

The GlueX Experiment and Lattice QCD

Jo Dudek, Jefferson Lab LHP '06

The Physics of GlueX

- GlueX will explore the meson spectrum with a mass reach over 2.5 GeV
- major feature is the search for exotic quantum-numbered mesons
 - e.g. J^{PC} = 0⁻⁻⁻, 0⁺⁻⁻, 1⁻⁺, 2⁺⁻... not accessible to a fermion-antifermion state
 - likely origin for such states in QCD is hybrid mesons i.e. quark-antiquark states with excited gluonic field

The GlueX Experiment

- GlueX will use real 9 GeV photons to photoproduce mesons
- virtually no data on photoproduction of meson resonances exists

GlueX Details

- GlueX will hugely surpass these statistics
 - $10^6 \pi \pi \pi$ events per 10 MeV bin in 3 months running
 - ~ 1 PetaByte per year
- detector designed to have good coverage over full 4π
 - aids the required Partial Wave Analysis

GlueX Photon Beam & Detector

AAS JEFFERSON NATIONAL ACCELERATOR FACILITY Operated by Jefferson Science Associates, LLC for the U. S. Department of Energy

Exotics in Experiment

 bulk of relevant exotic searches done by E852 using a 18 GeV pion beam & dominantly 1⁻⁺

Exotics in E852

broad enhancement in *P*-wave intensity

D-wave structure not understood so phase comparison unconstrained

taken at face value, intensity gives π₁(1600), Γ~350 MeV

non-resonant origin cannot be ruled out

Exotics in E852

+ two analyses of $\pi p \to \pi \pi \pi p$, more recent has higher statistics

E852 Exotics cont...

 $\pi p \to \pi \pi \pi \pi \pi p$

exotic enhancement in the 1.65 GeV region

low event statistics limit the PWA to a small number of waves

E852 Exotics cont...

$\pi p \to \eta \pi \pi \pi p$

Exotics in Experiment

- E852 results suggestive, but situation unclear overall
- GlueX poised to continue the good work of hybridhunting with a new production mechanism and much greater statistics

Models of Gluonic Excitations

- the flux-tube model has historically dominated the field
- has a rather complete phenomenological coverage
 - mass spectrum estimates (Isgur & Paton)

Lightest 1⁻⁺ from Lattice QCD

summary of world simulation data

Lightest 1⁻⁺ from Lattice QCD

JLab effort over next two years aim to significantly improve this picture

LHP '06 - GlueX & Lattice QCD - J. Dudek

Wider Meson Spectrum

- GlueX will be a meson spectrometer of broad scope
- JLab lattice QCD spectrum program has same aim
 - excited states in a given J^{PC} via variational method

Photocouplings

• GlueX will photoproduce mesons

 couplings virtually unknown even for conventional mesons - clear target for Lattice QCD predictions

Lattice Method

three-point functions with vector current

$$\begin{split} \Gamma(t_{f},t\,;\vec{p_{f}},\vec{q}) &= \sum_{\vec{x},\vec{y}} e^{-i\vec{p_{f}}\cdot\vec{x}} e^{i\vec{q}\cdot\vec{y}} \left\langle \varphi_{f}(\vec{x},t_{f})j^{\mu}(\vec{y},t)\varphi_{i}(\vec{0},0) \right\rangle \\ &\sim \sum_{n,m} e^{-\underbrace{E_{fn}(t_{f}-t)}(0|\varphi_{f}(0)|f_{n}(\vec{p_{f}}))}_{\times \left\langle f_{n}(\vec{p_{f}})|j^{\mu}(0)|i_{m}(\vec{p_{i}}) \right\rangle} & \text{covariant transition} \\ &\times \left\langle i_{m}(\vec{p_{i}})|\varphi_{i}(0)|0 \right\rangle e^{-\underbrace{E_{in}t}} \\ \text{energies and overlap} \\ \text{factors extracted from} \end{split}$$

fits to two-point functions

three-point function calculation performed via a sequential-sink construction

Charmonium

- before calculating with light quarks for GlueX we'd like to test the technology DD
- charmonium is ideal
 - excellent expt^{al} data
 - near-stable states
 - quenched might be 'tolerable'

```
quenched aniso. ξ=3
1/a<sub>t</sub> ~ 6 GeV
DWF (m<sub>c</sub>a<sub>t</sub> ~ 0.15)
```

300 cfgs.

• transverse $E_1(Q^2)$ and longitudinal $C_1(Q^2)$

 $\langle S(\vec{p}_S) | j^{\mu}(0) | V(\vec{p}_V, r) \rangle = \Omega^{-1}(Q^2) \Big(E_1(Q^2) \Big(\Omega(Q^2) \epsilon^{\mu}(\vec{p}_V, r) - \epsilon(\vec{p}_V, r) \cdot p_S \big(p_V^{\mu} p_V \cdot p_S - m_V^2 p_S^{\mu} \big) \Big]$ $+\frac{C_1(Q^2)}{\sqrt{q^2}}m_V\epsilon(\vec{p}_V,r).p_S\left[p_V.p_S(p_V+p_S)^{\mu}-m_S^2p_V^{\mu}-m_V^2p_S^{\mu}\right]\right)$ $E_1(Q^2)^{-0.05}$ spat. $p_f = (000) J/\psi_{spk}$ spat. $p_f = (100) J/\psi_{snk}$ spat. $p_f = (000) \chi_{c0 \text{ snk.}}$ spat. $p_f = (100) \chi_{c0 snk}$ PDG phys. mass -0.15 PDG lat. mass CLEO phys. mass _t Ê₁(Ω² CLEO lat. mass -0.2 not used in the fit -0.25 $E_1(Q^2) = E_1(0) \left(1 + \frac{Q^2}{\rho^2}\right) e^{-\frac{Q^2}{16\beta^2}}$ 2 3 5 Q^2 (GeV²)

 $\chi_{c1} \to J$

GLUE CITATIONS PERIMENT

• transverse $E_1(Q^2)$, $M_2(Q^2)$ and longitudinal $C_1(Q^2)$

$$\begin{split} A(\vec{p}_{A}, r_{A})|j^{\mu}(0)|V(\vec{p}_{V}, r_{V})\rangle &= \frac{i}{4\sqrt{2}\Omega(Q^{2})} \epsilon^{\mu\nu\rho\sigma}(p_{A} - p_{V})_{\sigma} \times \\ \times \left[E_{1}(Q^{2})(p_{A} + p_{V})_{\rho} \Big(2m_{A}[\epsilon^{*}(\vec{p}_{A}, r_{A}).p_{V}]\epsilon_{\nu}(\vec{p}_{V}, r_{V}) + 2m_{V}[\epsilon(\vec{p}_{V}, r_{V}).p_{A}]\epsilon_{\nu}^{*}(\vec{p}_{A}, r_{A}) \Big) \right. \\ &+ M_{2}(Q^{2})(p_{A} + p_{V})_{\rho} \Big(2m_{A}[\epsilon^{*}(\vec{p}_{A}, r_{A}).p_{V}]\epsilon_{\nu}(\vec{p}_{V}, r_{V}) - 2m_{V}[\epsilon(\vec{p}_{V}, r_{V}).p_{A}]\epsilon_{\nu}^{*}(\vec{p}_{A}, r_{A}) \Big) \\ &+ \frac{C1(Q^{2})}{\sqrt{q^{2}}} \Big(-4\Omega(Q^{2})\epsilon_{\nu}^{*}(\vec{p}_{A}, r_{A})\epsilon_{\rho}(\vec{p}_{V}, r_{V}) \\ &+ (p_{A} + p_{V})_{\rho} \Big[(m_{A}^{2} - m_{V}^{2} + q^{2})[\epsilon^{*}(\vec{p}_{A}, r_{A}).p_{V}] \epsilon_{\nu}(\vec{p}_{V}, r_{V}) + (m_{A}^{2} - m_{V}^{2} - q^{2})[\epsilon(\vec{p}_{V}, r_{V}).p_{A}] \epsilon_{\nu}^{*}(\vec{p}_{A}, r_{A}) \Big] \Big) \Big]. \end{split}$$

Summary

- GlueX is a major component of the JLab 12 GeV upgrade
- will exceed total world meson production data in a few years
- search for exotic mesons a main focus
- JLab lattice QCD program aligned with GlueX aims
- dynamical 2+1 anisotropic Clover lattices to be used for spectrum, decay and photocoupling studies at low pion masses

Hadronic Decays

- some recent lattice progress on this important topic
- Lüscher method study : Cook & Fiebig
 - use volume dependence where $m(\pi) + m(b_1) < m(\pi_1)$ or $m(\pi) + m(a_1) < m(\eta_1)$

quenched 10³x24 & 12³x24 with Wilson quarks

CLAS PWA

exotic maybe 1-2% of 1++ in pion prod, appears to be about 20% here

SCIENCE U.S. DEPARTMENT OF ENERGY

Hadronic Decays cont.

- some recent lattice progress on this important topic
- alternative approach due to Michael & McNeile
 - tune quark masses to $m(\pi) + m(b_1) \approx m(\pi_1)$

Lightest 0⁺⁻ from Lattice QCD

summary of world simulation data

for the U.S. Department of Energy

LHP '06 - GlueX & Lattice QCD - J. Dudek

Lightest 2⁺⁻ from Lattice QCD

summary of world simulation data

for the U.S. Department of Energy

LHP '06 - GlueX & Lattice QCD - J. Dudek

Lattice QCD & model testing

- quark masses will decrease in the future, but even now we can make good use of lattice data
- we can compare lattice QCD calculations with 'heavier' quarks vs model calculations with 'heavier' quarks

Exotics in E852

+ two analyses of $\pi p \to \pi \pi \pi p$, more recent has higher statistics

Variational Method

