Chiral Fermions on the Lattice:
 A Flatlander's Ascent into Five Dimensions

Urs Wenger (ETH Zürich)

with
R. Edwards (JLab), B. Joó (JLab), A. D. Kennedy (Edinburgh), K. Orginos (JLab)

LHP06, Jefferson Lab, Newport News (VA), 1 August 2006

(1) In the flatland

- Lattice formulation of QCD
- On-shell chiral symmetry
- Kernels, Approximations and Representations
(2) Into five dimensions
- Schur complement
- Continued fractions
- Partial fractions
- Cayley transform
(3) The view from above
- Panorama view
- Chiral symmetry breaking
- Numerical studies

4 Summary

- Conclusions

QCD on the Lattice

Quantumchromodynamics is formally described by the Lagrange density:

$$
\mathcal{L}_{\mathrm{QCD}}=\bar{\psi}\left(i D-m_{q}\right) \psi-\frac{1}{4} G_{\mu \nu} G^{\mu \nu}
$$

- Non-perturbative, gauge invariant regularisation
- Lattice regularization: discretize Euclidean space-time
- Continuum limit $\Rightarrow a \rightarrow 0$
- Poincaré symmetries are restored automatically
- Naive discretisation of Dirac operator introduces doublers \Rightarrow restoration of chiral symmetry requires fine tuning

On-shell chiral symmetry

- It is possible to have chiral symmetry on the lattice without doublers if we only insist that the symmetry holds on-shell
- Such a transformation should be of the form

$$
\psi \rightarrow e^{i \alpha \gamma_{5}(1-a D)} \psi ; \quad \bar{\psi} \rightarrow \bar{\psi} e^{i \alpha(1-a D) \gamma_{5}}
$$

and the Dirac operator must be invariant:

$$
D \rightarrow e^{i \alpha(1-a D) \gamma_{5}} D e^{i \alpha \gamma_{5}(1-a D)}=D
$$

- For an infinitesimal transformation this implies that

$$
(1-a D) \gamma_{5} D+D \gamma_{5}(1-a D)=0
$$

which is the Ginsparg-Wilson relation

$$
\gamma_{5} D+D \gamma_{5}=2 a D \gamma_{5} D
$$

Overlap Dirac operator I

- We can find a solution $D_{G W}$ of the Ginsparg-Wilson relation as follows:
- Let the lattice Dirac operator be of the form

$$
a D_{G W}=\frac{1}{2}\left(1+\gamma_{5} \hat{\gamma}_{5}\right) ; \quad \hat{\gamma}_{5}^{\dagger}=\hat{\gamma}_{5} ; \quad a D_{G W}^{\dagger}=\gamma_{5} a D_{G W} \gamma_{5}
$$

This satisfies the GW relation if $\hat{\gamma}_{5}^{2}=1$

- And it must have the correct continuum limit

$$
D_{G W} \rightarrow \not \partial \Rightarrow \hat{\gamma}_{5}=\gamma_{5}(2 a \not \partial-1)+O\left(a^{2}\right)
$$

- Both conditions are satisfied if we define

$$
\hat{\gamma}_{5}=\gamma_{5} \frac{D-\rho}{\sqrt{(D-\rho)^{\dagger}(D-\rho)}}=\operatorname{sgn}\left[\gamma_{5}(D-\rho)\right]
$$

Overlap Dirac operator II

- The resulting overlap Dirac operator:

$$
D(H)=\frac{1}{2}\left(1+\gamma_{5} \operatorname{sgn}[H(-\rho)]\right)
$$

- has exact zero modes with exact chirality \Rightarrow index theorem
- no additive mass renormalisation, no mixing
- Three different variations:
- Choice of kernel
- Choice of approximation:
- polynomial approximations, e.g. Chebyshev
- rational approximations $\operatorname{sgn}(H) \simeq R_{n, m}(H)=\frac{P_{n}(H)}{Q_{m}(H)}$
- Choice of representation:
\Rightarrow continued fraction, partial fraction, Cayley transform

Kernel choices

- Simplest choice is the Wilson kernel $H_{W}=\gamma_{5} D_{W}(-\rho)$
- Domain wall fermion kernel is

$$
H_{\mathrm{T}}=\gamma_{5} D_{\mathrm{T}} ; \quad D_{\mathrm{T}}=\frac{D_{\mathrm{W}}(-\rho)}{2+a D_{\mathrm{W}}(-\rho)}
$$

- The generic Moebius kernel interpolates between the two:

$$
H_{\mathrm{M}}=\gamma_{5} D_{\mathrm{M}} ; \quad D_{\mathrm{M}}=\frac{(b+c) D_{\mathrm{W}}(-\rho)}{2+(b-c) a D_{\mathrm{W}}(-\rho)}
$$

- Use UV-filtered covariant derivative:
- overlap operator becomes more local
- no tuning of ρ, better scaling, cheaper,...

Tanh Approximation

- Use a tanh expressed as a rational function $\operatorname{sgn}(x) \simeq R_{2 n-1,2 n}(x):$
$\tanh \left(2 n \tanh ^{-1}(x)\right)=\frac{(1+x)^{-2 n}-(1-x)^{-2 n}}{(1+x)^{-2 n}+(1-x)^{-2 n}}$

Properties:

$$
\begin{aligned}
\left.f(x)\right|_{x=0} & =0 \\
\lim _{x \rightarrow \infty} f(x) & =0 \\
f(x) & =f(1 / x)
\end{aligned}
$$

Zolotarev's Approximation I

- By means of Zolotarev's theorem we have:

$$
\operatorname{sn}\left(\frac{u}{M}, \lambda\right)=\frac{\operatorname{sn}(u, k)}{M} \prod_{r=1}^{\left[\frac{n}{2}\right]} \frac{1+\frac{\operatorname{sn}^{2}(u, k)}{c_{2 r}}}{1+\frac{\operatorname{sn}^{2}(u, k)}{c_{2 r-1}}}
$$

$\diamond c_{r}=\frac{\operatorname{sn}^{2}\left(\frac{r k^{\prime}}{n}, k^{\prime 2}\right)}{1-\operatorname{sn}^{2}\left(\frac{r k^{\prime}}{n}, k^{\prime 2}\right)}$
$\diamond \xi=\operatorname{sn}(u, k)$ is the Jacobian elliptic function defined by the elliptic integral

$$
u=\int_{0}^{\xi} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}, 0<k<1
$$

- Setting $x=k \cdot \operatorname{sn}(u, k)$ we obtain the best uniform rational approximation on $[-1,-k] \cup[k, 1]$:

Zolotarev's Approximation II

$$
\operatorname{sgn}(\mathrm{x}) \simeq R_{n+1, n}(x)=(1-I) \frac{x}{k D} \prod_{r=1}^{\left[\frac{n}{2}\right]} \frac{x^{2}+k^{2} c_{2 r}}{x^{2}+k^{2} c_{2 r-1}}
$$

Outline
In the flatland

Cayley Transform Representation

- Represent the rational function as a Euclidean Cayley transform:

$$
R(x)=\frac{1-T(x)}{1+T(x)}
$$

- It is an involutive automorphism,

$$
T(x)=\frac{1-R(x)}{1+R(x)}
$$

and the oddness of $R(x)$ translates into the logarithmic oddness of $T(x)$ and vice versa,

$$
R(-x)=-R(x) \Longleftrightarrow T(-x)=T^{-1}(x)
$$

- How do you evaluate this?

Continued Fraction Representation

- Continued fraction is obtained by applying Euclid's division algorithm:

$$
\operatorname{sgn}(x) \simeq R_{2 n+1,2 n}(x)=k_{0} x+\frac{1}{k_{1} x+\frac{\cdots}{\cdots+\frac{1}{k_{2 n-1} x+\frac{1}{k_{2 n} x}}}}
$$

where the k_{i} 's are determined by the approximation.

- How do you evaluate this?

Partial Fraction Representation

- Partial fraction decomposition is obtained by matching poles and residues:

$$
\operatorname{sgn}(x) \simeq R_{2 n+1,2 n}(x)=x\left(c_{0}+\sum_{k=1}^{n} \frac{c_{k}}{x^{2}+q_{k}}\right)
$$

- use a multi-shift linear system solver
- Physics requires inverse of $D(\mu)$ (propagators, HMC force)
- leads to a two level nested linear system solution
- How can this be avoided?
- introduce auxiliary fields \Rightarrow extra dimension
- five-dimensional representation of the sgn-function
- nested Krylov space problem reduces to single 5d Krylov space solution

Schur Complement

- Consider the block matrix $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$
- It may be block diagonalised by a LDU decomposition (Gaussian elimination)

$$
\left(\begin{array}{cc}
1 & 0 \\
C A^{-1} & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
A & 0 \\
0 & D-C A^{-1} B
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & A^{-1} B \\
0 & 1
\end{array}\right)
$$

- The bottom right block is the Schur complement
- In particular we have

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\operatorname{det}(A) \operatorname{det}\left(D-C A^{-1} B\right)
$$

Outline

Continued fractions I

- Consider a five-dimensional matrix of the form

$$
\left(\begin{array}{cccc}
A_{0} & 1 & 0 & 0 \\
1 & A_{1} & 1 & 0 \\
0 & 1 & A_{2} & 1 \\
0 & 0 & 1 & A_{3}
\end{array}\right)
$$

and its LDU decomposition where $S_{0}=A_{0} ; S_{n}+\frac{1}{S_{n-1}}=A_{n}$

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
S_{0}^{-1} & 1 & 0 & 0 \\
0 & S_{1}^{-1} & 1 & 0 \\
0 & 0 & S_{2}^{-1} & 1
\end{array}\right)\left(\begin{array}{cccc}
S_{0} & 0 & 0 & 0 \\
0 & S_{1} & 0 & 0 \\
0 & 0 & S_{2} & 0 \\
0 & 0 & 0 & S_{3}
\end{array}\right)\left(\begin{array}{cccc}
1 & S_{0}^{-1} & 0 & 0 \\
0 & 1 & S_{1}^{-1} & 0 \\
0 & 0 & 1 & S_{2}^{-1} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- The Schur complement of the matrix is the continued fraction

$$
S_{3}=A_{3}-\frac{1}{S_{2}}=A_{3}-\frac{1}{A_{2}-\frac{1}{S_{1}}}=A_{3}-\frac{1}{A_{2}-\frac{1}{A_{1}-\frac{1}{A_{0}}}}
$$

Outline

Continued fractions II

- We may use this representation to linearise our continued fraction approximation to the sign function:

$$
\operatorname{sgn}_{n-1, n}(H)=k_{0} H+\frac{1}{k_{1} H+\frac{1}{k_{2} H+\ddots+\frac{1}{k_{n} H}}}
$$

as the Schur complement of the five-dimensional matrix

$$
\left(\begin{array}{ccccc}
k_{0} H & 1 & & & \\
1 & -k_{1} H & 1 & & \\
& 1 & k_{2} H & & \\
& & & \ddots & 1 \\
& & & 1 & -k_{n} H
\end{array}\right)
$$

Continued fractions II

- We may use this representation to linearise our continued fraction approximation to the sign function:

$$
\operatorname{sgn}_{n-1, n}(H)=k_{0} H+\frac{c_{1}}{c_{1} k_{1} H+\frac{c_{1} c_{2}}{c_{2} k_{2} H+\ddots+\frac{c_{n-1} c_{n}}{c_{n} k_{n} H}}}
$$

as the Schur complement of the five-dimensional matrix

$$
\left(\begin{array}{ccccc}
k_{0} H & c_{1} & & & \\
c_{1} & -c_{1}^{2} k_{1} H & c_{1} c_{2} & & \\
& c_{1} c_{2} & c_{2}^{2} k_{2} H & & \\
& & & \ddots & c_{n-1} c_{n} \\
& & & c_{n-1} c_{n} & -c_{n}^{2} k_{n} H
\end{array}\right)
$$

- Class of operators related through equivalence transformations parametrised by c 's

Partial fractions

- Consider a five-dimensional matrix of the form:

$$
\left(\begin{array}{ccccc}
A_{1} & 1 & 0 & 0 & 1 \\
1 & -B_{1} & 0 & 0 & 0 \\
0 & 0 & A_{2} & 1 & 1 \\
0 & 0 & 1 & -B_{2} & 0 \\
-1 & 0 & -1 & 0 & R
\end{array}\right)
$$

where $A_{i}=\frac{x}{p_{i}}, B_{i}=\frac{p_{i} x}{q_{i}}$

- Compute its LDU decomposition and find its Schur complement

$$
R+\frac{p_{1} x}{x^{2}+q_{1}}+\frac{p_{2} x}{x^{2}+q_{2}}
$$

- So we can use this representation to linearise the partial fraction approximation to the sgn-function:

$$
\operatorname{sgn}_{n-1, n}(H)=H \sum_{j=1}^{n} \frac{p_{j}}{H^{2}+q_{j}}
$$

Partial fractions

- Consider a five-dimensional matrix of the form:

$$
\left(\begin{array}{cc|cc|c}
A_{1} & 1 & 0 & 0 & 1 \\
1 & -B_{1} & 0 & 0 & 0 \\
\hline 0 & 0 & A_{2} & 1 & 1 \\
0 & 0 & 1 & -B_{2} & 0 \\
\hline-1 & 0 & -1 & 0 & R
\end{array}\right)
$$

where $A_{i}=\frac{x}{p_{i}}, B_{i}=\frac{p_{i} x}{q_{i}}$

- Compute its LDU decomposition and find its Schur complement

$$
R+\frac{p_{1} x}{x^{2}+q_{1}}+\frac{p_{2} x}{x^{2}+q_{2}}
$$

- So we can use this representation to linearise the partial fraction approximation to the sgn-function:

$$
\operatorname{sgn}_{n-1, n}(H)=H \sum_{j=1}^{n} \frac{p_{j}}{H^{2}+q_{j}}
$$

Partial fractions

- Consider a five-dimensional matrix of the form:

$$
\left(\begin{array}{cc|cc|c}
A_{1} & 1 & 0 & 0 & 1 \\
1 & -B_{1} & 0 & 0 & 0 \\
\hline 0 & 0 & A_{2} & 1 & 1 \\
0 & 0 & 1 & -B_{2} & 0 \\
\hline-1 & 0 & -1 & 0 & R
\end{array}\right)
$$

where $A_{i}=\frac{x}{p_{i}}, B_{i}=\frac{p_{i} x}{q_{i}}$

- Compute its LDU decomposition and find its Schur complement

$$
R+\frac{c_{1} p_{1} x}{c_{1}\left(x^{2}+q_{1}\right)}+\frac{c_{2} p_{2} x}{c_{2}\left(x^{2}+q_{2}\right)}
$$

- So we can use this representation to linearise the partial fraction approximation to the sgn-function:

$$
\operatorname{sgn}_{n-1, n}(H)=H \sum_{j=1}^{n} \frac{p_{j}}{H^{2}+q_{j}}
$$

Cayley Transform

- Consider a five-dimensional matrix of the form (transfer matrix form):

$$
\left(\begin{array}{cccc}
1 & -T_{1} & 0 & 0 \\
0 & 1 & -T_{2} & 0 \\
0 & 0 & 1 & -T_{3} \\
-T_{0} & 0 & 0 & 1
\end{array}\right)
$$

with its Schur complement $1-T_{0} T_{1} T_{2} T_{3}$

- So we can use this representation to linearise the Cayley transform of the approximation to the sgn-function:

$$
\operatorname{sgn}_{n-1, n}(H)=\frac{1-\prod_{j=1}^{n} T_{j}(H)}{1+\prod_{j=1}^{n} T_{j}(H)}
$$

- This is the standard Domain Wall Fermion formulation

What do we see . . .

- . . each representation of the rational function leads to a different five-dimensional Dirac operator
- ...they all have the same four-dimensional, effective lattice fermion operator
\Rightarrow the overlap Dirac operator
- . . .each five-dimensional operator has different symmetry properties
\Rightarrow different calculational behaviour

What do we see . . .

- . . .each five-dimensional operator can be even-odd preconditioned
- . . .lowest modes of the kernel can be projected out
- . . . lowest modes of the kernel can be suppressed:

$$
\Rightarrow R^{\prime}(x) \propto \frac{1}{R(x)}
$$

What do we see . . .

- . . .each five-dimensional operator can be even-odd preconditioned
- . . .lowest modes of the kernel can be projected out
- .. . lowest modes of the kernel can be suppressed:

$$
\Rightarrow R^{\prime}(x) \propto \frac{1}{R(x)}
$$

- ...there is no physical significance to the standard Domain Wall formulation

What do we see . . .

- . . .each five-dimensional operator can be even-odd preconditioned
- . . .lowest modes of the kernel can be projected out
- . . . lowest modes of the kernel can be suppressed:

$$
\Rightarrow R^{\prime}(x) \propto \frac{1}{R(x)}
$$

- . . .there is no physical significance to the standard Domain Wall formulation . . . is it?

Chiral symmetry breaking

- Ginsparg-Wilson defect $\gamma_{5} D+D \gamma_{5}-2 a D \gamma_{5} D=\gamma_{5} \Delta$:
- it measures chiral symmetry breaking
- for the approximate overlap operator $a D=\frac{1}{2}\left(1+\gamma_{5} R_{n}(H)\right)$ it is $a \Delta_{n}=\frac{1}{2}\left(1-R_{n}(H)^{2}\right)$
- The residual quark mass is $m_{r e s}=\frac{\left\langle G^{\dagger} \Delta_{n} G\right\rangle}{\left\langle G^{\dagger} G\right\rangle}$
- G is the π propagator
- it can be calculated directly in four and five dimensions
- $m_{r e s}$ is just the first moment of Δ_{n}
- higher moments might be important for other physical quantities
- We use 15 gauge field backgrounds from dynamical DWF dataset:

$$
V=16^{3} \times 32, \quad L_{s}=8,12,16, \quad N_{f}=2, \quad \mu=0.02
$$

- Matched π mass for all representations
- All operators are even-odd preconditioned, no projection

Outline
In the flatland Into five dimensions The view from above

Summary

Comparison of Representations

Outline
In the flatland Into five dimensions The view from above

Summary

Panorama view
Chiral symmetry breaking
Numerical studies

$m_{\text {res }}$ per configuration

Outline
In the flatland Into five dimensions The view from above

Summary

Panorama view
Chiral symmetry breaking
Numerical studies

$m_{\text {res }}$ per configuration

Outline
In the flatland Into five dimensions The view from above

Summary

Panorama view
Chiral symmetry breaking
Numerical studies

$m_{\text {res }}$ per configuration

Outline
In the flatland Into five dimensions The view from above

Summary

Panorama view
Chiral symmetry breaking
Numerical studies

$m_{\text {res }}$ per configuration

Outline
In the flatland Into five dimensions The view from above

Summary

Panorama view
Chiral symmetry breaking
Numerical studies

$m_{\text {res }}$ per configuration

Outline
In the flatland Into five dimensions The view from above

Summary

Panorama view
Chiral symmetry breaking
Numerical studies

$m_{\text {res }}$ per configuration

Outline
In the flatland Into five dimensions The view from above

Summary

Chiral symmetry breaking
Numerical studies

Cost versus $m_{\text {res }}$

Outline
In the flatland Into five dimensions The view from above

Summary

Cost versus $m_{\text {res }}$

Conclusions

- We have a thorough understanding of various five dimensional formulations of chiral fermions
- More freedom and possibilities in 5 dimensions
- Physically they are all the same
- From a computational point of view there are better alternatives than the commonly used Domain Wall Fermions
- Hybrid Monte Carlo simulations:

5 versus 4 dimensional dynamics?

