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Motivation

◮ Maximally twisted mass formulation shares many
properties with the overlap formulation, but not exact chiral
symmetry:

◮ What is the price for exact chiral symmetry on the lattice?

◮ Algorithms used to simulate full QCD suffer from a
substantial slowing down when

◮ quark masses get light
◮ lattice spacing gets small

◮ Are stable simulations with Wilson fermions at light masses
and small lattice spacings possible and realistic?

C. Urbach Algorithmic Challenges in Lattice QCD



Motivation
Overlap versus Twisted Mass

Accelerating the HMC
Conclusion and Outlook

Setup
Scaling with Volume and Mass

Notation
◮ Wilson-Dirac operator:

DW =
∑

µ

1
2

{

γµ(∇µ + ∇∗
µ) − a∇µ∇∗

µ

}

◮ Twisted mass operator at maximal twist:

Dtm = DW + mcrit + iµγ5τ3 .

◮ Overlap operator (ρ = 1.6):

Dov =

(

1 − mov
a
2ρ

)

D(0)
ov + mov ,

with

D(0)
ov =

ρ

a

[

1 − A(A†A)−1/2
]

, A = ρ − aDW .
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Setup for the Cost Comparison

◮ Wilson plaquette gauge action, β = 5.85, quenched.
◮ Two volumes: 124 and 164 with 20 gauges each.
◮ sign function approximated by means of Chebyshev

polynomials.
20 (40) lowest EV of A†A projected out.

◮ Mass values for cost comparison:

mPS [MeV] aµ amov

230 0.004 0.01
390 0.0125 0.03
555 0.025 0.06
720 0.042 0.10
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Iterative solvers

Solver overlap tmQCD

BiCGstab X X
CG(NE) X X
CGS X X
SUMR X
GMRES(20) X X
MR X

Best solver:
overlap: GMRESap

tm: CGEO

Improvements:
◮ overlap: adaptive precision, chiral separation
◮ tm: even/odd preconditioning
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Scaling with Volume and Mass

Costs in matrix-vector (MV) multiplications

V = 164

V = 124MVov/MVtm
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Multiple Time Scale Integration and Preconditioning
Numerical Results

HMC Algorithm

(Duane, Kennedy, Pendleton, Roweth, 1987 )

◮ Introduce traceless Hermitian momenta Px,µ conjugate to
fundamental fields Ux,µ and Hamiltonian

H =
1
2

∑

x,µ

P2
x,µ + S[U] .

◮ Molecular dynamics evolution of P and U by numerical
integration of the corresponding equations of motion.

◮ Metropolis accept/reject step to correct for discretization
errors of the numerical integration.
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Accelerating the HMC algorithm

◮ Most expensive part: fermion determinant
◮ Precondition by factorization (with suitable C and E ):

det Q2 = det(C) · det(E)

with C and E better “behaved” than Q2.
◮ mass preconditioning (Hasenbusch ), polynomial filtering

(Peardon, Sexton ), domain decomposition (Lüscher ),
nth-root (Clark, Kennedy )

◮ whereas often:
◮ C is cheap and
◮ E is expensive to invert
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Multiple Time Scale Integration
(Sexton, Weingarten, 1992 )

◮ Assume: H = 1
2

∑

x,µ P2
x,µ + S0 + S1

◮ Define (j = 0, 1):

TU(∆τ) : U → U ′ = exp (i∆τP) U ,

TSj (∆τ) : P → P ′ = P − i∆τδSj

◮ and recursively:

T0 = TS0(∆τ0/2) TU(∆τ0) TS0(∆τ0/2) ,

T1 = TS1(∆τ1/2) [T0]
N0 TS1(∆τ1/2)

◮ trajectory of length τ :
[

T1
]N1

◮ time steps must fulfill: N1 = τ/∆τ1 , N0 = ∆τ1/∆τ0
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Multiple Time Scale Integration

◮ Also Sexton-Weingarten (SW) improved scheme can be
generalized to multiple time scales.

◮ SW impr. scheme is one particular version of so-called
second order minimal (2MN) norm integration schemes.
(de Forcrand, Takaishi, 2005 )
However, SW impr. scheme is close to optimal.

◮ Interchange of the order of momentum and gauge field
updates reveals a speedup.
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Mass Preconditioning

◮ Precondition the fermion determinant (Q = γ5DW, nf = 2):

det Q2 = det
[

Q2 + µ2
]

· det
[

Q2

Q2 + µ2

]

.

(Hasenbusch, 2001 )
◮ Corresponding effective action:

Seff = SG+φ†
1

1
Q2 + µ2 φ1+φ†

2
Q2 + µ2

Q2 φ2 = SG+SPF1 +SPF2 .

◮ Can be extended to NPF > 2 pseudo-fermion fields.
◮ Can be combined with even/odd preconditioning.
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Multiple Time Scale Integration and Preconditioning
Numerical Results

Mass Preconditioning

◮ Precondition the fermion determinant (Q = γ5DW, nf = 2):

det Q2 = det
[

Q2 + µ2
]

· det
[

Q2

Q2 + µ2

]

.

◮ Original idea: Choose µ such that the condition numbers of
Q2 + µ2 and Q2/(Q2 + µ2) are equal

◮ condition number: K →
√

K (Hasenbusch,
Jansen, 2002, ALPHA, 2003 )

◮ Pseudo-fermion forces are reduced → larger HMC
step sizes (factor two (at large mass))

◮ Caveat: Q2 must still be inverted.
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Strategy

If possible, tune µ such that:
◮ the more expensive the computation of δSPFi is, the less it

contributes to the total force
◮ different parts can be integrated on different time scales

chosen according to their force magnitude.

∆τj‖Fj‖ = const

◮ Remark: also variance and time dependence of Fj is of
importance

Similar approaches: Peardon, Sexton, 2003, QCDSF,
2003
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Simulation Set-up

◮ Wilson-Dirac operator, r = 1, bare mass m0,
κ = (2m0 + 8)−1

◮ Wilson plaquette gauge action with β = 5.6, a ≈ 0.08 fm.
on 243 × 32 lattices (cf. Lüscher, 2004 )

◮ HMC with even/odd preconditioning and up to three
pseudo fermion fields, trajectory length τ = 0.5

◮ Used r0 = 0.5 fm to set the scale
◮ Reversibility violation in H: O(10−5)

◮ Multiple time scale integration schemes:
◮ Plain Leap Frog (LF) integration scheme
◮ Sexton-Weingarten (SW) improved scheme
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Simulation Points

Int. κ mPS [MeV] a [fm] τint(P)

A SW 0.1575 665(17) 0.083(1) 6(2)

B SW 0.1580 485(13) 0.081(1) 7(2)

C LF 0.15825 380(17) 0.078(2) - 10(4)

D SW 0.15835 294 − 15

◮ Simulation point D still running, τint extrapolated
◮ Full agreement with Lüscher, 2004 and Orth et

al., 2005

◮ Acceptance around 80% for all runs.
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Molecular Dynamics Forces

run B (485 MeV):

Maximal force
Average force〈‖F (x, µ)‖〉

FG F1 F2 F3

10

1

0.1

0.01

run D (294 MeV):

Maximal force
Average force〈‖F (x, µ)‖〉

FG F1 F2 F3

10

1

0.1

0.01
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Molecular Dynamics Forces

run B (485 MeV):

‖F3(x, µ)‖2

max run B

0.090.060.030

0.16

0.12

0.08

0.04

0.00

run D (294 MeV):

‖F3(x, µ)‖2

max run D

0.090.060.030

0.16

0.12

0.08

0.04

0.00
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Performance
◮ Cost figure

ν = 10−3(2n + 3)τint(P)

n: number of integration steps for physical operator
◮ Machine and implementation independent

κ ν ν (Lüscher ) ν (Orth et al. )

A 0.15750 0.09(3) 0.69(29) 1.8(8)

B 0.15800 0.11(3) 0.50(17) 5.1(5)

C 0.15825 0.23(9) 0.62(23) -

D 0.15835 0.35 0.74(18) -
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Simulation Cost
Cost for 1000 independent configurations,
a ≈ 0.08 fm, 243 × 40 lattices.

Tflops · years

Ukawa

run D

run A, B, C

0.00

mPS/mV

10.50

1

0

run D

run A,B, CTflops · years

mPS/mV

10.50

0.05

0.04

0.03

0.02

0.01

0
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Multiple Time Scale Integration and Preconditioning
Numerical Results

How exactly does it work...?

Is the main effect
◮ the noise reduction due to the additional pseudo fermion

fields?
◮ the infra-red regulation of the eigenvalue spectrum

provided by the preconditioning?

A comprehensive understanding of the mechanism would
possibly help us to further improve the HMC algorithm.
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Conclusion

◮ Overlap versus twisted mass cost comparison (quenched):
depending on the mass value overlap is a factor 20 − 70
more expensive.

◮ HMC with a combination of mass preconditioning and
multiple time scale integration:

◮ Straightforward to implement and applicable to a wide
variety of lattice Dirac operators.

◮ Performance (in terms of the cost figure) comparable to
SAP (Lüscher, 2004 )

◮ Stable simulations with nf = 2 flavors of Wilson fermions
are possible and affordable with a ≈ 0.08 fm and pseudo
scalar masses as low as 300 MeV.

◮ Promising update of the Berlin wall figure (Ukawa, 2002,
Jansen, 2004 )
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Outlook

◮ Dependence on the lattice spacing needs to be
investigated

◮ Further improvements possible
◮ Chronological Inverter (Brower et al., 1997 )
◮ PHMC (Frezzotti, Jansen, 1997, 1999 )

direction nf > 2 flavours.
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