment
(CSUE). Incorporating DTlite into CSUE allowed for
greater versioning control and, more importantly, tracking
of changes to the script.
 Several other features have been added over the last
two years to increase DTlite’s functionality;

- the ability to attach files (allowing for
attachments other than pictures)

- behind-the-scenes work to compartmentalize
different aspects of the code (increased stability)

- the ability to include a caption with each picture
to further enhance information capture

- expanded guidance feature for problem reports to
include guidance/entries from previous, similar
problem reports

- replacement of HP’s screencapture tool with a
cross-platform xsnap utility, allowing DTlite to
be run natively on OS’s other than HP-UX

ADVANTAGES

Using an external program (as opposed to an

html/java-based program bundled with the web browser
used to view the electronic logbook) has provided many
advantages to the Jefferson Lab accelerator environment.
Likewise the utility of that program has expanded greatly
over its lifetime, which has been largely possible because
of the script-based nature of the program.

Script-based – There is a minimum of overhead in
running the script. As opposed to having to launch a web
browser (for an html or java-based utility) or some other
wrapper utility, all that DTlite requires is that Tcl/Tk be
built/installed on the computer. Likewise launching the
application is simply an xterm command or a wrapper
script launched through some method.

This also allows DTlite to use the tkispell spell-
checking package built for Tcl/Tk with a minimum of
effort or extra work. This allows for a more professional
looking logbook overall.

Screen grabs – One of the biggest advantages of the
DTlite script is the ability to launch a screen grab utility
to capture screen shots and submit them to the logbook.
This has proven to be an invaluable tool for capturing
accelerator information (such as the machine state and
any error signals) into the logbook. This greatly enhances
the ability of system experts to investigate (and ultimately
solve) problems by examining various screen shots taken
at the time of the problem.

Fig. 5: DTlite screenshot showing two example picture grabs that could
be submitted to the logbook to record machine state information

 Script launching – Because of the script-based nature
of DTlite, it is very easy to launch any other script from
within the program. All that is required is a wrapper
command and an additional entry in the “Helpers” menu.
Likewise DTlite can be launched by another script with
values for certain fields (Area, Keywords, Body) filled in.

132

This allows data to be gathered by a script and then input
into a DTlite launched by the script that the user can then
add additional information to, or simply submit.
 Writing these scripts is also very straightforward, and
many users and operations staff have written helpers for
DTlite that have later been incorporated officially into the
production version. The ease of programming either in a
shell language or Tcl/Tk (both of which DTlite can
execute from the command-line) contribute to the utility
of the script.
 Sharing entries – It is very easy for Operations staff to
share entries or move them to be stored on the Display
Wall using utilities written for DTlite. This functionality
is critical to machine operations both from an information
sharing perspective, and also because entries can often
span multiple shifts, requiring a new operator/crew to
have a method for accessing on-going entries.
 Caching of information – Because DTlite is run
locally (as opposed to being from an app located on a
website that has to be connected to) entries can be created
and submitted even if the database or network is down.
The entries are then stored locally, and when the
network/database is available again, a cronjob runs that
flushes all the back entries and inserts them into the
database.
 Likewise, because DTlite is running locally and is not
part of a (stateless) webpage app, it is a simple matter for
on-going entries to be temporarily saved (in a secure
location on the system). This allows for recovery of lost
entries due to system crashes or user error.

CHALLENGES

 Along with the advantages of maintaining the script-
based DTlite program there are, of course, several
challenges that are created by this model.
 Cross-platform script availability - The first challenge
that comes up is that not everyone can run the script.
Windows machines don’t generally have Tcl/Tk installed,
and so can’t run DTlite. Likewise there has to be some
facility for making entries from locations “off-site” from
the lab (for on-call assistance from home, for example).
Because of this a more widely accessible web-based log
entry program has to be maintained. While this program is
not required to have all the features of DTlite (no screen
captures, for example), there must be some parallel
development and maintenance between the two programs.
 Efficiency of script functions - Another challenge to
overcome is based in the scripting-language of DTlite.
Some functions performed by the script can take a
noticeably long length of time. For example, when the
Area, Problem and Component trees are built for Problem
Reports (see Fig. 2); the tree structure must be parsed and
built. This can take a noticeable length of time (5-10
seconds) and can slow down work in the control room if
they are trying to gather information.
 As these trees become more refined and are expanded,
the time issue becomes more important to address. At
some point it could become the case that the trees will be

so large that the current parsing method will no longer be
viable. New techniques (such as storing a “live” tree list
locally, rather than re-generating it each time a new
DTlite is launched) are under investigation to address
these processing overhead issues.
 Keeping users updated - DTlite is a heavily used tool
and it can often be a challenge to keep all users up-to-date
with changes to the script (both changes to core features
and newly added features). This has resulted in cases of
new features being reported as errors (for example,
tightening up security on who can make entries can result
in users reporting that they can no longer make entries,
because they have not yet been authorized, or don’t know
the proper format in which to provide their login), or
simply not being utilized because users have not realized
they were available.
 Dissemination of information across groups in a
facility is always a challenge for any organization.
Various techniques (email, update reports, logbook
entries, and face-to-face meetings) have been used and
new methods are constantly being explored.
 Encouraging the of provided tools - Just as
dissemination of information across groups can be a
challenge, buy-in by system experts from multiple groups
has also been a challenge. Features like Guidance for
common problems, Problem Report tree structures for
Area/Components/Problems, and Helper applications are
only as effective as the system experts that maintain the
data for them.
 Several techniques have been used to encourage
system experts to make use of the tools available. The
most obvious technique is to demonstrate how providing
guidance for the control room operators can decrease the
amount of time that system experts have to spend
troubleshooting common (and often easily fixable)
problems and minimize how often they are called.
Likewise having accurate Problem/Component trees for
the Problem Reporting increases the accuracy of the PR
and cuts down on the amount of “back-tracking” system
experts have to perform to understand what happened
during a problem report.

CONCLUSION

 Maintaining a stand-alone Tcl application for making
logbook entries has created its fair list of challenges.
Many of these resulted because the project was begun as a
side project and didn’t receive a structured development
life-cycle for many years. But as that life-cycle has been
applied and new features have been added, with existing
features being upgraded and improved, DTlite has
continued to be an invaluable tool for information
collection and logging in the accelerator environment.

133

MANAGEMENT IN TEMPERATURE OF RF- CAVITIES
OF VEPP-4M ELECTRON-POSITRON FACILITY

E.G. Miginskaya, I.I. Morozov, V.M. Tsukanov, A.A. Volkov, BINP, Novosibirsk, Russia.
.

Abstract

Temperature variation of RF-cavities leads to a change

of their geometrical sizes that provides undesirable cavity
modes and to excitation of phase oscillations. It leads to
decrease in luminosity and a beam life time.

Flowing water heaters with stabilization of temperature
have been established for elimination of this
disadvantage. Temperature probes LM335 were used with
a sensitivity of 10 мV per degree centigrade. The power
part is made on the controllable switches CPV240. The
analysis of temperature of input and output temperatures
of water is carried out by microcontroller ADAM
connected to a computer by means of interface RS-485.

The temperature variation have been reduced from 5 to
0.2 degrees centigrade. That has led to decrease in
probability of occurrence of parasitical phase oscillations
more than in 100 times.

INTRODUCTION

VEPP-4M is the collider with the high energy beams of
electrons and positrons [1]. The operating mode with two
bunches of electrons and two bunches of positrons has
been realized at VEPP-4M collider. Probability of
occurrence of phase fluctuations of bunches was
increased with the bunches number. Principal reason of
occurrence of phase fluctuations it re-tuning RF cavities
due to change of the geometrical sizes because of change
of their temperature. Life time of a beam was decreased
with increase of amplitude of phase fluctuations.
Transversal beam size was increased too.

The method measurement of a level of phase
fluctuations was described in paper (2). The precision
measuring of temperature was described in paper (3, 4).
The typical levels of phase fluctuations and luminosity
are presented in Fig. 1 in case of absence of stabilization
of RF cavity water cooling temperature. The temperature
variation of water exceeded 20 С, that leads to increase in
a level of phase fluctuations and to reduction of
luminosity. Simultaneously big losses of particles are
dangerous for the drift chamber of the detector the
KEDR.

THE TEMPERATURE STABILIZATION
SYSTEM

For stabilization of temperature of resonators the
flowing heaters have been developed, allowing to keep
the set temperature with accuracy of 0.05-0.1 degrees
centigrade. Water flow rate is about 10 l/min.

The temperature of water is measured on an input and
on an output of a heater by means of probes, and
processor ADAM operates switches CPV240 to set
required power of heating. The sensitivity of LM335
probes is about 10 mV per degree.

In figure 1 a photograph of a heater is shown.

Figure 1: The photograph of heater.

In figure 2 a photograph of ADAM controller and

switches CPV240 is shown.

Figure 2: ADAM controller and switches CPV240

134

In figure 3 the circuit of a heater is shown.

CPV240 ADAM
Power
source

Tin Tout

LM335
10 мV/deg

Heater
12 kW

380 V 220 V
RS485

CPV240 ADAM
Power
source

Tin Tout

LM335
10 мV/deg

Heater
12 kW

380 V 220 V
RS485

Figure 3:The circuit of a heater

For connection ADAM with control room of VEPP-4M
is used interface RS-485. The temperature variation have
been reduced from 5 to 0.2 degrees centigrade. That has
led to decrease in probability of occurrence of parasitical
phase oscillations more than in 100 times

REFERENCES
[1] E.Levichev, A.Bogomyagkov, V.Kiselev,

O.Meshkov, N.Muchnoi, A.Naumenkov, S.Nikitin,
D.Shatilov, E.Simonov, A.Skrinsky, V.Smaliuk,
G.Tumaikin . VEPP-4M Operation at Low Energy
The 3rd Asian Particle Accelerator conference, Hotel
Hyundai, Gyeongju, Korea, March 22-26, 2004.
THM-204.

[2] O. I. Meshkov, A. V. Bogomyagkov, F. Gurko, A. N.
Zhuravlev, P. V. Zubarev, V. A. Kiselev, N. Yu.
Muchnoi, A. N. Selivanov, A. D. Khilchenko.
Application of the beam profile monitor for VEPP-
4M tuning . 7th European Workshop on Diagnostics
& Instrumentation for Particle Accelerators
(DIPAC’05), June 6 – 8, 2005, Lyon, France,
POM008.

[3] M. Gluhovchenko, V. Kaplin, A. Kvashnin, I.
Morozov. The precision control of temperature
VEPP-4M accelerator facility. The 5th International
Workshop on Personal Computers and Particle
Accelerator Controls. 22 - 25 March, 2005. Hayama,
Japan.

[4] V.Kaplin, S.Karnaev, I.Morozov, O.Plotnikova. The
precision measuring temperature system of the
electron-positron collider VEPP-4M. RUPAC06,
September 10-15, Novosibirsk, Russia.

135

SNS IOCS USE OF RELATIONAL DATABASE TO SUPPLY

CONFIGURATION FILE

J. David Purcell, ORNL, Oak Ridge, TN 37830, USA

Wim Blokland, ORNL, Oak Ridge, TN 37830, USA

Andrei Liyu, ORNL, Oak Ridge, TN 37830, USA

Jeff Patton, ORNL, Oak Ridge, TN 37830, USA

 Tom Pelaia, ORNL, Oak Ridge, TN 37830, USA

Alexander Zhukov, ORNL, Oak Ridge, TN 37830, USA

Abstract
The Spallation Neutron Source (SNS) Project’s Controls

group has implemented the use of our relational database

as the source of the IOC configuration files. There are

almost 500 IOCs deployed at SNS with several variations

of operating system and configuration file formats. Until

recently, the configuration of these IOCs was left to the

individual IOC engineers. Now, new database structures

have been created to capture the data contained within the

configuration files. New interface tools allow IOC

engineers to manipulate their configuration data within

the database. After manipulation of the data, the IOCs are

triggered to load the new configuration. This paper

describes the current experience the steps taken to get it

implemented, and plans for the future.

1 OVERVIEW OF SNS RELATIONAL

DATABASE (RDB)

The Spallation Neutron Source (SNS) has deployed an

ORACLE-based RDB. The RDB was developed to

support many different aspects of the SNS project. This

includes but is not limited to data structures that support

project administration, equipment installation, SNS

operations, project documentation and the SNS control

system. Because the RDB spans many areas of the SNS

project, it has become the central storage area for a vast

amount of data and it is considered the main source for

information and support data.

Those working with the control system have tried to

take advantage of this. The control system “area” within

the SNS RDB is the most developed. Many different

types of data have been captured. The RDB contains

beam line equipment support data, networking data,

installation data, calibration data, machine setup data,

machine protection system (MPS) data and input output

controller (IOC) data. Using the power of the RDB, we

can provide a data summary pertinent to anything related

to the control system. An example of this would be that

we can show what process variables are related to a

particular shipment of IOC processors. We can also

enforce hardware relationships. We can show that certain

connectors have to be used with a certain cable or that a

piece of equipment has no open ports. An example that is

specific to our initial use of the RDB and the

configuration of an IOC is that we can change a channel

used by a beam line detector and push that change,

through related hardware connections, to the MPS

configuration that is used.

2 THE RDB REAL-TIME SUPPORT OF

DISTRIBUTED CONTROL SYSTEM (DCS)

The distributed control system (DCS) employs

objects that require support data to operate. Because the

RDB holds all of the data required (or should), using the

RDB to supply data is a natural choice. It can become the

single source of information and data used by the DCS

(Figure 1). Advantages of one information source include

the ability to synchronize the different objects of the DCS,

including IOCs/Servers/FECs, OPI/Clients, Alarm server,

and Error server. The RDB also increases the ability to

control the configuration of the distributed objects and

allows tools to be built that can manipulate the RDB

contents.

Traditional communication between the RDB

and a specific DCS object can be relatively easy, but

communication becomes extremely difficult when looking

at the DCS as a whole. The DCS objects are based on

different operating systems (OS) including Linux, Mac

OS, Windows, vxWorks, and others. The RDB can also

be based on different implementations (ORACLE, MS

SQL, etc.). Expanding on a traditional approach, each

combination of OS/RDB would require a special RDB

driver for each OS. These multiple combinations create

configuration control, maintenance, and portability issues.

RDB

IOC/Server/FE

Machine

Client/OPI

Other clients

Alarm server

Error server

Timing server

MPS server

Figure 1 Traditional use of RDB with distributed

control system

136

A simpler solution (Figure 2) adds a web server

between the DSC's object and the RDB. The web

server can be any suitable OS (Linux, MAC OS or

Windows). With this solution there are two interfaces.

The first is the DCS's object to the web server

interface. It is based on TCP/IP protocol. The TCP/IP

protocol is supported by the socket library on any OS.

Using the HTTP protocol on top of Socket library

expands the interface and allows the connection to the

RDB. The second interface is from the web server to

the RDB. This interface is a standard solution. The

bundle of web server and database server is widely

used in different web applications such as online

catalogues, electronic commerce, etc. There are many

implementations (including open source) of this

interface. The most standard are Apache web server +

PHP module talking to MySQL database. Java-oriented

developers can use Apache Tomcast web server with

JDBC drivers for any Java enabled database. The

Windows people can rely on Microsoft .NET

technology. In all cases, specific implementation is

developer choice and doesn’t affect the DCS side, so

migration between different databases and/or web

servers is fairly easy.

3 SNS IMPLEMENTATION

SNS has deployed approximately 500 IOCs

within its control system. And although many of these

IOCs are similar in the hardware configuration, each of

them has a unique purpose. An IOC’s uniqueness is

established based on its software and specifically on

certain files that are read during the boot process.

Because the SNS control system is based on the

Experimental Physics and Industrial Control System

(EPICS), we use the EPICS standard configuration files

(st.cmd, *.substitutions, *.db, etc). These files are used

on our traditional IOC implementations, and they

impart the IOC purpose. We also have deployed IOCs

that use LabView to create the EPICS configuration

files. These LabView-based IOCs use a single text file

to establish uniqueness. All of the files discussed here

can be referred to as configuration files.

To test the web server-to-RDB solution, it was

decided to use it as a means to retrieve RDB data,

specifically the configuration files for EPICS IOCs. As

said above, during the boot process, the IOC uses the

configuration files to form the IOC’s identity. These

files are usually stored on the IOC’s hard disk. It was

decided to develop a protocol to support file operations

with ORACLE RDB, Web Server, and IOCs. The RDB

stores these required files. Now the initial process

during boot is the communication with the web server

and consequently the RDB causing the transfer of

required files to the IOC’s hard disk. After the transfer,

the IOC continues its usual boot process. Files can be

manipulated at the engineer’s convenience and then

implemented with an IOC reboot.

4 RDB TABLE IMPLEMENTATION

The SNS RDB is based on ORACLE and is

extensive in its schema design. To increase our

flexibility with the configuration files, quite a few

tables were added to the schema. These new tables

give us version control and rollback functionality, but

the main table used with this solution has columns that

capture the IOC name, file name, file path, and file

contents. This table is updated via stored procedures

and triggers within the database. This allows the data

that is contained within a configuration file to be

controlled and easily manipulated but gives the web

server-to-RDB protocol a single place to retrieve an

IOC’s files.

4.1 Software
The IOCs are modified to use a client library named

HttpClientLibrary.c, which is based on an EPICS

socket library (from EPICS Com library). The library

should work on any EPICS-supported OS and has been

tested with Windows and vxWorks.

Implementation of the IOC to use the web

server protocol on the Windows platform was done

DCS's object RDB

HTTP

Socket Library

TCP/IP

Web server – RDB

connectivity: PHP, JSP, ASP

Web server

DCS's object

DCS's object

Figure 2 Solution structure

137

with the use of software already used at SNS.

Originally, a C library (HttpClient.dll, EPICS com.dll)

was used. This worked well in our test environment

but was dropped because the implementation of the

library was difficult. The windows-based IOCs vary in

both version of LabView and EPICS. Maintenance of

the library was complicated, and this was compounded

with different version combinations. An independent

LabView virtual instrument (VI) was written as a

result. This VI, HttpClient.vi, was written using the

pure LabView internal socket library. This one VI can

be modified for any version of LabView and then

called as part of the boot process of any LabView-

based IOC.

A nice extra with the LabView-based IOCs is

that they can be triggered via an EPICS process

variable (PV) to download a new configuration file

without rebooting. The engineer that is modifying a

configuration file uses the tool that interfaces to the

database to also modify a PV. This PV is monitored by

the IOC, and when the IOC sees the change, it

implements the HttpClient.vi to get the new

configuration file and imports its new configuration on

the fly.

To enable this functionality in vxWorks, the

library is loaded by inserting the following lines after

“< cd Commands” in the st.cmd file.

hostAdd("RDBServer", "172.31.75.144")

hostShow()

iFGetFilesByHTTP("RDBServer:8080")

4.2 Process Definition
To download the IOC required configuration

files, a simple progression is followed. In short, the

IOC initiates a request to the web server. The web

server determines the number of files required for the

specific IOC, and then through a second request

downloads the files from the RDB. The IOC then

receives the files from the web server.

We use a simple, pure java web server

implementation. Although any commercial web server

could be used, we found that having a small java server

gives us some nice tools to troubleshoot any problems.

This web server is capable of processing html,

graphics, and text files. While processing these files,

the server reads the content of the file and substitutes

variable names with parameters provided in the URL

string and runs the result string as a database query.

The web server returns the query execution result in a

plain text format.

Initializing the process, an IOC requests the

web server to “GET /FileList.sql”. The IOC’s request

tells the web server to create a call to the RDB for a

summary of file information specific to the IOC. The

web server request is a simple SQL statement or

something like “select config_file_id,

config_file_name, config_file_location from

ioc_file_table where IOC_network_name =

'$(IOC_NAME)'”. In this query, we have one

parameter $(IOC_NAME) that is substituted by the

client hostname or as a URL string parameter. The

returned list of files contains lines (one line per file)

separated by <CR><LF> (this is critical for LabView).

The IOC then requests the files using the file ID, one

by one following the previously returned list. The file

request query is “select contents from ioc_file_table

where config_file_id = $(file_id)”.

As one can see, the IOC deals with two types of

requests and has no idea that the results are coming

from an RDB. It is easy to modify the web server to

serve the files from any other sources without any

change at IOC level.

Testing of the web server and RDB can easily

be done. Using an internet client, like Internet

Explorer, different URLs can be entered to query the

RDB. From the browser on an IOC, the URL

“http://ics-srv-test1.sns.ornl.gov:8080/FileList.sql” can

be used to retrieve the list of files available in the

database. The URL “http://ics-srv-

test1.sns.ornl.gov:8080/GetFile.sql?FILE_ID= 295” is

an example of a request for the contents of the file with

the ID of 295. If an IOC doesn’t have an internet

client, any other computer with an internet client can be

used to test. Using an URL with a suffix, like

“?REMOTE_SHORTNAME=pc62273”, the database

is queried for data related to the network name. Add in

the suffix, in this case “pc62273”.

4 CONCLUSIONS AND FUTURE PLANS

The protocol that allows an IOC to access our

RDB via a web server has given us a powerful tool and

the ability to take advantage of its functionality in

many ways. We have taken advantage of a central

storage area for our configuration files, and it has more

than just saved us time. We now have the ability to use

standard RDB tools to manipulate the data contained

within the files. We have also expanded the structure

of the RDB to track data related to usage of the files.

The use of this protocol also lends itself to uses beyond

configuration files. The SNS database houses data

related to all of SNS and any computer can use these

libraries to retrieve relevant information.

138

Control System Using FL-net for Communication between Different PLC

Akihiro Osanai
Kyoto University, Kyoto 606-8501, Japan

Abstract
The control system using PLC and LabVIEW on PC is

constructed for an FFAG accelerator complex in KURRI
(Kyoto University Research Reactor Institute). Consider-
ing to build another control system into a current system in
future, we contrived the system having two-type PLC (FA-
M3 and MELSEC) connected each other through FL-net,
which is an open network supporting cyclic data transfer.
We introduce a successful example in the case of applying
the system to the ion source of the FFAG accelerator.

INTRODUCTION
The FFAG accelerator complex in KURRI has a control

and interlock system constructed by PLC (Programmable
Logic Controller) and LabVIEW. PLC and LabVIEW are
used as low and high level sequence controller respectively.
For convinience of making sequencing programs and main-
tenance, the system was unified by using same vendor
PLC, FA-M3 manufactured by Yokogawa Electric Corpo-
ration [1]. As planned extension of transport beam line, we
might need to install devices controlled by the ohter ven-
dor PLC in future. Figure 1 shows the schematic diagram
of the control system consisting of multi-vendor PLC. In
that case, we will face problems of response to the differ-
ent interfaces at high level control. To avoid that, one solu-
tion is replacement of PLC with our familiar FA-M3. We
had an idea making different vendor PLC connected and
share their data each other through FL-net, Installing me-
diating PLC, interface conversion is implemented at high
level control without any changes at low level sequence
control.

Figure 1: Schematic diagram of the control system con-
structed by multi-vendor PLC. This system is required
adaptations to multiple interfaces of PLC at high level se-
quence control.

The FL-net, which was initially developed by MSTC
(Manufacturing Science and Technology Center), was
transferred to JEMA (Japan Electrical Manufacturers’s As-
sociation [2]) and standardized as the controller level net-
work. Following is main features of the FL-net.

• Open network, which realizes communication among
control devices

• Physical layer is Ethernet.
• Master-less and token bus method is adopted.
• Cyclic transmission is available.
• Common memory is constructed on the virtual mem-

ory space.

These features helped us adopt the FL-net. In the na-
ture of the control system, high speed and large quan-
tity data transmission, reliability of the system and high
cost performance were required. Ethernet cables such as
10/100BASE-T/TX are available as transmission media.
Master-less method prevents failure of the specific node
from causing system down. Communication performance
is guaranteed by token bus method and cyclic transmission.
Data is refreshed within 50ms among 32nodes. Figure 2
shows a schematic diagram of the control system using FL-
net. Sharing data on the FL-net, the interface between PC
and PLC is unified.

To confirm this system working out well, we applied it
to the ion source of the FFAG accelerator. In this paper, we
describe the details and successful result.

Figure 2: Schematic diagram of the control system using
FL-net. This system keeps unification of the interface of
PLC at high level sequrence control.

139

Figure 3: Framework of the ion source control system using FL-net.

PREPARATION

Hardware Connection
The framework of the ion source control system is shown

in Figure 3. MELSEC manufactured by Mitsubishi Elec-
tric Corporation [3] was used for the ion source as PLC.
To prevent from the electrical noise and radiation damages,
main PLC including CPU and FL-net module was con-
nected through fiber optics cable to slave module blocks
controlling power supplies on high voltage. The FL-net
module of MELSEC communicated with that of FA-M3
through exclusive Ethernet cable for FL-net. FL-net can
not be mixed with conventional Ethernet. Mixture of the
network would cause serious communication failure. Op-
erators could control the ion source using control software
on PC through FA-M3 on Ethernet.

FL-net Setting
The FL-net setting on PLC is very easy. Local IP ad-

dress on the FL-net and common memory should be set.
The last 8bit of the IP address corresponds to number of
the node. We allotted 192.168.0.1 and 192.168.0.2 for FA-
M3 and MELSEC respectively. Common memory space is
virtual memory space that can be accessed by all connected
nodes. Allocated data area of each PLC as common mem-
ory space, it looks like a single PLC viewing from high
level sequence. The concept of the common memory is
shown in Figure 4, and an example of register allocation
is shown in Table 1. Buffer memory (MELSEC) and link
relay (FA-M3) were used as common memories.

Software
LabVIEW was used as a software for communication

with PLC and high level sequence control. The software
has powerful graphical development environment for mea-
surement and control program. We can use it without
knowledge on programming and special training.

PERFORMANCE
The control system was performed linking PC by both

connections, wired and wireless. Cyclic period for read-

Figure 4: Concept of common memory. A single PLC is
constructed on the virtual memory space.

Table 1: Example of Register Allocation
node1(Bit) Buffer Memory Link Relay
FA-M3 → MELSEC (MELSEC) (FA-M3)
H2 valve open 0x1C00(01) L0001
mass flow remote 0x1C00(11) L0011
50kV output on 0x1C01(01) L0017
Arc output on 0x1C01(11) L0027
Arc mode auto 0x1C01(13) L0029
master start 0x1C02(01) L0033
master stop 0x1C02(02) L0034
master reset 0x1C02(03) L0035
100kV output on 0x1C02(11) L0043
bias remote 0x1C03(01) L0049
bias output on 0x1C03(03) L0051

ing data was set 200ms on LabVIEW. The control moni-
tor on PC is shown in Figure 5. Setting parameters are in
white boxes and the responses are in yellow. The graph
on the picture is real-time chart of acquired data. In con-
tinuous operations, system worked out well under this cir-
cumstance. Futhermore using the software on the portable
PC, through wireless LAN, we could control devices some
time in the control room and another time in the accelera-
tor’s room for test operation.

140

Figure 5: Capture of control monitor on the PC

SUMMARY
The control system using FL-net has been easily in-

stalled (and it is still applied to operation of the ion source).
This will help unification of interfaces at high level se-
quence without any changes at low level sequence.This
achievement could allow flexibly to build system that is in-
dependant of PLC vendor.

REFERENCES
[1] http://www.yokogawa.com/

[2] http://www.jema-net.or.jp/English/

[3] http://global.mitsubishielectric.com/

141

COMPACT MONITORING AND CONTROL SYSTEM WITH

EVENT SIMULATING

Vinogradov V.I.

INR RAS, Moscow, Russia.

.

Abstract
Problems of event recognition, registration and analysis in

real time with embedded modeling and simulating event

signals are general for many applications. Proposed

effective compact system architecture with embedded

SBC and DSP-based measurement and control modules

can be used effectively as autonomous station or terminal

node in distributed network for monitoring, registration

and control system.

1. Introduction to Event Registration

Event recognition and analysis systems are connected

with general problems of monitoring and registration

signals for data analysis and control in real time. Any

events are abnormal signals recognized by system on

special algorithms in real time as critical situations with

monitored objects. Special front-end electronics are

required for any applications. The nature of any objects

(engineering or biomedical) is no means, becouse all

situations are reflected in specified signal processing

algorithms. It can be an object, which critical status

reflected by some number of abnormal object signals.

Recognition of events on many periodical signals can be

done by minimum or maximum limits of each normal

signal or by special addition signal forms analysis of

abnormal signals. At the same time system should select

signals from any noise. As regards to engineering objects

events should be recognized in very short time limits and

registration should be done during time interval before

and after the events occur. Many signal recognition and

registration algorithms can be described by some number

of control parameters in software.

Event registration with modeling and simulation should

be executed in compact modular system, working in real

time. An object critical situation can be described as the

event by a number of abnormal signals.

2. Compact modular RT-system Architecture

Recognition Event parameters provide discovering of the

event signals. All of these signals can be registered from

real object in real signal data files and collect in file

server for analysis. At the same time all this events can be

modeling and simulating in the same instrumentation

system to study and predict any critical state of

engineering objects. Collection of real and modeled

events in server can be used as knowledge base for future

prediction critical state and for optimal control of the

engineering objects. In this case simulated events should

be registering in the same instrumentation systems as

monitoring events.

Each node should content SBC and DSP-based subsystem

modules for measurement and control in real time. All

interconnected compact terminal nodes should work in

Distributed Network according to real time requirements.

Required numbers of compact nodes can be used for

monitoring, registration and analysis more complex

distributed engineering event signals. Supervisor station

as the central node in Distribution system can be used

for modeling and simulating event signals in autonomous

mode or for distribute simulated parts on selected

terminal nodes fro simulating complex event and

registered them in he same environment.

Embedded SBC modules for open compact system

architecture can be based on different bus architectures,

including VME/VXI and cPCI/PXI, which formats offers

some advantages. Compared to VME (3U), cPCI (3U) are

more cost effective systems. The backplane approach

makes maintenance and upgrading of 3U cPCI modules

simpler. The cPCI/PXI bus supports 32-bit or 64-bit data

transfers in both single- and double-wide boards. The

cPCI’s (3U) bus performance is superior to 3U VME. The

cPCI/PXI enables system flexibility extending the PCI

slot limit from 4 to 8 cards. The cPCI for industrial fields

(like VME) and PXI – for modular Instrumentation

Systems (like VXI) are based on passive backplane. The

cPCI/PXI boards support I/O for Industry automation,

which requires distributed I/O, and the Field Buses for

DAQ and Control, monitor, and report on processes, but

have high price.

 Proposed Modular strategy concept in system design is

based on compact RT-system core with effective modular

structure and minimal I/O channels for registration of

signal waveforms in real time, discovering some events as

abnormal status of object and registered data before and

after the events occurred according to special algorithms.

142

Each compact RT-system node for monitoring and control

can be effective (performance/ price) for using with up to

8-16 input signal channels and two analog output channel,

up to 32-64 digital signal I/O and should be based on

typical SBC and DSP-based measurement and control

modules. The modular approach is based on embedded

passive 3-4 PCI slots bus for low-power SBC and 1-2

DSP-based modules, embedded in the box. Collected real

waveform signals as the events in files for analysis can

help to discover any risk situation in complex

environment and use optimal control algorithms. The RT-

system as core network node includes embedded passive

3-4 PCI slots passive bus with SBC and DSP-based

typical instrumentation modules. Control functions

include switching off some part o object (equipment) at

the moment of event occur.

 Effective (performance/cost) very compact modular

system today can be constructed on passive PCI bus with

only 3 PCI slots for SBC and DSP-based measurement

and control nodules. Such system can be embedded in

special box with signal conditioning and used as

autonomous or as terminal system (node) in distributed

network architecture. Multi channel analog I/O can be

used for simulating of the signals modeling by software

and for registration on all input channels as real event

signals for analysis. Dimensions of SBC – 185*122 mm,

power supply - 5V (1.8A). Supervisor node has full

functions as Terminal node in autonomous mode or can

be used as central supervisor node with central signal

generator functions. Autonomous system includes event

signal registration, control, simulation and visualization.

 Modeling and simulating tasks should work in the same

compact modular system in real time. Such system can be

used as autonomous monitoring and control station with

embedded modeling and simulating event signals.

Complex events can be connected with many distributed

objects. For these problems many compact computer-

based nodes should be integrated in single Distributed

system on the base of switched network architecture.

3. Embedded Modeling and Simulating

A lot of basic RT-system works as Control terminal

station (TS network node) can be used in the Distributed

scalable system for monitoring and control of complex

objects. The instrumentations can be used also for signal

events modeling and simulating. Engineering event

signals are described on examples of Industrial

Engineering object signals. There are different monitoring

and control devices in energetic, including signal and

event registration, relay protection, signal modeling and

simulating. They shipped usually as independently black

boxes for professional users, which required open systems

to analyze real situation with object status to construct

special optimal algorithms for event discovery and

control. Now it is possible to construct the system jointing

registration and control functions in a single RT-system,

monitoring and registering abnormal signal forms before

and after the event moment for analysis and control.

Algorithms to discover the events can be constructed in

the same instrumentation system and tested with special

object environments. This compact modular approach can

be used also for any distributed modular systems with

multimedia real-time requirements (audio, video)

transmissions and control on the base of network

switched architecture for real time applications.

 Embedded modeling and simulating event signals can

help in construction and testing special new algorithm for

optimal control in the same instrumentation system.

According to constructed model simulating by internal

generator the node can register periodical signals with

event modeling and display them on the monitor for

analysis the same way as real signals and events

registering. Special testing of all analog and digital

channels can be done by switching input, testing and

simulating signals in special front-end signal condition

device. Embedded Modeling and Simulating in

Distributed system can be based on parallel using of

selected number of TS for distributed complex event.

Each TS has embedded DSP-based module with DAC for

simulating event signals. For high-precision simulating

should be used special independent

3. Embedded Modeling and Simulating

A lot of basic RT-system works as Control terminal

station (TS network node) can be used in the Distributed

scalable system for monitoring and control of complex

objects. The instrumentations can be used also for signal

events modeling and simulating. Engineering event

signals are described on examples of Industrial

Engineering object signals. There are different monitoring

and control devices in energetic, including signal and

event registration, relay protection, signal modeling and

simulating. They shipped usually as independently black

boxes for professional users, which required open systems

to analyze real situation with object status to construct

special optimal algorithms for event discovery and

control. Now it is possible to construct the system jointing

registration and control functions in a single RT-system,

monitoring and registering abnormal signal forms before

and after the event moment for analysis and control.

Algorithms to discover the events can be constructed in

the same instrumentation system and tested with special

object environments. This compact modular approach can

be used also for any distributed modular systems with

multimedia real-time requirements (audio, video)

transmissions and control on the base of network

switched architecture for real time applications.

Embedded modeling and simulating event signals can

help in construction and testing special new algorithm for

optimal control in the same instrumentation system.

According to constructed model simulating by internal

generator the node can register periodical signals with

event modeling and display them on the monitor for

analysis the same way as real signals and events

143

registering. Special testing of all analog and digital

channels can be done by switching input, testing and

simulating signals in special front-end signal condition

device. Embedded Modeling and Simulating in

Distributed system can be based on parallel using of

selected number of TS for distributed complex event.

Each TS has embedded DSP-based module with DAC for

simulating event signals. For high-precision simulating

should be used special independent generator nodes or

module at supervisor station (SS node). This event signal

with or without noise can be summarized with a

periodical normal signal in each channel to get any form

of simulated events.

Proposed modeling event signal approach is based on

general trapezoidal event signal construction, which can

be transformed in required signal forms. Each part of the

basic signal form can be added by asymptotic signal form

with the same time parameter to get any real signal forms.

The constructed event signal can be added to normal

sinusoidal signal with some additional noise to get

required event model.

Signal on each channel is simulated independently as real

object event. There are front-end object oriented signal

condition electronics to switch all input and output

channels for measurement, test and simulating modes. All

simulated event signals and typical real events for the

some complex objects can be compared, analyzed and

used for predicting and control at the moment of critical

situation in environment is occur.

Distributed modeling and simulating of object signals

can be done in each node parallel as in autonomous mode

with monitoring by SS-node, using the same input

channels. Modeling and analysis event signals can be

collected in central node (file server or DB) with real

signals for analysis. Additional simulating functions of

TS and SS-nodes are system testing with real objects

signals produced by internal embedded signal generator

or by external Node (SS with precision DAC). Future

system development can be based on serial interconnect

for high performance modular systems, integrating on the

base of new technologies (WLAN, PLC).

 Proposed embedded modeling and simulating event

signals in the same instrumentation system provides

construction of new algorithms for recognition and

predict some critical situation in open system architecture.

Autonomous and switched based system architectures for

event registration and analysis with embedded modeling

and simulating are proposed and discussed.

SUMMARY

1. Compact Modular systems on the base of 3-4 PCI slots

passive buss can be effective platform for Monitoring,

Registration and Control Systems and can includes USB

interface for effective serial connections to measurement

and control modules.

2. Autonomous system consists of SBC and DSP-based

measurement and control modules and can be used as the

terminal nodes in network based architecture with

Supervisor Control station.

3. Interconnections to supervisor node and server is based

on network switch.

REFERENCES

 [1] V.I.Vinogradov. Event simulating in object analysis

system. EUROMEDIM2006. CERN Conference.

Marseille, France.

[2] V.I. Vinogradov. Modular RT-systems and networks

for Monitoring and Control with event modeling and

 simulating. Preprint INR RAS -1163/2006/.

1. Compact Modular systems on the base of 3-4 PCI slots

passive buss can be effective platform for Monitoring,

Registration and Control Systems and can includes USB

interface for effective serial connections to measurement

and control modules.

2. Autonomous system consists of SBC and DSP-based

measurement and control modules and can be used as the

terminal nodes in network based architecture with

Supervisor Control station.

3. Interconnections to supervisor node and server is based

on network switch.

Event Signal is constructed from basic trapezoidal form

with a, b, c, d – parameters:

1) a = b = c = 0 – no signals;

2) b = c = 0 - linear front saw signal;

3) a = b = 0 - reversed front saw signal;

4) b=0 - triangle signal with c, b;

5) a = c = 0 - rectangle signal; with any b;

Where s – signal time shift (offset),

T = a + b + c - is duration of basic event,

Figure 1. Basic model of Event signal for modeling and

simulating.

s-offset
а

 b c

144

NEW HIGH-PERFORMANCE MODULAR COMPUTER SYSTEM

ARCHITECTURES FOR CONTROL NETWORK APPLICATIONS

Vinogradov V.I.*

INR RAS, Moscow, Russia

Corresponding author. Tel.: 7-4967514631 mail: vin@inr.ru

.

Abstract
Convergence of computer systems and communication

technologies are moving to switched high-performance

modular system architectures on the base of high-speed

switched interconnections. Multi-core processors become

more perspective way to high-performance system, and

tradition parallel bus system architectures (VME/VXI,

cPCI/PXI) are moving to new higher speed serial

switched interconnections. Fundamentals in system

architecture development are compact modular

component strategy, low power processor, new serial

high-speed interface chips on the board, and high-speed

switched fabric for SAN architectures. Overwiev of

Advanced modular concepts and new international

standards for development high-performance embedded

and compact modular systems for real time applications is

described

1. Introduction to bandwidth problems.

The convergence of computer and communication to

distributed modular systems integrating different types of

information like data, audio, video meets real time

requirements as RT-systems for DAQ and Control

applications. Next generation 32/64-bit processors

coming to frequency limit, and advanced multi core

processor architecture becoming main way to get more

higher performance. Interconnect I/O peripheral

subsystems to processors are coming to his limit also, and

new problems for high-speed interconnect appeared.

Ethernet, USB, and PCI buses use shared parallel bus

architectures no longer have adequate bandwidth. A new

serial interconnects revolutionize next generation high-

performance computer systems, including migration from

PCI to PCI Express and migration from ATA to Serial

ATA in telecom and datacom systems.

2. Requirements to new computer systems

High performance computing (HPC) encompasses

advanced computation over parallel processing, enabling

faster execution of highly compute intensive tasks such as

climate research, molecular modeling, physical

simulations, engineering modeling and simulating.

cryptanalysis, geophysical modeling, automotive and

aerospace design, financial modeling and data mining.

The tradition bus architectures proved to be too slow for

fast graphics cards and an additional bus, the accelerated

graphical port (AGP) was introduced. PMC mezzanine

sub-modules for PCI modules as additional function

extensions inside some modules were developed as

industrial standard.

Real-time requirements are applied not only to DAQ

and Control, but also to new Distributed data transfer,

telecom and datacom systems including picture

processing, audio and video. Some applications are

significant consumers of high-speed peripherals with

high-speed interconnects such as DVI, SATA and 10Gbit

Ethernet; unmanned vehicles place significant size,

weight and power constraints on their electronic

subsystems; and 2D/3D image processing creates huge

demands on systems for capturing, collect and

interpreting information. Radar signal processing has

required massive bandwidth more than offered by bus-

based systems; software. A revolutionized approach is

required to decide all today’s problems for high-

performance system. Parallel data processing, modeling,

simulation, and image processing in real time are compute

and communication intensive. Compact computer systems

and distributed switched based network architectures will

be required as next generation systems in different

applications.

145

System Area Network (SAN) architectures were

developed on the base of Serial Interconnect for high-

performance data processing and mass storage access.

One of the first point-to-point Interconnect for

multiprocessor was Scalable Coherent Interconnect (SCI)

like Fiber Channel for storage A number of computer

industry leaders decided to design the future I/O

subsystem, and advanced system architectures were

developed for computer industry, telecom and datacom

applications. Among modular computer systems PCI and

VME bus architectures are most popular in industry

today. The requirements led the industry to standardize

creation the new serial interconnects in open system as

well as to extend the useful life of tradition PCI and

VME-based systems. New standards are primarily the

concern of two industrial specifications PICMG and

VITA.

3. Serial cPCI Express interface

Two competing initiatives started, one - the Next-

Generation I/O system (Dell, Hitachi, Intel, NEC,

Siemens and Sun Microsystems), other - the Future I/O

system (Compaq, IBM, and Hewlett Packard). Both

groups decided to unify their efforts by bringing together

the best ideas of each of the two separate initiatives. The

result was new serial PCI interface. Many applications

like image processing, biological, medical technologies

and robotics depend on rapid data transfer between 32–bit

CPU and various peripheral devices. Such connections

are still realized mostly via a PCI bus. Next PCI-X

specification allows for a 64-bit version of the bus

operating at the clock rate of 133 MHz, but this is

achieved by easing some of the timing constraints: system

can have only 1 slot on the bus, 2 PCI-X slots allow a

maximum clock rate of 100 MHz, and 4 slots would drop

down to 6 MHz. PCI architecture was adopted for

telecom industry as compact PCI (cPCI) with maximum

data throughput from 133 MB/s then moving to 533 MB/s

Serial PCI Express (PCIe) is transparent on physical

layer to application software, and programs written for

traditional PCI devices can run on PCIe devices. Data is

transferred via high-speed, point-to-point serial links

know as lanes. PCI and PCIe can be used together in the

Hybrid system. Each lane comprises a pair of differential

conductors with 250 MB/s pro direction: one pair is used

for data transmission, other - for receiving. These lanes

can be bundled to a maximum of 32 lanes per channel (up

to 16 GB/s in both directions). PCIe bandwidth is

scalable. The common lane configurations are x1 (“by

1”), x4, x8 and x16. The bandwidth available is

proportional to the number of lanes. Typical 64-bit PCI-X

bus requires 127 signal pins on multiple board layers

versus x4 PCI express slot that provides twice as much

bandwidth and only requires 15 signal pins. PCIe replaces

shared bus with a shared switch.

 Compact PCI Express (cPCIe) supports bus structures

with 4 to 16 lanes per channel enabling data transfers up

to 4 GB/s, which bi-directional, doubling the 250 MB/s

data throughput to 500 MB/s. If cPCIe board cannot

administer all available lanes of the board, then the

unused lanes will be automatically deactivated during

initialization. Remaining from the current cPCI

specification is the power connector for the PSU and the

slot for parallel-bussed peripheral modules (PICMG 2.0).

4. Compatible VME bus bandwidth extension

VME bus systems have been used in all segments of

science), industrial and military applications. There are a

few reasons for parallel compatible VME bus extension:

1) Interrupts over SI is not best decision for RT-systems.

2) Arbitration between peer-to-peer or priority sequenced

tightly coupled processors is similar as interrupt

processing. VITA is aimed to increase VME bus

performance, while maintaining backword capability. The

key efforts are: faster parallel bus (VITA 1.5); multi-

Gigabit switched serial interconnects (VITA 41 and 46)

and new mezzanine cards (VITA 42). The first VME bus

renaissance was being the 2eSST protocol, which

implemented with chips from Tundra and Thales, enables

bus to run at 320 MB/s (an 8x bus performance of

VME64’s).
The VITA 41.x family of specifications is VME bus

extensions for serial switched technology. VXS (VITA

41.0) defines physical features that enable high-speed

serial links in a VME bus –compatible system with the

addition of high-speed connector to the VME64x board in

the P0/J0 position. The VXS backplane currently has

Infiniband (VITA 41.1), RapidI/O (VITA 41.2), Gigabit

Ethernet (VITA 41.3) and PCI Express (VITA 41.4)

protocol layer. Serial VITA 46 replaces all the DIN

connectors on a VME board with high-speed connectors

supporting signaling rates up to 6.25 Gbit/s. There are a

series of standards, including VITA 46 (VPX) and VITA

48 (VPX RDI). VITA 46 standard provides 4 switch

fabric ports of 10 Gbit/s each in the initial configuration,

and the capacity for more than 20 ports in fabric-only

configurations. The specification expands users I/O

capability and provides a broader ability to map high-

speed user I/O or fabric connections from the emerging

XMC (VITA 42) mezzanine to the backplane. At the

heart of VPX is a high-speed backplane 7-row MultiGig

RT2 connector (signal rates up to 6.25 Gbit/s), developed

by Tyco.. It provides a effective way of allowing VME

bus users to leverage the performance of the high-speed

switched fabrics such as StarFabric, RapidIO and PCI

Express. VSO was developed specification for enhanced

design (VITA 48.x), electronic cooling (VITA 50),

reliability predictions (VITA 51), lead-free practices

(VITA52), technical management (VITA 53) and other

requirements. Compatible VME bus bandwidth extension

Provides high-performance increased in many times

compared to ordinary VME bus systems.

146

5. SCI Interconnect and switched system.

Scalable Coherent Interconnection SCI was one of the

first serial interface developed by researcher (Stanford

University) and using from 2002 with PCI and cPCI

modules and with high-speed switches..

New version of SCI-PCIe interface modules and switch

are modern Interconnect for High-performance SAN with

Distributed memory architecture. SCI was developed as

standard for high-performance multiprocessor with

gigabit parallel-pipeline data transfers. The first

commercial supercomputer was developed by Sequence

with quadrant nodes interconnected by SCI. Interconnect

modules and switches can be used in a variety of

topologies including rings or switching 2D torus. The

PCIe based SCI Adapter Modules - D35x family are

modern high-performance solution for server systems,

HPC clustering and embedded applications. They are

components for building a high performance

multiprocessor, Workstation and Server cluster

configurations for many applications. The D351 offers 10

Gbits/s link speed (bi-directional) that makes it an ideal

platform for moving large volumes of data from system to

system. For higher bandwidth the D350 and D352 use

two bi-directional links effectively doubling the

throughput to an amazing 20 Gbits/s. The ultra-low 1.4

microseconds application-to-application latency reduces

overhead of inter-node control messages, makes D35x

modules a good choice for RT-systems. Two other

versions of the cPCI-SCI modules are available also to

support one or two SCI rings, which have distributed

switching capability offering the ability to design large

high performance clusters. The cPCI-SCI Adapter Card

(module) is compatible with the standard PCI-SCI and

PMC-SCI Adapter Cards and the 8-port SCI switch. SCI

distributed memory architecture enables applications to

take full advantage of the new 64-bit processors (64-bit

AMD Opteron), which has been developed around

Dolphin's Software Infrastructure for SCI (SISCI) - an

API library, that enables applications to use clusters and

reflective memory. Typical latencies for PCI bus

architectures are 1.4 microseconds for an 8-byte buffer

store and 3 microseconds for a 512-byte store. SCI has

excellent bandwidth capabilities in direct memory access

(DMA) and remote memory access (RMA) mode.

6. Infiniband switched system architecture

The computer industry leaders (Compaq, Dell, Hewlett-

Packard, IBM, Intel, Microsoft, and Sun Microsystems)

formed the InfiniBand Trade Association (ITA), which

formed IT Program (2001) to provide the InfiniBand

architecture specification.

The InfiniBand specification (2001) defines the

interconnect architecture that will pull together the I/O

subsystems of the next generation servers. It is industry

standard technology that advances I/O connectivity for

high performance computing clusters, breaking through

the bandwidth and limitations of the PCI bus by migrating

from the traditional shared bus architecture into switched

fabric architecture, where two or more nodes are

connected to one another through the fabric. The

architecture is based on a serial switched fabric defining

link bandwidths 2.5 - 30 Gbits/sec, resolves the

scalability, expandability, and fault tolerance limitations

of the shared bus through using switches and routers in

the switch fabric.

InfiniBand switch fabric, consisting of a single switch or

a collection of switches and routers, was developed as a

System Interconnect platform for modern servers, Data

Centers, SAN, HPC, storage subsystems and

virtualization. Server clusters and grids, linked with

high-speed interconnect, creates intensive compute power

solutions. With it’s scalability and efficiency small and

large clusters scale up to thousands of nodes. With 20

Gb/s node-to-node and 60Gb/s switch-to-switch solutions

available, and a roadmap to 120 Gb/s, Infiniband Adapter

10Gb/s matches Gigabit Ethernet pricing. High speed

Channel Adapters (HCA) can support multiple end-points

that can provide dedicated granular QoS and security

services to virtual servers, storage, HPC and management

applications.

7. Advanced TCA and MCA modular systems

Advanced Telecom Computing Architecture (ATCA)

base specification defines the form factors, core

backplane fabric connectivity, power, cooling,

management interfaces, and the electromechanical

specification of the carrier board (the existing IEC 60297

Eurocard). ATCA compared with existing TCA backbone

systems, is faster, fault-tolerant and easier to service with

switch fabric, system management, hot swap and modular

format. The carrier can be a simple passive board or SBC.

The backplane has become the core of interconnection

between each of the modules.

Data have to be switched and transferred at multi-gigabit

speed and designer must consider connectors as part of

the signal transmission line and take care of impedance,

delay, skew, and crosstalk Cable interconnects to the

backplane and Mezzanine Card connectors become the

system infrastructure. Differential signaling requires 2

separate lines for each signal with lower voltage, but it

offers greater isolation from noise. Differential pair

signals must arrive at their destination at the same time.

Since characteristic impedance is a function of geometry

and materials, each of these variations can alter the

impedance and generate reflections.

 PICMG 3.x specification series define how to map a

specific switching interconnect technology onto the

physical framework. PICMG 3.1 defines the mapping of

Ethernet and Fibre Channel (FC), PICMG 3.2 defines

Infiniband, PICMG 3.3 - StarFabric, PICMG 3.4 - PCI

Express, and PICMG 3.5 - RapidI/O.

147

 PMC modules for cPCI permit application

customization but do not meet some of the telecom

requirements (hot swap). The evolution of PMC, XMC,

addresses the connector signaling issue, but it lack the

required I/O pin count. Advances Mezzanine Card, AMC

settled on a carrier boards into ATCA systems has lower

pin-count connector geared towards switch fabric and

provides increases scalability and flexibility in system

development. An AMC design key is hot swap. AMC is

deigned to meet the carrier grade needs of reliability,

availability, and service ability (RAS).

Target interfaces are High-speed mezzanine AMC, which

optimized for, but not limited to, ATCA carriers by

PICMG for targeted interfaces like PCIe, Advanced

Switching and Gigabit Ethernet.

AMC.0 – is common specification (mechanics,

management, power, thermal, and interconnect).

AMS.1 specification defines the implementation of PCIe

and Advanced Switching,

AMC.2 adds Ethernet interfaces and

AMC.3 adds specific storage interfaces such as FC.

Depending on the number of the contacts one

differentiates between AMC module half height (HH) and

full height (FH) as well as single width (SW) and full

width (FW). The AMC architecture is flexible and

supports a number of transfer protocols with different

bandwidths.

They include 10G Ethernet (IEEE 802.3ak – CX4), 10G

Fiber Channel, serial attached SCSI (SAS), Serial ATA2

(SATA-2) and InfiniBand

 Advanced Micro TCA (2005, 2006) is developed now

as new advanced compact modular system standard. It

based on the mezzanine format AMC, which could be

used in advanced low-cost compact modular systems with

own backplane. Advanced MicroTCA will be successful

in many types of application - both in telecom and in

computer systems and in such fields, as the biology,

physics, medicine, engineering, robotics and military. The

overall concept allows AMC modules to be plugged

directly into a system backplane. If the processor, north-

bridge, south-bridge, memory and flash of a PC are

modularized in a compact, highly integrated fashion, it is

Computer-On-Module (COM). By segmenting the

processor complex onto a COM, designers can focus on

to carrier board, which can be paired with COM modules

to achieve required performance and move to the next

generation system.

 MicroTCA is a draft specification that gained status as a

subcommittee subject under the PICMG (2004), which

release COM.0 (COM Express) to use PCIe in COM.

ETX and ESB standards were also suggested in telecom,

each had meeting the requirements for a next generation

COM systems. COM Express builds upon the ETX

specification (Kontron). Digital Signal speed in PCB is

moving up to 5 Gbit/s.

 COM XTX standard replaced ISA bus with PCIe

technology, SATA and additional USB 2.0. XTX

enhances PCI by 4 PCI express lanes, which offer data

throughput 10 times of single 32 bit PCI bus.

Embedded Computing companies see expanding

opportunities in defense and commercial-off-the-shelf

(COTS) focused on industrial automation, healthcare

equipment, communications, automotive electronics and

other fields.

Advanced Micro TCA is most compact modular system

architecture with AMC modules installed directly in the

crate. These high-performance systems can be used

effectively in many applications, including monitoring

and control terminal systems, Data Acquisition and

Processing, network and telecommunications, medicine

and biology, multimedia (audio and video) applications

and robototechnocs.

RESUME

1. New interfaces on a module boards (PCIe, VME) are

shifted to new high-speed serial interconnections for I/O

peripherals subsystems.

2. System interconnect (PCIe, SCI, Infiniband) are based

on multi-gigabit switches system architectures for new

multiprocessor and cluster design for high-performance

computing system, SAN, HPC and Data Centers.

3. Very compact modular system can be constructed on

the base on micro TCA and AMC modules, inserted in

special compact shelf, which can be more effective for

many applications..

REFERENCES

[1] V,I.Vinogradov. Advanced diversified compact

modular Architectures for convergenced high-

performance computer, network and

telecommunication systems.Preprint INR–1171/

2006. Moscow

[2] V.I. Vinogradov. *Advanced High-performance

computer systems architecture. EuroMedIm-2006. CERN

Conference. Marseille. France

..

148

The ACOP Family of Beans

Philip Duval and Honggong Wu, DESY MST, Hamburg, Germany

Igor Kriznar, COSYLAB

Abstract
 The current ACOP (Advanced Component Oriented

Programming) [1] controls set consists of an ActiveX

chart control and the equivalent chart bean [2]. ACOP

has enjoyed great success as a rapid application design

tool for rich clients in control system applications. It is

a narrow-interface control which offers design-time

browsing of the control system to expedite data

acquisition and numerous data rendition features to
satisfy needs of the most demanding control application
developers, to the extent that a two-dimensional chart is
what is desired.
 We now extend the functionality of ACOP Java
bean in several key ways. We incorporate automatic
‘office-like’ drag-and-drop (DnD) of the meta-
information behind any displayed data. We allow
design-time configuration of “simple” clients (as
opposed to “rich” clients), where a finished application
can be configured without writing a single line of code,
if that is what is desired. We extend the ACOP family
of beans to include an ACOP compatible Label, Slider,
Table, and Image to go along with the ACOP Chart.

1 INTRODUCTION

Console applications for PETRA III will make

extensive use of Java as a development tool. In order to

satisfy the demands both for writing rich-client control

applications and configurable simple clients (without

coding) we have extended the capabilities of the current

ACOP chart bean, and are now providing ACOP

functionality to a wider set of displayer beans. The new

ACOP family of beans consists of a transport bean,

which is responsible for data acquisition, and in our

case uses primarily the transport plug for the TINE [3]

protocol, and also consists of several graphic beans for

displaying data. The transport bean provides device

specific and graphic independent meta data, which can

be browsed by the ACOP graphic beans, provided they

reference the transport bean. The ACOP graphic beans

themselves support popup menus (customizers) for

displaying device specific transport meta-data as well

as displayer-specific display properties. Drag-and-drop

(DnD) is supported for passing transport and displayer

meta-properties at both design time and run time. Any

changes in transport or display settings introduced at

run-time can then be saved and reapplied (if desired)

upon the next start of an ACOP application. The

current ACOP transport bean offers plugs only for the

TINE protocol or for transport simulation.

2 ACOP TRANSPORT BEAN

 The ACOP transport API is primarily a “narrow”

interface dealing with data “links” as opposed to

properties with “getters” and “setters”. This proves to

be a more general interface when dealing with a client

API such as TINE, which allows method calls. Data

Links can either be synchronous or asynchronous as

discussed already in [2]. The transport API allows a

three-tier hierarchy for specifying a device location,

namely “Context”, “Group”, and “Name”, and a

“Property” for accessing a devices property or method.

These entries generally specify the target endpoint of

the displayer. The ACOP transport customizer will

access the control system’s naming services to allow

the user to browse his way to a desired endpoint. In

addition, once an endpoint has been selected,

information as to a device’s property-specify data is

also provided. This information includes the

appropriate data format, size, array type, access,

engineering units and so on. A set of APIs are defined

for retrieving this generic data for use in the ACOP

graphic beans. The ACOP transport customizer will

allow the setting of all such transport parameters.

Fig 1. Customizer for ACOP transport bean

 If more than one displayer within the same

application are connected to the same endpoint (for

instance, a chart and label are both connected to the

149

beam current), this information is passed seamlessly

from one ACOP displayer to the other.

3 ACOP GRAPHIC BEANS

The ACOP family of graphical displayers consists of

a two dimensional chart, label, slider, table, and image

container. They are extended from their counter parts in

the Swing graphical widget set. In each of these

displayers, the ACOP transport bean is referenced so

that control system browsing of available endpoints is

automatically supported.

3.1 Property Customizer

 Each ACOP graphic bean has its own individual

property customizer pertaining to its particular

rendition features. The customizer can be accessed both

at design-time and at run-time for setting display

properties and the device connection properties. If an

ACOP application user makes run-time configuration

changes, he has the option of making these changes

persistent.

At design time, the property customizer is extremely

useful for browsing the available control system

endpoints as well as the available display properties. If

the application developer is writing a rich client, he has

full control over all ACOP events and any data

manipulation or filtering which should be done prior to

display. If the application developer is writing a simple

client, the customizer can be configured to attach the

assigned transport endpoints directly to the displayer

without writing a single line of code.

Fig 2. Customizer for ACOP chart bean.

3.2 Meta-Data Popup

 ACOP graphic beans all respond automatically to a

‘<SHIFT>-Mouse Down’ event over the display area to

provide a popup display showing any and all attached

control system endpoints, as well as any relevant meta-

data.

3.3 Drag and Drop

 All ACOP display beans support Drag-and-Drop

(DnD) in the following way. A ‘Start-Drag’ event will

collect and serialize all pertinent data transport

information connected to the displayer along with the

relevant display information. For instance an ACOP

chart be displaying the time histories (trends) of both

the beam current and lifetime. A ‘Start-Drag’ event

will contain all the endpoint information (device

context, group, name, property, etc.) for both the beam

current and beam lifetime. In addition it will contain

the display settings such as the display colors, max and

min settings, etc. used in the chart. Another application

receiving this information in a Drop event can make

use of it in a context sensitive way. For instance,

dropping into Notepad will just yield a text

representation of the serialized data. Dropping into a

History Viewer might collect the endpoint information

and obtain the long-term histories of both the dropped

endpoints and append them to the current history

display, using the original display colors and scale

settings. Dropping into another ACOP chart in design

time will apply the dropped settings. To this end, an

ACOP displayer in design time will accept endpoint

information dragged for instance from Notepad, if it

can be interpreted. Dragging from one ACOP display

to another can of course lead to a loss of display

information. For instance, a chart is a more complex

object than a label. Hence dragging from an ACOP

chart to an ACOP label will preserve only the control

system endpoints and the display color, but not any

additional scale settings. The above case of an ACOP

connected to the beam current and beam lifetime will

pass the scale settings to the ACOP label, but the label

will not be able to use these settings and therefore

jettison them.

 In addition, if for instance a multi-channel array is

being displayed in an ACOP chart as a histogram, the

array index at which the Drag event is initiated is also

passed. An ACOP label or History Viewer application

receiving the ensuing Drop event will then target the

individual channel being dropped.

CONCLUSION

 We have made much progress in developing the

ACOP family of beans, but much work remains to be
done. Most of the emphasis has been on the ACOP

Chart bean, since it is the most complex. When
finished the addition of any new displayer to the ACOP

150

family of beans should be no more complicated than

extending the displayer to include the ACOP DnD,

meta-displayer, and customizer classes and to reference

the ACOP transport bean. Java applications using the

ACOP family of beans should be able to pass

information to one another in a framework independent

way. To this end, care should also be taken to insure

that future ACOP toolkits (for instance ACOP .NET

controls) can also seamlessly pass and interpret DnD

information among themselves and their brethren.

The complete ACOP graphic toolkit should be

ready for the initial phase of client development for

PETRA III in the middle of 2007.

Fig 3. An ACOP application showing the Kicker

Settings for the DESY2 accelerator, using the ACOP

chart and table displayers.

REFERENCES

[1] I. Deloose, P. Duval, H. Wu, “The Use of ACOP
Tools in Writing Control System Software”,

Proceeding ICALEPS’97, 1997.
[2] Philip Duval, Honggong. Wu, “Acop as a Java

Bean”, Proceedings PCaPAC 2002, 2002.
[3] http://tine.desy.de

151

ACS – AN OPEN SOURCE CONTROL SYSTEM INFRASTRUCTURE

K. Žagar
#
, G. Chiozzi

*
, M. Šekoranja

#
, H. Sommer

*
, M. Pleško

#
, B. Jeram

*
, A. Caproni

*
,

R. Cirami
§
, P. Di Marcantonio

§

Abstract
Today, ACS is a mature control system infrastructure.

Since its inception in year 2000, more than 30 person-

years of effort have been put into its development,

maintenance and continuous improvement. Though

primarily intended for the Atacama Large Millimeter

Array (ALMA) radio-telescope (whence the abbreviation

ACS – ALMA Common Software), it has been found

useful in other projects as well, ranging from distributed

control of a synchrotron light source to an application

server for business applications.

In this paper, a technical overview of ACS is given and

its fundamental concepts are explained. Then, lessons

learned in the last half-a-decade are presented, both from

technological as well as organizational perspective.

INTRODUCTION

The Atacama Large Millimeter Array (ALMA) radio

interferometer is currently being built in the Chajnantor

area of the Atacama Desert in Chile. Renown for its

extremely dry weather conditions, the site is almost ideal

for astronomical observations. The facility will consist of

multiple radio antennas that will be collecting large

quantities of scientific data, which will then be processed

in near real-time through configurable processing pipeline

and with scientific results being archived. The ALMA

facility consists of dozens of instruments. All of these

subsystems need to be controlled…

To consolidate the effort required to build a control

system for such a complex facility, development of ALMA

Common Software (ACS) started in year 2000. The goal

of ACS was to give all control system developers a

common platform to work on, so that not everyone would

have to re-invent mechanisms for remote procedure calls,

configuration, alarms, logging, etc.

Since, ACS has found its application not only in

ALMA, but also other astronomy instruments currently

being built. Furthermore, ACS has been found useful for

control of synchrotrons and deployment of business

applications.

As ACS has been under development for more than 6

years, the core concepts are now implemented in a very

stable fashion. The total effort allocated to ACS

development by the ALMA project is on the order of 30

man years, but there have been contributions to ACS from

its other users as well.

ACS CONCEPTS

ACS attempts to provide solutions to most issues

encountered in distributed control system. This section

explains some of them.

Manageable Distributed Component Model

ACS is built around a model where functionality (e.g.,

control of a particular device through its specific

protocol) is encapsulated in components. A component

exposes a functional interface which models the actions

that the device can perform and the control/monitor points

(properties) associated with the device. The approach is

thus highly-modular, with components being the building

blocks.

Components execute within containers (see Figure 1).

Containers are processes that are deployed at hosts across

a computer network. The hosts are expected to be

physically connected to the devices under control of

components, placed within the host’s container.

A component is accessible over the network as a

CORBA object. This makes it possible to manipulate the

device remotely, and serves as the basis of the distributed

control system.

Component implements functionality such as access to

a particular device, state machine for control, etc. On the

other hand, the component is completely unaware of how

it is accessed – it can be local access from a unit test, or a

remote access via CORBA. Also, the component may use

facilities such as logging, raising of alarms, etc.

Cosylab, Ljubljana, Slovenia

* European Southern Observatory, Garching, Germany
§ INAF Osservatorio Astronomico di Trieste, Italy

Im
p

le
m

e
n
ts

S
c
h

e
d

u
le

r

S
tu

b
s

Implementation of ACS Container

Container

CORBA Stubs

Scheduler

CORBA

Stubs

The implementation of the Scheduler IDL interface and

definition of the interface itself is all that ACS developers

are required to do . ACS provides the rest of the

infrastructure .

Mount

CORBA

Stubs

Im
p

le
m

e
n
ts

M
o

u
n

t

S
tu

b
s

Figure 1: Architecture of the component/container

model.

152

A component can be placed in any container. There is a

central manager, which keeps track of placement of

components. Also, the manager is a kind of a naming

service, whom clients consult to obtain references to

components.

The container hides all the details of CORBA and ACS

(logging, remote procedure calls, event distribution, …).

The component developer can thus focus on the

functionality he/she is to provide.

XML Configuration Database

All configuration data is stored in an XML

configuration database. Every type of a component

defines a structure of the XML data that is needed to

configure it. The structure is defined with the standard

XML Schema Definition Language (XSD), and is used

for checking the correctness of the configuration

database. Also, a configuration database tool exists which

uses the XSD of a particular record to deduce the data

fields that a particular component relies upon. Also, XSD

may be used to convey default values of fields.

The configuration data is designed to be more or less

static (that is, the configuration database does not contain

run-time information, such as values of control points).

Nonetheless, it is possible to change the configuration

database in runtime, and force the affected components to

reload for changes to take effect.

Configuration database is available to the rest of the

system as a CORBA object implementing a well-defined

IDL. The manager and the containers make use of this

interface to access the configuration data, and pass it to

components.

Physical storage of the configuration data is up to the

implementation of the configuration database. By default,

XMLs are stored in a hierarchical database on a file

system. Alternative implementations also exist, e.g., for

storing configuration data in a relational database, where

indexing can be used to improve retrieval performance.

CORBA-Based RPC

CORBA is used as the middleware to facilitate remote

procedure calls. CORBA is a well defined standard with

many implementations (ORBacus, JacORB, TAO) and

services (naming service, interface repository, notification

service, etc.).

CORBA is designed to facilitate cross-platform and

cross-language communication. Thus, it allows ACS to

run on Linux and Windows platforms, as well as some

real-time operating systems. As programming languages,

ACS components and clients can be written in Java, C++

or Python.

Alarm System

Initial versions of the ACS implemented the alarm

system in a point-to-point manner, where a party

interested in alarms (e.g., a GUI console) would register

callbacks with all the entities capable of producing

alarms. Once an alarm would occur, the interested party

would be notified through a callback.

This approach was found not to scale well as the

amount of network connections was excessive for real-life

systems – an issue of particular importance during alarm

avalanches, where one fault state is a cause to several

others. Also, the alarm system was difficult to configure.

Therefore, the ACS team decided to integrate the alarm

system being built at CERN for the Large Hadron

Collider (LHC) called LASER [3]. LASER uses

publisher-subscriber paradigm for alarm distribution,

implemented using JMS interface to CORBA Notification

Service: the alarm service subscribes to alarm event

channels, whereas alarm sources publish into those

channels. When the alarm service receives an alarm, it

processes it, e.g., to detect alarm avalanches and reduce

the number of alarms actually passed on to the operators.

Bulk Data Transfer

CORBA RPC is not the best choice for transmission of

large amounts of data because of the marshalling

overhead associated with CORBA calls. However,

CORBA offers an audio/video streaming service, where

CORBA is used to define the manner of transport, and the

bulk transport is carried out directly via TCP/IP or

UDP/IP.

In ACS, the CORBA streaming service is leveraged to

build a Bulk Data Transfer service [4]. Apart from the

point-to-point transfer, this service features a Distributer

component to which bulk data sources stream data. The

Distributer then streams the data to final sinks of data.

This decoupling prevents the sources from being

overloaded if too many sinks are connected.

Event Distribution and Distributed Logging

ACS makes use of CORBA’s Notification Service for

delivery of events that are of interest to a wider audience

(e.g., initiation of a phase in the lifecycle of astronomical

observation).

The Notification Service is also used to implement

distributed logging. A well-designed distributed logging

infrastructure is mandatory in distributed control system

in order to facilitate diagnostics or validate correctness of

Figure 2: User interface for controlling the antenna

mount (Java and Abeans).

153

operation. A well-defined logging API is provided to the

application developers, which ensures delivery of log

entries to a central logging service. Log entries are cached

locally and delivered in batches in order to improve

performance. The logging service uses a permanent

storage to record the log entries. GUI for viewing and

filtering the log entries is available – this GUI connects to

the central log service.

Applications

For composing graphical user interfaces, developers

can choose the framework they feel most comfortable

with – Abeans/CosyBeans (see Figure 2) or Swing in

Java, Qt in C++, etc. This allows the developers to use a

most appropriate tool for the task at hand.

ACS USER COMMUNITY

In the last few years, ACS has been used extensively in

the field: the ALMA prototype antennas have been

running a first version of the ALMA Control Software

and are now running the latest ALMA software baseline

release and the end-to-end ALMA software is integrated

and tested as a whole on a periodic basis, with two

official releases per year,. This provides good testing and

feedback concerning the ACS global infrastructure,

performance and tools from the operational and

deployment points of view. ACS-based software is also

used in various laboratories by the teams developing

hardware and devices for ALMA.

ACS is used at facilities other than ALMA as well. For

example, Max-Planck-Institut für Radioastronomie is

using ACS for controlling the 12 meter radio-telescope

Atacama Pathfinder Experiment (APEX), which is now

already in operation. Similarly, synchrotron

Angströmquelle Karlsruhe (ANKA) is also using ACS in

production, and is regularly updating to the latest stable

release.

Nearing operation are the following facilities whose

control system is ACS based:

• 1.5m Hexapod Telescope (HPT) of the Ruhr-

University Bochum.

• The 40m telescope of the Observatorio

Astronómico Nacional.

• The 32m radio Sardinia Radio Telescope.

Commercial Support and Applications

Cosylab is using ACS in distributed, high-performance

production, high-availability environments of business

applications (e.g., image servers for Geographical

Information Systems, GIS).

Apart from using the ACS infrastructure, Cosylab is

also actively participating in its ongoing development,

and is capable of offering support, consulting and training

to other existing or prospective users of ACS.

Cosylab’s embedded I/O controller, microIOC

(http://www.microioc.com) comes with ACS pre-

installed. This product enables control system integrators

to quickly set-up nodes of a control system, without

having to configure the operating system or ACS.

CONCLUSION AND LESSONS LEARNED

In the last 6 years, several lessons have been learned

developing, using, maintaining and deploying the ACS.

ACS has succeeded in becoming a one-stop-shop for all

developers’ middleware needs: from remote procedure

calls, through configuration, logging, centralized

management, error handling, and to building user

interfaces.

The list of hardware devices that can be integrated into

ACS is growing. The support is not only being added for

custom, ALMA-specific hardware (antenna mounts,

interferometers, receivers, etc.), but also for widely

available products such as joystics and cameras.

Standards-based approach has shown to be beneficial

several times already. As some implementations of

CORBA services were found not to meet all requirements

(e.g., in terms of performance or support of the standard),

they were exchanged with competing implementations,

without much an adverse effect to the rest of the system.

In ACS, all components are available through wide

interfaces which clearly expose the functionality of the

component. This way, compile-time checking of

interface-level compatibility is possible, allowing for

early detection of defects.

We have found a rigorous development process

(nightly builds, extensive unit tests, etc.) essential to

manage development of a complex system such as ACS.

REFERENCES

[1] K. Žagar et al. “ACS – Overview of Technical

Features”, ICALEPCS’03, Gyeongju, South Korea,

October 2003.

[2] G. Chiozzi et al. “Application development using the

ALMA common software”, Proc. SPIE, Vol.6274,

Astronomical Telescopes and Instrumentation,

Advanced Software and Control for Astronomy,

Orlando, USA, May 2006.

[3] A. Caproni, K. Sigerud, K. Zagar. “Integrating the

CERN Laser Alarm System with the Alma Common

Software”, Proc. SPIE, Vol.6274, Astronomical

Telescopes and Instrumentation, Advanced Software

and Control for Astronomy, Orlando, USA, May

2006.

[4] R. Cirami, P. Di Marcantonio. “Bulk Data Transfer

Distributer: a high performance multicast model in

ALMA ACS”, Proc. SPIE, Vol.6274, Astronomical

Telescopes and Instrumentation, Advanced Software

and Control for Astronomy, Orlando, USA, May

2006.

154

 LIST OF PARTICIPANTS

155

Anicic, Damir Paul Scherrer Institut, Villigen PSI, 5232 Switzerland

 damir.anicic@psi.ch

Bacher, Reinhard DESY, Notkestr. 85, Hamburg, 22603 Germany

 reinhard.bacher@desy.de

Baer, Ralph GSI Darmstadt, Planckstr. 1, Darmstadt, 63069 Germany
R.Baer@gsi.de

Bevins, Brian Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA

 bevins@jlab.org

Bickley, Matthew Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 bickley@jlab.org

Bieler, Michael DESY, Notkestr. 85, Hamburg, 22603 Germany

 bieler@desy.de

Bodenstein, Ryan UVA, 12050 Jefferson Ave, Newport News,
 VA 23606, USA

 cyanb@jlab.org

Bolkhovityanov, Dmitry BINP, Lavrentyeva 11, Novosibirsk, 630090 Russia
 D.Yu.Bolkhovityanov@inp.nsk.su

Carlino, Isadoro Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA

 carlino@jlab.org

Catani, Luciano INFN-Roma Tor Vergata, via della Ricerca Scientifica 1,
 Roma, 00133 Italy

 luciano.catani@roma2.infn.it

Chaize, Jean-Michel ESRF, 6 rue J Horowitz, Grenoble , 38000 France

 chaize@esrf.fr

Chevtsov, Pavel Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 chevtsov@jlab.org

Chevtsov, Sergei SLAC, Stanford, CA, USA
 chevtsov@slac.stanford.edu

156

Clausen, Matthias DESY, Notkestr. 85, Hamburg, 22607 Germany

 Matthias.Clausen@desy.de

Curry, Doug Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 dcurry@jlab.org

Di Pirro, Giampiero Laboratori Nazionali di Frascati – INFN, Via Enrico
 Fermi 40, Frascati (RM), 00044 Italy

 giampiero.dipirro@lnf.infn.it

Dickson, Richard Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 dickson@jlab.org

Duval, Philip DESY, Notkestr. 85, Hamburg, 22607 Germany

 Philip.Duval@desy.de

Ehrlichmann, Heiko DESY, Notkestr. 85, Hamburg, 22607 Germany

 Heiko.Ehrlichmann@desy.de

Epps, Michael Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 epps@jlab.org

Evans, Richard Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 revans@jlab.org

Fujita, Jiro Creighton University, 2500 California Plz., Omaha,
 NE 68178, USA

 jiro@creighton.edu

Furukawa, Yukito SPring-8/JASRI, 1-1-1 Koto, Sayo, Hyogo
 679-5198 Japan

 furukawa@spring8.or.jp

Gaio, Giulio Elettra, S.S. 14 km 163.5 in AREA Science Park,
 Basovizza, Trieste, 34012 Italy

 giulio.gaio@elettra.trieste.it

Gajsek, Rok Cosyab, Slovenia
 rok.gajsek@cosylab.com

157

Giacchini, Mauro INFN, Legnaro, 35020 Italy
 mauro.giacchini@lnl.infn.it

Herb, Steve DESY, Notkestr. 85, Hamburg, 22607 Germany

 Steve.Herb@desy.de

Hutton, Andrew Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 andrew@jlab.org

Höppner, Klaus GSI Darmstadt, Planckstr. 1, Darmstadt, 64291 Germany

 k.hoeppner@gsi.de

Jordan, Kevin Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 jordan@jlab.org

Joyce, Michele Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 erb@jlab.org

Kamikubota, Norihiko KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 Japan

 norihiko.kamikubota@kek.jp

Kammering, Raimund DESY, Notkestr. 85, Hamburg, 22607 Germany

 raimund.kammering@desy.de

Karnaev, Sergey BINP, Lavrentyeva 11, Novosibirsk, 630090 Russia

 karnaev@inp.nsk.su

Katoh, Tadahiko KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 Japan

 tadahiko.katoh@kek.jp

Keesee, Marie Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 keesee@jlab.org

Kerscher, Harald MED PT PLM B

Kleines, Harald Forschungszentrum Juelich, Leo-Brand-Str., Juelich,
 52425 Germany

 h.kleines@fz-juelich.de

Kosuge, Takashi KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 Japan

 takashi.kosuge@kek.jp

158

Labudda, Andreas DESY, Notkestr. 85, Hamburg, 22607 Germany
 andreas.labudda@desy.de

Lahti, George Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 lahti@jlab.org

Larrieu, Theo Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 theo@jlab.org

Lawson, Greg SNS/ORNL, USA
 lawsongs@ornl.gov

Lomperski, Mark DESY, Notkestr. 85, Hamburg, 22607 Germany
 Mark.Lomperski@desy.de

McGuckin, Theo Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 tsm@jlab.org

Mezger, Anton Paul Scherrer Institut, Villigen PSI, 5232 Switzerland

 anton.mezger@psi.ch

Moore, Wesley Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 wmoore@jlab.org

Morozov, Ivan BINP, Lavrentyeva 11, Novosibirsk, 630090 Russia
 morozov@inp.nsk.su

Nakatani, Takeshi JAEA, Japan

 takeshi.nakatani@j-parc.jp

Nishimura, Hiroshi LBNL, MS 80-101, Univ. of California, Berkeley,

 CA 94720 USA
 H_Nishimura@lbl.gov

Ohata, Toru SPring-8/JASRI, 1-1-1 Koto, Sayo,
 Hyogo 679-5198 Japan

 ohata@spring8.or.jp

Okay, Noel Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 okay@jlab.org

159

Osanai, Akihiro Kyoto University, Japan
 osanai@post3.rri.kyoto-u.ac.jp

Pace, Elisabetta Laboratori Nazionali di Frascati – INFN, Via Enrico
 Fermi 40, Frascati (RM), 00044 Italy

 elisabetta.pace@lnf.infn.it

Pal, Sarbajit Variable Energy Cyclotron Centre, India
 sarbajit@veccal.ernet.in

Payne, Chris TRIUMF, Canada
 chris.payne@triumf.ca

Penno, Marek DESY, Platanen Allee 6, Zeuthen, 15738 Germany

 marek.penno@desy.de

Plesko, Mark Cosylab, Slovenia
 mark.plesko@cosylab.com

Podborsek, Aljaz Cosylab, Slovenia
 aljaz.podborsek@cosylab.com

Purcell, David SNS, USA
 purcelljd@sns.gov

Quock, Deborah ANL, 9700 South Cass Avenue, Argonne, IL 60439,
 USA

 quock@aps.anl.gov

Ristau, Uwe EMBL-Hamburg, Notkestrasse 83, Hamburg, 22603
 Germany

 ristau@embl-hamburg.de

Sarrazin, Diane Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 sarrazin@jlab.org

Sexton, Dan Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 dsexton@jlab.org

Tanigaki, Minoru Research Reactor Institute, Kyoto University, 2-1010
 Asashiro-nishi, Kumatori, Osaka 590-0494 Japan

 tanigaki@rri.kyoto-u.ac.jp

160

Tengsirivattana, Chaivat Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 chaivat@jlab.org

Vasiliev, Dmitri IHEP

Vinogradov, Vyacheslav INR RAS, Prosp 60-Anniv. of October 7 a,
 Moscow, 117312 Russia

 vin@inr.ru

Watson, Chip Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 watson@jlab.org

White, Karen Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 karen@jlab.org

Wolin, Elliot Jefferson Lab, USA
 wolin@jlab.org

Wu, Honggong DESY, Notkestr. 85, Hamburg, 22607 Germany
 hong.gong.wu@desy.de

Yamashita, Akihiro SPring-8, 1-1-1 Koto, Sayo, Hyogo 679-5198 Japan
 aki@spring8.or.jp

Yan, Jianxun Jefferson Lab, 12000 Jefferson Ave, Newport News,
 VA 23606, USA
 yanjx@jlab.org

Zambon, Lucio Elettra, Basovizza, Trieste, 34012 Italy
 lucio.zambon@elettra.trieste.it

161

 AUTHOR INDEX

 A

Abe, N., 26
Anderson, J., 93
Anicic, D., 61
Arnold, N., 93

 B

Bacher, R., 7
Bartkewicz, P., 108
Bassato, G., 116
Bellaveglia, M., 66
Bhattacharjee, T., 40
Bhole, R.B., 40
Bickley, M., 90, 99
Bieler, M., 82
Blokland, W., 136
Bobnar, J., 120
Bolkhovityanov, D., 111
Brinkmann, A., 82
Brnicky, M., 15
Burns, J., 15

 C

Caproni, A., 152
Carlino, I., 86
Catani, L., 66, 78
Chaddha, N., 40
Chaize, J.-M., 3
Cherney, M., 15
Chevtsov, P., 30, 90
Chevtsov, S., 69
Chiozzi, G., 152
Cianchi, A., 66
Cirami, R., 152
Clausen, M., 102
Clemons, D., 93

 D

Dasgupta, S., 40
Detert, S., 53
Di Marcantonio, P., 152
Di Pirro, G., 66
Dohan, D., 93
Dong, H., 129
Drochner, M., 53
Duval, P., 17, 20, 72, 114, 149

 F

Filippetto, D., 66

Forchi, V., 23
Froehlich, G., 120
Fujita, J., 15
Fukui, T., 11
Furukawa, Y., 105

 G

 Gaio, G., 23
 Gajsek, R., 43
 Giacchini, M., 116
 Golob, D., 49
 Gorbunov, Y., 15
 Grevsmuehl, T., 39
 Grippo, A., 46

 H

Habjan, I., 117
Hasanovic, A., 33, 49
Hatje, J., 102
Herb, S., 72, 108
Hirono, T., 11
Hoeppner, K., 120
Hosoda, N., 11

 I

Ikeda, M., 26
Ishizawa, Y., 96

 J

Jansa, G., 43
Jeram, B., 152
Jordan, K., 46

 K

Kamenik, J., 58
Kaplin, V., 123
Karnaev, S., 123
Kijima, Y., 26
Kitamura, M., 11
Kobal, M., 43
Koehler, W., 39
Kolaric, P., 58
Korhonen, T., 61
Kosuge, T., 20
Kleines, H., 53
Krause, U., 120
Kretzschmann, A., 39
Kriznar, I., 49, 120, 149

162

 L

Labudda, A., 126
Lahti, G., 129
Leclercq, N., 23
Leich, H., 39
Liyu, A., 136
Lomperski, M., 84

 Lonza, M., 75

 M

Maesaka, H., 11
Masuda, T., 11
Matsushita, T., 11
McGuckin, T., 131
Meshkov, O., 123

 Mezger, A., 61
Miginskaya, E., 134
Mishima, K., 26
Moeller, M., 102
Mori, Y., 26
Moore, W., 46
Morozov, I., 123, 134

 N

Nagatani, Y., 20
Nigorikawa, K., 20
Nishimura, H., 37, 56

 O

Ohata, T., 11, 96, 105
Ohshima, T., 11
Osanai, A., 139
Otake, Y., 11

 P

Pace, E., 66
Pal, S., 40
Patton, J., 136
Payne, C., 63
Pelaia, T., 136
Penno, M., 39
Petrosyan, B., 39
Plesko, M., 33, 49, 58, 120, 152
Plotnikova, O., 123
Podborsek, A., 49
Purcell, J.D., 136

 Q

Quock, D., 93

 R

Roy, A., 40

 S

Sabjan, R., 49
Scafuri, C., 23
Schaa, V.R.W., 120
Seeberger, T., 129
Sekoranja, M., 117, 152
Sexton, D., 46
Shiroya, S., 26
Smaluk, V., 123
Sommer, H., 152
Suxdorf, F., 53

 T

Takamiya, K., 26
Takeshita, T., 26
Takeuchi, M., 11, 96
Tanaka, R., 11
Tanigaki, M., 26
Thomen, R., 15
Timossi, C., 37, 56
Trowitzsch, G., 39
Tsukanov, V., 134

 V

Vermeulen, D., 61
Verstovsek, I., 58
Vinogradov, V., 142, 145
Volkov, A., 134

 W

Waggoner, W., 15
Wenndorff, R., 39
Wilgen, J., 114
Wu, H., 17, 149

 Y

Yamashita, A., 11, 96
Yan, J., 46
Yoshino, H., 26

 Z

Zagar, K., 33, 117, 152
Zambon, L., 75
Zhukov, A., 136
Zhuravlev, A., 123
Zobjack, U., 82

163

	fujita.pdf
	kosuge.pdf
	gaio.pdf
	tanigaki.pdf
	pavel01.pdf
	plesko01.pdf
	penno.pdf
	pal.pdf
	jansa.pdf
	yan.pdf
	podborsek.pdf
	kleines.pdf
	ETHERNET-BASED FIELDBUS FUNCTIONALITY FOR NEUTRON SCATTERING EXPERIMENTS WITH PROFINET IO
	INTRODUCTION
	OVERVIEW OF PROFINET CBA
	OVERVIEW OF PROFINET IO
	PROFINET IO model
	PROFINET IO operation
	PROFINET IO protocol

	PROFINET IO FOR NEUTRON SCATTERING AT JCNS
	REFERENCES

	plesko_tutorial.pdf
	mezger.pdf
	payne.pdf
	diPirro.pdf
	giacchini.pdf
	EPICS BASICS
	LIVEPICS FEATURES
	CONCLUSIONS
	REFERENCES

	ADP289E.tmp
	 LIST OF PARTICIPANTS

	ADP28CE.tmp
	STATUS OF THE CEBAF CONTROL SYSTEM AT JLAB

	ADP294F.tmp
	
	Editors: M. Bickley and P. Chevtsov
	
	
	
	 CONTENTS
	
	 WORKSHOP PAPERS
	PCaPAC International Program Committee
	PCaPAC 2006 Local Organizing Committee

	"Posters in Pills" Session

	ADP295D.tmp
	INTRODUCTION
	CDI API
	CDI DETAILS
	REMOTE CDI
	CURRENT STATUS
	REFERENCES

	ADP29BD.tmp
	TANGO CONTROL SYSTEM STATUS
	HOW IT WORKS
	THE COLLABORATION
	The successes
	What can be improved

	ENLARGING THE COLLABORATION
	 FUTURE DEVELOPMENTS
	ACHIEVEMENTS
	Soleil is running
	ESRF and ELETTRA: A careful migration
	ESRF achievements and projects
	ELETTRA achievements and projects
	ALBA status

