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Mixed Action Effective Field Theory

Two-Meson systems from Lattice QCD




Mixed Actions (MA) and Partial Quenching (PQ)
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Mixed Actions (MA) and Partial Quenching (PQ)

Why consider PQ or |
MA theories!

@ simulating light sea quarks
numerically costly: valence
quarks are cheaper

Lattice

m : 1
Valence Simulations

M giran ge

© larger parameter space to match  cp
effective theory to: QCD limit of
theory

@ chiral symmetry of Ginsparg-Wilson Mstrange
quarks ideal: currently prohibitavely
costly

@ provide means to test effective field theories (EFT):
do PQ and MA EFTs completely encode all the unitarity violation
which is manifest in the low energy dynamics!?




I = 2 7 scattering




I = 2 7r scattering

Adding mixed action and partial quenching effects
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Every sickness expected is apparent:

partial quenching lattice discretization effects




I = 2 mm scattering

In physical parameters (mass and decay constant measured directly from
correlators) the scattering length is given by
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I = 2 mm scattering

Adding mixed action and partial quenching effects,
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The explicit dependence on the lattice spacing has exactly
cancelled - up to a calculable effect from the hairpin

interactions!!!

This is independent of the type of sea-quarks




I = 2 mm scattering

NPLQCD:

Isospin 2 pion scattering
length: Domain-wall valence
quarks on staggered sea
quarks.

S. Beane, P. Bedaque, K. Orginos,
M. Savage PRD73 (2006)

Experimental point NOT
used to constrain fit
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Postdiction and prediction here: form
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independent of sea quarks

largely insensitive to sea quarks and lattice spacing




Mixed Action Effective Field Theory

PQ C. Bernard, M. Golterman, PRD 49 (1994)
S.Sharpe, PRD 56 (1997)
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Mixed Actions (MA) and Partial Quenching (PQ)
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Mixed Actions (MA) and Partial Quenching (PQ)

more relevant operators
sea quarks - must add potential arising from the lattice spacing effects

mixing of quarks - must add potential which effects mesons of mixed
valence-sea type

L = a*Chuiz (T33T3X1) Ty = Pq — Py

Ps  sea projector

Py valence projector

* m%v = 2Bym,,

ﬁlgs = 2Boms + f(a)Cseq

m2, = Bo(my, +ms) + a*Apgiz ANz =




Partial Quenching (PQ)

Gasser-Leutwler Lagrangian

L= L [sTr(9,510"%)]’ + LysTr (0,510,%) sTr (059" %)

+ L3sTr (0,£0,210" 20" ) + L4 2BosTr (9,L0"ET) sTr (mgEF + Em))
+ L5 2BosTr (9,20"S" (mg2F + Smi)) +  4Lg B2 [sTr (m =t + Smy)]”

+ 4L7 BE [sTr (mgSF — Smy)]” +4Ls B2 [sTr (mgXim St + SmgSm,)]’

These coefficients, L; have the ——_— Lattice .

Simulations

same numerical value they do in
chiral perturbation theory.




Mixed Actions (MA) and Partial Quenching (PQ)

Mixed Action breaks up the Gasser-Leutwyler operators; for example
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cVVv
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Mixed Actions (MA) and Partial Quenching (PQ)

In addition to these operators, there are also operators
involving the lattice spacing, eg.

a’ L, .2sTr (quT) sTr (735 E5 2 &5 »i 4 p.c.)
We find that all extra operators from mixed action

Lagrangian can be absorbed into a field redefinition of [,
and Bmy. eg.
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Mixed action is helping!!! “Factorization” of sea quark
effects.




Mixed Actions (MA) and Partial Quenching (PQ)

Where does this break down!?

Consider a correction to the Lg operator. We found that the sea-quark
effects from this operator cancelled - but the scattering length still depends
upon this operator - from the valence quark contributions. Thus consider a
correction to this operator, eg.

Lg o2 sTr (Py (mgXT +2my)) sTr (Pyv (mgE" + Smy)) (1 +a® sTr (Ps & &5 51))

So we see there will be a non-vanishing CL2 contribution to the amplitude
at the next order, (’)(aZmi) . However, this contribution can also be field
redefined into Lg - again a feature arising from the Ginsparg-Wilson
symmetry in the valence sector.
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Taste Breaking in meson spectrum
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non-Physics of Partial Quenching

unitarity violation is same in mixed action and partially
quenched theory at EFT level:

Explicitly display these sicknesses:
non-physics of partial quenching

A?u = ﬁz?j —mZ = 2By(m; —my) + f(a)Aseq + - ..

A2 =m2 —m2, =2By(m, —m,) + f(a)Aseq + . . .

Aﬁj = m2, — m?j = 2By(ms —m;) — f(a)Agea + - -




Two-Meson Systems

but more complicated algebra due to SU(3) breaking

K7 Scattering

K1 scattering length, we observe a dependence upon the
valence sea mesons, which introduces a new unknown
into fit




KK scattering
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K7T Scattering

Kaon-pion system has new effect not seen in KK or 7171
system - at one-loop the presence of valence-sea mesons.
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azln(,uz) still cancels - Ginsparg-Wilson chiral valence symmetry
protects amplitude from these corrections

@ counter term structure of scattering length is identical to that in
QCD. Mixed mesons introduce an additional unknown A ;.




Other Applications

O axial couplings

Nucleon-Nucleon Scattering

Hyperon-Nucleon Scattering

J-W. Chen, D. O’Connell, AW-L
hep-lat/06XXXXX




Conclusions

(O Counter term structure of observables is identical to that in
QCD, through NLO, up to perturbative corrections

O Additional symmetry need to consider is SU(3)-valence
symmetry, combined with projection onto initial and final states

O Arguments hold for other observables as well




