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In the flatland Lattice formulation of QCD
On-shell chiral symmetry
Kernels, Approximations and Representations

QCD on the Lattice

Quantumchromodynamics is formally described by the
Lagrange density:

o 1
Lacp = Y(iP — mq)—7 Gu G

@ Non-perturbative, gauge invariant regularisation

@ Lattice regularization: discretize Euclidean space-time
@ Continuum limit=a— 0

e Poincaré symmetries are restored automatically
o Naive discretisation of Dirac operator introduces doublers
= restoration of chiral symmetry requires fine tuning
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On-shell chiral symmetry

@ It is possible to have chiral symmetry on the lattice without
doublers if we only insist that the symmetry holds on-shell
@ Such a transformation should be of the form

b — glns(1=aD)y. o, gia(i-aD)s
and the Dirac operator must be invariant:
D _ el(1-aD)ys pgiavs(1-ab) — p
@ For an infinitesimal transformation this implies that
(1 —aD)ysD + Dys(1 —aD) =0
which is the Ginsparg-Wilson relation
v5D + Dvys = 2aD~s5D
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Overlap Dirac operator |

@ We can find a solution Dgy, of the Ginsparg-Wilson
relation as follows:

o Let the lattice Dirac operator be of the form

1 R . R "
aDew = 5(1 + v595); Wg =7s; abDgy, = vsaDews

This satisfies the GW relation if 95 = 1
@ And it must have the correct continuum limit

Dew — @ = 45 = vs5(2ap — 1) + O(&)
@ Both conditions are satisfied if we define
D—»p

Y5 =5 CEDICED = sgn [v5(D — p)]
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Overlap Dirac operator Il

@ The resulting overlap Dirac operator:

D(H) = (1 +55gn [H(~p))

e has exact zero modes with exact chirality = index theorem
@ no additive mass renormalisation, no mixing
@ Three different variations:

e Choice of kernel
e Choice of approximation:

@ polynomial approximations, e.g. Chebyshev
@ rational approximations sgn(H) ~ Rn.m(H) =
e Choice of representation:
= continued fraction, partial fraction, Cayley transform

Pn(H)
Qm(H)
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Kernel choices

@ Simplest choice is the Wilson kernel Hy = ~5Dw(—p)
@ Domain wall fermion kernel is

Dw(—p)
2 + aDw(—p)

@ The generic Moebius kernel interpolates between the two:

o (b+¢)Dw(=p)
M7 2+ (b— c)aDw(—p)

@ Use UV-filtered covariant derivative:

e overlap operator becomes more local
@ no tuning of p, better scaling, cheaper,. ..

Hr = 9Dr; Dy =

Hw = 75 Dw;
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Tanh Approximation

@ Use a tanh expressed as a rational function
Sgn(x) ~Y Rgn,‘]‘gn(X):

—2n _ - —2n
tanh (2ntanh‘1(x)) = 8 12 o 8 — 2 5n

Properties:

f(X)lx=0 = 0

XILmOOf(x) =0
fix) = f(1/x)
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Zolotarev’s Approximation |

@ By means of Zolotarev’s theorem we have:

sn (% k'2)
o is the Jacobian elliptic function defined by the
elliptic integral

O Cr =

0< k<.

dt
o= |, T

@ Setting x = k - sn(u, k) we obtain the best uniform rational
approximation on [—1, —k] U [k, 1]:
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In the flatland Lattice formulation of QCD
On-shell chiral symmetry

Kernels, Approximations and Representations

Zolotarev’s Approximation I

X [E] X2 + k202r

kD e X2 + k2Cop_4

sgn(x) ~ R, 1 (x)=(1-1)

sn(z/M, 1)
A ,

stz k)

>
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Cayley Transform Representation

@ Represent the rational function as a Euclidean Cayley
transform:

_ 1= T(x)

T4 T(x)

R(x)

@ ltis an involutive automorphism,

1 — R(x)
14+ R(x)’

T(x) =

and the oddness of R(x) translates into the logarithmic
oddness of T(x) and vice versa,

R(—x) = —R(x) <= T(—x) = T~ '(x)

@ How do you evaluate this?
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Continued Fraction Representation

@ Continued fraction is obtained by applying Euclid’s division
algorithm:

sgn(x) ~ Ropi1,2n(X) = Kox +
k1X+

1

kon—1X +

kan

where the k;’s are determined by the approximation.
@ How do you evaluate this?
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Partial Fraction Representation

@ Partial fraction decomposition is obtained by matching
poles and residues:

sgn(x) = Rant1,2n(X) = X <CO + Z X2 + %)

e use a multi-shift linear system solver

@ Physics requires inverse of D(u) (propagators, HMC force)
e leads to a itwo level nested linear system solution

@ How can this be avoided?

e introduce auxiliary fields = exira dimension
o five-dimensional representation of the sgn—function
e nested Krylov space problem reduces to

single 5d Krylov space solution
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Cayley transform

Into five dimensions

Schur Complement

. . A B
@ Consider the block matrix < c D >

e It may be block diagonalised by a LDU decomposition
(Gaussian elimination)

1 0 A 0 (1 A'B
CA-' 1)\ 0 D-CA'B 0 1

e The bottom right block is the Schur complement
@ In particular we have

det( A B > = det(A)det(D — CA~'B)
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Continued fractions |

@ Consider a five-dimensional matrix of the form

A 1 0 0
1 A 1 0
0 1 A 1
0 0 1 A

and its LDU decomposition where s, = Ay; S, + s =An

1 0 0 o0 SS 0 0 O 18" o 0

S' 1 0 o0 0 S 0 0 o 1 s' o
Sy i 1 0 0 0 S O 0 0 1 32*1

0o 0 S' 1 0 0 0 S 0 0 0 1

@ The Schur complement of the matrix is the continued
fraction 1 1 1
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Into five dimensions

Continued fractions Il

@ We may use this representation to linearise our continued
fraction approximation to the sign function:

1
sgN,_1,n(H) = koH +

k1H+
koH+ "+

knH

as the Schur complement of the five-dimensional matrix

koH 1
1 —kH 1
1 keH
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Schur complement
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Into five dimensions

Continued fractions Il

@ We may use this representation to linearise our continued
fraction approximation to the sign function:

sgnn_m(H) = koH +

k1 H+
koH+ -
oH + -+ KoH
as the Schur complement of the five-dimensional matrix
koH
—c?kH
koH
—ciknH

o Class of operators related through equivalence
transformations parametrised by c;’s
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Cayley transform

Into five dimensions

Partial fractions

@ Consider a five-dimensional matrix of the form:

A1 0o 0 1
1 -B, 0 0 O
0 0 A 1 1
0 0 1 -B 0

1 0 -1 0 R

where A; = X, B; = pq#f

@ Compute its LDU decomposition and find its Schur complement
p1Xx P2Xx
X2+q X2+ q

@ So we can use this representation to linearise the partial fraction approximation
to the sgn-function:

P
H? + g

n
59nn—1,n(H) = HZ
j=1
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Schur complement
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Into five dimensions

Partial fractions

@ Consider a five-dimensional matrix of the form:

A1 0 0 |1
1 -B |0 o0 |0
0 0 | A 1 [1
0 0 |1 -B|o0

4 0 |1 0 [R

where A; = X B; = %
@ Compute its LDU decomposition and find its Schur complement

p1X P2X

R+
tar g

@ So we can use this representation to linearise the partial fraction approximation
to the sgn-function:




Schur complement
Continued fractions
Partial fractions
Cayley transform

Into five dimensions

Partial fractions

@ Consider a five-dimensional matrix of the form:

A1 0o 0 |1
1 -B| 0o o0 |o
0 0 [ A 1 [1
0 0 |1 -B|oO

1 0 |1 0 [R

where A; = >, B = f¥

@ Compute its LDU decomposition and find its Schur complement
P1X n P2X
(x2 +a1) (X2 + )

@ So we can use this representation to linearise the partial fraction approximation
to the sgn-function:




Schur complement
Continued fractions
Partial fractions
Cayley transform

Into five dimensions

Cayley Transform

@ Consider a five-dimensional matrix of the form (transfer
matrix form):

1 -7y 0 0

0 1 —-T, 0

0 0 1 T
-To, O 0 1

with its Schur complement 1 — 1,7, 7,73

@ So we can use this representation to linearise the Cayley
transform of the approximation to the sgn-function:

1 TT2, Ti(H)

H=——"F"%%¢+—.—
Sgnn—1,n( ) 1+H;1:1 TI(H)

@ This is the standard Domain Wall Fermion formulation
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Panorama view
Chiral symmetry breaking
The view from above Numerical studies

What do we see ...

@ ...each representation of the rational function leads to a
different five-dimensional Dirac operator

@ ...they all have the same four-dimensional, effective lattice
fermion operator
= the overlap Dirac operator
@ ...each five-dimensional operator has different symmetry
properties
= different calculational behaviour
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Panorama view
Chiral symmetry breaking
The view from above Numerical studies

What do we see ...

@ ...each five-dimensional operator can be even-odd
preconditioned

@ ...lowest modes of the kernel can be projected out
@ .. .lowest modes of the kernel can be suppressed:

= R(x) x sz)
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Panorama view
Chiral symmetry breaking
The view from above Numerical studies

What do we see ...

@ ...each five-dimensional operator can be even-odd
preconditioned

@ .. .lowest modes of the kernel can be projected out
@ .. .lowest modes of the kernel can be suppressed:

1
/ [
= R'(x) x R
@ ...there is no physical significance to the standard Domain
Wall formulation
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Panorama view
Chiral symmetry breaking
The view from above Numerical studies

What do we see ...

@ ...each five-dimensional operator can be even-odd
preconditioned

@ .. .lowest modes of the kernel can be projected out
@ .. .lowest modes of the kernel can be suppressed:

1
/ [
= R'(x) x R
@ ...there is no physical significance to the standard Domain
Wall formulation . . . is it?
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Panorama view
Chiral symmetry breaking
The view from above Numerical studies

Chiral symmetry breaking

@ Ginsparg-Wilson defect 50 + Dvys — 2aDys5D = 5 A:
@ it measures chiral symmetry breaking
e for the approximate overlap operator aD = 15(1 + v5Rn(H))
itis a, = 3(1 — Ra(H)?)
(GIAnG)
(GTG)

@ The residual quark mass is myes =
e Gis the 7 propagator
e it can be calculated directly in four and five dimensions
@ Myes is just the first moment of A,

e higher moments might be important for other physical
quantities
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Panorama view
Chiral symmetry breaking

The view from above Numerical studies

@ We use 15 gauge field backgrounds from dynamical DWF
dataset:

V=163x32, Ls=8,12,16, N;=2, u=0.02

@ Matched m mass for all representations
@ All operators are even-odd preconditioned, no projection
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Panorama view
Chiral symmetry breaking

The view from above Numerical studies

Comparison of Representations
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Panorama view
Chiral symmetry breaking

The view from above Numerical studies

Mmyes per configuration

‘max

0.001

min

1A Wk

0.0001

1e-05 -

1¢-06 ! | L

5




Panorama view
Chiral symmetry breaking

The view from above Numerical studies

Mmyes per configuration

‘max

0.001

1A Wk

min

0.0001

1e-05 -

1¢-06 ! | L

5




Panorama view
Chiral symmetry breaking

The view from above Numerical studies
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Panorama view
Chiral symmetry breaking

The view from above Numerical studies

Mmyes per configuration
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Cost versus Myes

Panorama view
Chiral symmetry breaking

The view from above Numerical studies

Cost vs Mres
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Cost versus Myes
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Conclusions

Summary

Conclusions

@ We have a thorough understanding of various five
dimensional formulations of chiral fermions

@ More freedom and possibilities in 5 dimensions
@ Physically they are all the same

@ From a computational point of view there are better
alternatives than the commonly used Domain Wall
Fermions

@ Hybrid Monte Carlo simulations:
5 versus 4 dimensional dynamics?
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