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1. Introduction

Motivation :
Understand strong interaction effect in weak decay process

K → ππ weak decay process has

∆I = 1/2 selection rule

ReA(K0 → (ππ)0)

ReA(K0 → (ππ)2)
=

ReA0

ReA2
≈ 22

CP violation parameter ε′/ε.

ε′

ε
=

{

(20.7 ± 2.8) × 10−4 (KTeV)

(15.3 ± 2.6) × 10−4 (NA48)
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Previous lattice calculation of K → ππ

• ’85 Bernard et al.

• ’89 Bernard et al.

• ’98 JLQCD Collaboration

• ’98 Pekurovsky and Kilcup

• ’98 Lellouch and Lin

• ’99 Doninni et al.

• ’03 CP-PACS Collaboration

• ’03 RBC Collaboration

• ’05 Boucaud et al.

• ’05 Shu Li’s talk etc.

indirect method

On lattice K → 0 and K → π

−→ physical K → ππ

direct method

On lattice K → ππ

−→ physical K → ππ

To avoid problem and difficulty of direct calculation,

most works employed indirect method with chiral perturbation the-

ory(ChPT) to obtain K → ππ decay amplitude.

Final state interaction effect is expected to play an important role in

the decay process.
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Problems of direct calculation

We are interested in real world.

Non-leptonic Kaon decay is K → π(p)π(−p) in infinite volume with

mK = 498 MeV, mπ = 140 MeV, p = 206 MeV.

1. On lattice we cannot directly treat K → π(p)π(−p), but can treat

only K → π(0)π(0) by traditional analysis method.

‘90 Maiani and Testa

2. Lattice calculation is carried out on finite volume (2-3 fm).

Since finite volume effect of two-particle state is large, we have to

take finite volume effect in extraction of decay amplitude in infinte

volume.

|A∞| = F (Eππ, δ)|MV |
‘01 Lellouch and Lüscher
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Problem 1
We need K → ππ four-point function GKππp(t) to obtain 〈π(p)π(−p)|Q|K〉.

GKππp(t) = 〈0|ππp(tπ)Q(t)K(tK)|0〉
−→

tK�t ZK e−EK |t−tK|〈0|ππp(tπ)Q(t)|K〉
= ZK e−EK |t−tK| ×

(

Zp0〈π(0)π(0)|Q|K〉e−Eππ0|t−tπ|

+ Zpp〈π(p)π(−p)|Q|K〉e−Eππp|t−tπ| + · · ·
)

−→
tπ�t ZK e−EK |t−tK| Zp0〈ππ0|Q|K〉e−Eππ0|t−tπ|

where

ππp = π(p)π(−p), Zpq = 〈0|ππp|π(q)π(−q)〉, Eππp = 2
√

m2
π + p2

We need 〈π(p)π(−p)|Q|K〉, but we obtain 〈π(0)π(0)|Q|K〉 because |π(0)π(0)〉
is ground state of two-pion.
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Solutions of Problem 1 of direct calculation

1. Projected K → ππ four-point function ’02 Ishizuka

Z−1
pq GKππq(t) ∝ 〈π(p)π(−p)|Q|K〉e−Eππp|t−tπ|, Z−1

pq = 〈0|ππq|π(p)π(−p)〉−1

In principle we can extract 〈π(p)π(−p)|Q|K〉 by single exponential,

but we need to calculate Z−1
pq and GKππq(t) with various momenta.

2. Ground state with p 6= 0

When we forbid |π(0)π(0)〉 by boundary condition or kinematics,

we can extract K → π(p)π(−p) from ground state contribution of

correlation functions.

• H-parity(anti-periodic) boundary ’04 Kim for RBC Collaboration

p = (n + 1/2) · 2π/L

• non-zero total momentum system

6



K(P ) → π(P )π(0) decay

In non-zero total momentum(Lab) system |π(P )π(0)〉 is ground state,

which relates to |π(p)π(−p)〉 with p 6= 0 in center-of-mass(CM) system.

However, we cannot apply LL formula to Lab calculation, because LL

formula is derived in CM system. We have to solve Problem 2 before

simulation.

Recently extended formula for Lab system is proposed by two groups.

’05 Kim, Sachrajda, Sharpe, and Christ, Kim, Yamazaki

Purpose
To apply extended formula to

∆I = 3/2 K → ππ decay and obtain matrix elements
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2. Method

Lellouch and Lüscher formula K(0) → π(p)π(−p)
Relation of on-shell decay amplitude in infinite volume |A|(CM) and finite

volume |M |(CM)

|A|2 = 8π

(

Eππ

p

)3{

p′
∂δ

∂p′
+ p′

∂φ

∂p′

}

p′=p

|M |2

where Eππ = 2
√

m2
π + p2 = mK

δ : scattering phase shift

tanφ(q) = − qπ3/2

Z00(1; q2)
, Z00(1; q2) =

1√
4π

∑

n∈Z3

1

n2 − q2

δ(p) is obtained by δ(p) = −φ(q), q = Lp/2π. l > 0 is neglected.

’91 Lüscher
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Extended formula K(P ) → π(P )π(0) (~P = (0,0,2π/L))

Relation of on-shell decay amplitude in infinite volume |A|(CM) and in

finite volume |M |(Lab, ~P 6= 0)

|A|2 = 8πγ2

(

Eππ

p

)3{

p′
∂δ

∂p′
+ p′

∂φ~P

∂p′

}

p′=p

|M |2

where E2
ππ = (ELab

ππ )2 − ~P2 = 4(m2
π + p2) = m2

K, γ = ELab
ππ /Eππ

δ : scattering phase shift

tanφ~P
(q) = − γqπ3/2

Z
~P
00(1; q2; γ)

,

Z
~P
00(1; q2; γ) =

1√
4π

∑

n∈Z3

1

n2
1 + n2

2 + γ−2(n3 + LP/4π)2 − q2

δ(p) is obtained by δ(p) = −φ~P
(q), q = Lp/2π. l > 0 is neglected.

’95 Rummukainen and Gottlieb

When γ = 1 and ~P = (0,0,0), extended formula reproduces original LL

formula.
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3. Simulation parameters

• DBW2 gauge + Domain Wall fermion actions

quenched approximation

β = 0.87 a−1 = 1.3 GeV

Lattice size 163×32×12 (La ≈ 2.4 fm)

• Source points tπ = 0 and tK =16, 20(111 conf.), 25(100 conf.)

check consistency with different tK

• Wall source and Coulomb gauge fixing

• 4 light quark masses for chiral extrapolation ⇒ mπ = 0.14 GeV

mu : 0.015 0.03 0.04 0.05 → mπ : 0.35 0.47 0.54 0.60 GeV

• 6 strange quark masses for interpolation of |M | to on-shell

ms : 0.12 0.18 0.24 0.28 0.35 0.44

• Total momentum ~P = (0,0,0)(CM) and (0,0,2π/L)(Lab)

ππ ground state with p ≈ 80 and 260 MeV

(Including energy shift due to two-pion interaction effect)

interpolation ⇒ p = 0.206 GeV (mK = 2
√

m2
π + p2)
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4. Results

4.1. I = 2 Scattering length a0 = lim
p→0

δ(p)

p

0 0.1 0.2 0.3 0.4

mπ
2
[GeV

2
]

−2.5

−2

−1.5

−1

linear fit

quadratic fit

ChPT

a
0
/mπ[1/GeV

2
]

a0 is estimated from δ(p)/p

in CM calculation. (we as-

sume p ∼ 80[MeV] equal

zero.)

Linear fitting

a0/mπ = a + bm2
π

Quadratic fitting

a0/mπ = a + bm2
π + cm4

π

a0/mπ [GeV−2] mπ = 0.14[GeV] χ2/d.o.f.

linear −2.02(13) 0.05

quad. −2.13(23) 0.00043

ChPT −2.265(51) —

Results are reasonably consistent with prediction from ChPT.
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4.2. I = 2 Scattering phase shift

0 0.02 0.04 0.06 0.08

p
2
[GeV

2
]

−0.8
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−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

m
u
=0.015

m
u
=0.03

m
u
=0.04

m
u
=0.05

T(mπ
2
,p

2
)=tanδ(p)Eππ/2p

CM

Lab

To obtain
∂δ

∂p
, we employ

global fitting of T (m2
π, p2)

for m2
π and p2.

T (m2
π, p2) =

tan δ(p)

p

Eππ

2

= A10m2
π + A20m4

π

+A01p2

where Eππ = 2
√

m2
π + p2

A10[GeV−2] A20[GeV−4] A01[GeV−2] χ2/d.o.f.

-1.97(12) 1.79(33) -1.07(75) 0.090
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Fit result of I = 2 Scattering phase shift
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∂δ/∂p is extracted from fit result.(Solid lines)
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4.3. Extraction of off-shell amplitude

To obtain ∆I = 3/2 amplitude |Mi|, we define

Ri(t) =

√
3Gi(t, tπ, tK)ZππZK

Gππ(t, tπ)GK(t, tK)

where I = 2 two-pion correlator Gππ(t, tπ), kaon correlator GK(t, tK),

operator overlaps Zππ and ZK. (
√

3|π+π−〉 = |(ππ)I=2〉 +
√

2|(ππ)I=0〉)
|Mi| is determined from Ri(t) in tπ � t � tK region.

K → ππ four-point function (~P = (0,0,0)(CM) and (0,0,2π/L)(Lab))

Gi(t, tπ, tK) = 〈0|π+π−(tπ, ~P )O
3/2
i (t)K0(tK, ~P )|0〉, i = 27,88,m88

∆I = 3/2 K → ππ operators

O
3/2
27,88 = (sada)L

[

(ubub)L,R − (dbdb)L,R

]

+ (saua)L(u
bdb)L,R

O
3/2
m88 = (sadb)L

[

(ubua)R − (dbda)R

]

+ (saub)L(u
bda)R

(qq)L = qγµ(1 − γ5)q, (qq)R = qγµ(1 + γ5)q, a, b : color indices
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Off-shell Amplitudes |M27| (mu = 0.015)

R27(t) =

√
3G27(t, tπ, tK)ZππZK

Gππ(t, tπ)GK(t, tK)
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R27(t) is consistent with each tK in flat region.
In Lab case error increases as tK increases.
|M27| (small figures) is determined by averaged value in a flat region.
We choose tK = 16 which has smallest error in Lab system.
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4.4. Interpolation of amplitude to on-shell
on-shell : Eππ = mK(CM) and ELab

ππ =
√

m2
K + P2(Lab)
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On-shell |M27|(red symbols) is determined by linear fitting of |M27| with

different ms. (Eππ and ELab
ππ are fixed, while mK and EK are varied.)

Dashed lines are fit results.
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4.5. Matrix elements and Physical amplitude

1. Extended formula

|Ai|2 = 8πγ2

(

Eππ

p

)3{

p′
∂δ

∂p′
+ p′

∂φ~P

∂p′

}

p′=p

|Mi|2

2. Non-perturbative renormalization

|ARI
i |(µ) = Zij(µ)|Aj|, i, j = 27, 88, m88

Zij(µ) =







0.832(9) 0 0
0 0.894(7) −0.056(7)
0 −0.079(5) 0.96(1)






, µ = 1.44 GeV

’04 Kim for RBC Collaboration
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|ARI
27|, |ARI

88|, |ARI
m88|

0 0.1 0.2 0.3 0.4

mπ
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27 88 m88

m2
π dep. large large small

p2 dep. large small large

Fitting from A00 + A10m2
π + A01p2 + A11m2

πp2

|ARI
27| vanishes at m2

π = 0, p2 = 0, others remain constant at the limit.

The dependence is reasonably consistent with prediction of ChPT.
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3. ReA2 =
GF√

2
Re(VusV

∗
ud)

10
∑

i=1

wi(µ)〈Qi(µ)〉2

GF =
√

2g2
W/8M2

W = 1.166 × 10−5 GeV−2

Wilson Coefficients wi(µ), µ=1.44 GeV

〈Q1(µ)〉2 = 〈Q2(µ)〉2 =
1

3
|ARI

27|(µ)

〈Q7(µ)〉2 =
1

2
|ARI

88|(µ)

〈Q8(µ)〉2 =
1

2
|ARI

m88|(µ)

〈Q9(µ)〉2 = 〈Q10(µ)〉2 =
1

2
|ARI

27|(µ)

〈Q3(µ)〉2 = 〈Q4(µ)〉2 = 〈Q5(µ)〉2 = 〈Q6(µ)〉2 = 0
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4.6. Preliminary result of ReA2[GeV] (µ = 1.44[GeV])

0 0.1 0.2 0.3 0.4

mπ
2
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]

0

4e−08

8e−08

1.2e−07

1.6e−07

2e−07

CM p~0.08GeV

Lab p~0.26GeV

H−parity K−>ππ p~0.29GeV

RBC K−>π (µ=1.51GeV)

CP−PACS K−>π (µ=1.3GeV)

JLQCD K−>ππ (µ=2GeV)

experiment

p=0.206 GeV

ReA
2
[GeV]

ReA2 strongly depends on

mπ and p.

Physical point m2
K = 4(m2

π+p2)

mπ = 0.140[GeV]

mK = 0.498[GeV]

p = 0.206[GeV]

To extract ReA2 at physical

point, we employ global fit-

ting of ReA2 for m2
π and p2.

(p2 = m2
K/4 − m2

π)

Fitting from C00 + C10m2
π + C01p2 + C11m2

πp2

ReA2[GeV]

fitting result 2.54(43)×10−8

experiment 1.50 ×10−8

Result is 1.69(28) times larger than experiment.

20



5. Summary

• We calculate ∆I = 3/2 K → ππ decay amplitude with extended for-

mula of Lulleuch and Lüscher formula for non-zero total momentum

system.

• In physical point ReA2 is 1.69(28) times larger than experiment.

future work

• Investiagation of systematic errors and reliability check of results,

e.g., consistency with other calculation, finite volume effect, chiral

extrapolation, discretization error, etc.

• ∆I = 1/2 K → ππ decay
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Table of
∂φ

∂p
and

∂δ

∂p
CM

mu 0.015 0.03 0.04 0.05

p(∂δ/∂p) −0.0438(40) −0.0586(41) −0.0638(41) −0.0661(43)

p(∂φ/∂p) 0.119(10) 0.155(10) 0.168(10) 0.176(10)

p2[GeV2] 0.00490(32) 0.00601(30) 0.00642(31) 0.00665(31)

CM

mu 0.015 0.03 0.04 0.05

p(∂δ/∂p) −0.173(67) −0.210(61) −0.225(57) −0.233(54)

p(∂φ~P
/∂p) 1.918(90) 2.194(51) 2.316(43) 2.405(38)

p2[GeV2] 0.0580(30) 0.0639(16) 0.0667(13) 0.0687(11)
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Table of Wilson coefficients at µ = 1.44 GeV

w1(µ) = −0.3522

w2(µ) = 1.17721

w3(µ) = 0.00446831 + 0.0241094τ

w4(µ) = −0.0140925 − 0.0503954τ

w5(µ) = 0.00506909 + 0.00563178τ

w6(µ) = −0.015967 − 0.0928098τ

w7(µ) = 0.0000502692 − 0.000186283τ

w8(µ) = −0.0000134347 + 0.00118057τ

w9(µ) = 0.0000428969 − 0.0114749τ

w10(µ) = 0.0000117198 + 0.0037748τ

τ = − V ∗
tsVtd

V ∗
usVud

= 0.00133 − 0.000559i
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