Perturbative Expansions of Wilson Loops in Full QCD from MC Simulations

Kit Yan Wong (SFU, University of Glasgow) Howard Trottier (Simon Fraser University) Richard Woloshyn (TRIUMF)

Contents

- > need higher-order perturbation theory
 - e.g.: precise determination of α_s (HPQCD, PRL95, 052002, 2005)
- \succ lattice perturbation theory \rightarrow difficult
- > alternative: measure perturbative coefficients from Monte Carlo simulations at high- β (weak coupling)
- ➤ challenges
- results: Wilson loops in full QCD (MILC action)
- preliminary study for NRQCD
- ➢ outlook

Need Higher-Order PT

e.g.: precise determination of α_s (HPQCD Collaboration)
 key ingredient: expansion of WL

 $-\ln W = c_1 \alpha + c_2 \alpha^2 + c_3 \alpha^3 + \dots$ measure this ... then solve for α

 \succ to what order in PT \rightarrow a few % error?

 $\alpha(a \approx 0.1 \text{fm}) \sim 0.2 - 0.3$

need 1-loop (α^2) or 2-loop (α^3) calculations

Difficult! (particularly for complicated actions)

analytic calculation (MILC action): Q. Mason & H. Trottier

taken from Q. Mason's Ph.D Thesis (Cornell Electronic Library)

Alternative: High- β Simulations

- ➤ simulate the quantities of interest (Wilson loops) at high-β weak coupling [β = $\frac{6}{4\pi\alpha_0}$]
- \succ fit results to the perturbative expansion

> 9 simulations → 9 data pts (α_V ,-ln $W_{R,T}$)
> fit to the series $\frac{-\ln W_{R,T}}{2(R+T)\alpha_V} = c_1 + c_2\alpha_V + c_3\alpha_V^2 + \dots$

Alternative: High- β Simulations

⇒ high β ⇒ perturbative phase: $(La)^{-1} >> \Lambda_{QCD}$, here: β ~ 9 to 60 and $aA \sim 10^{-3}$ to 10^{-30}

- several studies:
 - Dimm, Lepage & Mackenzie [Nucl. Phys. B (Proc. Suppl.), 42, 403 (1995)] 1st-order mass renormalization for Wilson fermions
 - Trottier, Shakespeare, Lepage & Mackenzie [PRD, 65, 094502 (2002)] 3rd-order Wilson loops for the Wilson plaquette action
 - Hart, Horgan & Storoni [PRD, **70**, 034501 (2004)] tadpole factor in pure gauge theories

this study:

3rd –order Wilson loops with dynamical staggered fermions
o unimproved: Wilson action + unimproved staggered quark action
o MILC action: 1-loop improved gauge field action + Asqtad

important cross-check of the PT input to the determination of α_s by the HPQCD Collaboration

Challenges: Systematic Errors

> statistical errors in Wilson loops ~ $O(10^{-5}-10^{-6})$

probing 3rd-order coefficients

 $\alpha \sim 0.01 \Rightarrow \alpha^3 \sim O(10^{-6})$

account for all possible sources of errors
 tunneling between Z₃ center phases
 fitting and truncation errors
 zero momentum modes
 step size errors in simulation equations
 autocorrelation

o inaccuracy in matrix inversions

Tunneling and TBC

 \triangleright gauge field action has a Z₃ symmetry

$$U_{x,\mu} \rightarrow z U_{x,\mu}$$
 where $z \in \{I, e^{i2\pi/3}I, e^{i4\pi/3}I\}$

 multiple vacuum, analytic PT around one vacuum
 tunneling can occur in simulations \rightarrow non-perturbative effects
 tunneling detection: Polyakov loop in one direction
 tunneling \rightarrow pick up a Z₃ phase
 suppressed using TBC $U_{x+L\hat{v},\hat{\mu}} = \Omega_v U_{x,\hat{\mu}} \Omega_v^+$ phases from opp. sides cancel

$$\boldsymbol{\psi}_{x+L\hat{\nu}} = e^{i\pi/3}\boldsymbol{\Omega}_{\nu}\boldsymbol{\psi}_{x}\boldsymbol{\Omega}_{\nu}^{+}$$

Periodic Boundary Conditions

unquenched: the unimproved action, $n_f = 3$, $\beta = 16$, $V = 4^4$

unquenched: the unimproved action, $n_f = 1$, $\beta = 16$, $V = 4^4$

Twisted Boundary Conditions (xyz)

unquenched: the unimproved action, $n_f = 1$, $\beta = 16$, $V = 4^4$

Simulation Parameters – MILC Action

≥ 9 values of β, $n_f = 1$, $V = 8^4$, am = 0.1

β	9.5	11.0	13.5	16.0	19.0	24.0	32.0	47.0	80.0
$\alpha_0 = \frac{6}{4\pi\beta}$	0.113	0.092	0.071	0.058	0.047	0.036	0.027	0.018	0.010
$\pmb{lpha}_{_V}(q^*_{\scriptscriptstyle 1,1})$	0.127	0.101	0.076	0.061	0.050	0.038	0.027	0.018	0.010
aЛ	6×10 ⁻²	2×10 ⁻²	3×10 ⁻³	5×10-4	6×10 ⁻⁵	1×10 ⁻⁶	3×10-9	4×10 ⁻¹⁴	6×10 ⁻²⁵

> expansion parameter: the "V-scheme" $V(q) = -\frac{4}{3} \frac{4\pi\alpha_V(q)}{q^2}$

→ input from analytic PT: 3rd-order expansion of the plaquette → connection between α_0 and α_V

Fitting – MILC Action

➢ fit data points with $-\frac{\ln W_{R,T}}{2(R+T)\alpha_V} = c_1 + c_2\alpha_V + c_3\alpha_V^2 + ...$ ➢ constrained curve fitting $\chi^2 \rightarrow \chi^2_{arg} \equiv \chi^2 + \sum_{n=1}^{n=N} \frac{(c_n - \overline{c_n})^2}{\overline{\sigma_n^2}}$ ➢ data tell us how much it can determine

vary N ($\overline{\sigma}_n = 1.0$)

vary $\overline{\sigma}_n$ (N = 6)

C_n	<i>N</i> = 4	<i>N</i> = 5	<i>N</i> = 6	C _n	$\overline{\sigma}_n = 0.5$	$\overline{\sigma}_n = 1.0$	$\overline{\sigma}_n = 5.0$
<i>c</i> ₁	1.1499(4)	1.1499(4)	1.1499(4)	<i>c</i> ₁	1.1498(3)	1.1499(4)	1.1502(5)
<i>c</i> ₂	-0.641(15)	-0.641(15)	-0.641(15)	<i>c</i> ₂	-0.636(12)	-0.641(15)	-0.658(27)
<i>C</i> ₃	0.58(20)	0.58(20)	0.58(20)	<i>C</i> ₃	0.51(12)	0.58(20)	0.85(43)
<i>C</i> ₄	-0.2(9)	-0.2(9)	-0.2(9)	<i>C</i> ₄	0.0(5)	-0.2(9)	-1.4(23)
<i>C</i> ₅		-0.1(10)	-0.1(10)	<i>C</i> ₅	0.0(5)	-0.1(10)	-0.8(48)
<i>c</i> ₆			0.0(10)	<i>c</i> ₆	0.0(5)	0.0(10)	-0.2(50)
χ^2	0.53	0.53	0.53	χ^2	1.2	0.53	0.25

2x2 loop, analytic PT: $c_1 = 1.1499(0)$, $c_2 = -0.643(2)$, $c_3 = 0.59(9)$

Results – MILC Action

 $> n_f = 1, V = 8^4, am = 0.1$

Results – MILC Action

DT

> errors on c_2 and c_3 can be reduced if c_1 is fixed to the analytic value in fitting

	Ρ.	L	MC			
Loop	<i>c</i> ₂	C ₃	<i>c</i> ₂	<i>c</i> ₃		
1x2	-0.646(0)	0.23(5)	-0.649(5)	0.26(12)		
1x3	-0.595(1)	0.38(6)	-0.600(6)	0.39(13)		
2x2	-0.643(2)	0.59(9)	-0.642(7)	0.59(14)		
2x3	-0.595(3)	0.85(16)	-0.594(7)	0.82(15)		

MC

Fix both c_1 and c_2 to the analytic values

Loop	<i>C</i> ₃	<i>C</i> ₃
1x2	0.23(5)	0.21(4)
1x3	0.38(6)	0.28(5)
2x2	0.59(9)	0.61(6)
2x3	0.85(16)	0.84(8)

PT

Energy Shift and Mass Renormalization in NRQCD (Preliminary)

> quenched: Wilson plaquette action, NRQCD action $H = -\frac{\Delta^2}{2M_0}$ \blacktriangleright observable: dispersion relation $E = E_0 + \frac{p^2}{2M}$ $E_0 = c_1 \alpha_V(q_E^*) + c_2 \alpha_V^2(q_E^*) + \dots$ $M = M_0 (1 + c_1 \alpha_V(q_M^*) + c_2 \alpha_V^2(q_M^*) + ...)$ \succ for each β : $\beta = 16.0, M_0 = 8.0$ 0.25 0.2 E 0.15 slope = 1/2M0.1 0.05 0.5 1.5 2 2.5 3 p^2

Results (Preliminary)

- 9 values of β : 9.0 60.0
- 5 bare mass *aM*₀: 8.0, 6.0, 5.0, 4.0, 1.8

Results for <u>c</u>₁ (Preliminary)

> analytic PT done by C. Morningstar [PRD, 50:5902 (1994)]

	c_{I} f	c_1 for M		
$M_0 a$	PT	МС	PT	МС
8.0	2.450	2.447(2)	0.850	0.867(6)
6.0	2.570	2.565(5)	0.830	0.849(7)
5.0	2.655	2.648(5)	0.820	0.842(9)
4.0	2.782	2.773(6)	0.770	0.798(10)
1.8	3.511	3.569(7)	1.100	1.245(10)

<u>Predictions for $c_2 \& c_3$ (Preliminary)</u>

mass

renormalization M

energy shift E_0

 $M_0 a$ C_2 C_3 C_2 C_3 5.9(1.4) -0.34(37) -0.2(4.9)-1.98(8)8.0 6.3(1.4) -0.33(42) 0.5(5.3) 6.0 -1.91(7) -2.02(7)7.3(1.4) 0.7(6.1)-0.53(45) 5.0 7.4(1.4) -0.91(56) -0.28(6.7)-2.13(7) 4.0 -2.94(8)7.6(1.5) -0.87(39) 2.7(4.6)1.8

good test run → future: full NRQCD & mNRQCD

Conclusions

perturbative coefficients of WL in full QCD (MILC)

- > important cross-check of the PT input to the determination of α_s by the HPQCD Collaboration
- ➤ can also be applied to NRQCD

higher-order coefficients & complicated actions future: analytic PT (low order) + high- β (high order)