Algorithmic Challenges in Lattice QCD

Carsten Urbach^{1,2}

²University of Liverpool

¹John von Neumann-Institut für Computing NIC

ILFTN Workshop, JLAB, 2005

x Collaboration

T. Chiarappa, K. Jansen, K.-I. Nagai, M. Papinutto, L. Scorzato, A. Shindler, U. Wenger, I. Wetzorke

Outline

Motivation

Overlap versus Twisted Mass: a quenched cost comparison Setup Scaling with Volume and Mass

Accelerating the HMC: $n_f = 2$ Wilson fermions at $\beta = 5.6$ Multiple Time Scale Integration and Preconditioning Numerical Results

Conclusion and Outlook

Motivation

- Maximally twisted mass formulation shares many properties with the overlap formulation, but not exact chiral symmetry:
 - What is the price for exact chiral symmetry on the lattice?

- Algorithms used to simulate full QCD suffer from a substantial slowing down when
 - quark masses get light
 - lattice spacing gets small
- Are stable simulations with Wilson fermions at light masses and small lattice spacings possible and realistic?

Setup Scaling with Volume and Mass

Notation

Wilson-Dirac operator:

$$D_{\mathrm{W}} = \sum_{\mu} rac{1}{2} \left\{ \gamma_{\mu} (
abla_{\mu} +
abla_{\mu}^{*}) - a
abla_{\mu}
abla_{\mu}^{*}
ight\}$$

Twisted mass operator at maximal twist:

$$D_{\rm tm} = D_{\rm W} + m_{\rm crit} + i\mu\gamma_5\tau_3$$
.

• Overlap operator ($\rho = 1.6$):

$$D_{\mathrm{ov}} = \left(1-m_{\mathrm{ov}}rac{a}{2
ho}
ight)D_{\mathrm{ov}}^{(0)}+m_{\mathrm{ov}}\,,$$

with

$$D_{\mathrm{ov}}^{(0)} = rac{
ho}{a} \left[1 - A(A^{\dagger}A)^{-1/2}
ight], \qquad A =
ho - a D_{\mathrm{W}}.$$

Setup Scaling with Volume and Mass

Setup for the Cost Comparison

- ► Wilson plaquette gauge action, $\beta = 5.85$, quenched.
- ▶ Two volumes: 12⁴ and 16⁴ with 20 gauges each.
- sign function approximated by means of Chebyshev polynomials.
 20 (40) lowest EV of A[†]A projected out.
- Mass values for cost comparison:

<i>m</i> _{PS} [MeV]	${oldsymbol a}\mu$	am _{ov}
230	0.004	0.01
390	0.0125	0.03
555	0.025	0.06
720	0.042	0.10

Setup Scaling with Volume and Mass

Iterative solvers

Solver	overlap	tmQCD
BiCGstab	Х	Х
CG(NE)	Х	Х
CGS	Х	Х
SUMR	Х	
GMRES(20)	Х	Х
MR	Х	

Best solver: overlap: GMRES_{ap} tm: CG_{EO}

Improvements:

- overlap: adaptive precision, chiral separation
- tm: even/odd preconditioning

Setup Scaling with Volume and Mass

Costs in matrix-vector (MV) multiplications

C. Urbach Algorithmic Challenges in Lattice QCD

HMC Algorithm

(Duane, Kennedy, Pendleton, Roweth, 1987)

► Introduce traceless Hermitian momenta P_{x,µ} conjugate to fundamental fields U_{x,µ} and Hamiltonian

$$H = rac{1}{2} \sum_{x,\mu} P_{x,\mu}^2 + S[U] \; .$$

- Molecular dynamics evolution of P and U by numerical integration of the corresponding equations of motion.
- Metropolis accept/reject step to correct for discretization errors of the numerical integration.

Multiple Time Scale Integration and Preconditioning Numerical Results

Accelerating the HMC algorithm

- Most expensive part: fermion determinant
- Precondition by factorization (with suitable C and E):

 $\det Q^2 = \det(C) \cdot \det(E)$

with C and E better "behaved" than Q^2 .

- mass preconditioning (Hasenbusch), polynomial filtering (Peardon, Sexton), domain decomposition (Lüscher), nth-root (Clark, Kennedy)
- whereas often:
 - C is cheap and
 - E is expensive to invert

Multiple Time Scale Integration and Preconditioning Numerical Results

Multiple Time Scale Integration

(Sexton, Weingarten, 1992)

- Assume: $H = \frac{1}{2} \sum_{x,\mu} P_{x,\mu}^2 + S_0 + S_1$
- ► Define (*j* = 0, 1):

$$\begin{array}{lll} T_{\mathrm{U}}(\Delta\tau) : & U & \rightarrow & U' = \exp\left(i\Delta\tau\,P\right)\,U \\ T_{\mathrm{S}_{i}}(\Delta\tau) : & P & \rightarrow & P' = P - i\Delta\tau\delta\mathrm{S}_{j} \end{array}$$

and recursively:

$$\begin{split} T_0 &= T_{\rm S_0}(\Delta \tau_0/2) \ T_{\rm U}(\Delta \tau_0) \ T_{\rm S_0}(\Delta \tau_0/2) \,, \\ T_1 &= T_{\rm S_1}(\Delta \tau_1/2) \ [T_0]^{N_0} \ T_{\rm S_1}(\Delta \tau_1/2) \end{split}$$

• trajectory of length τ : $[T_1]^{N_1}$

► time steps must fulfill: $N_1 = \tau / \Delta \tau_1$, $N_0 = \Delta \tau_1 / \Delta \tau_0$

Multiple Time Scale Integration and Preconditioning Numerical Results

Multiple Time Scale Integration

- Also Sexton-Weingarten (SW) improved scheme can be generalized to multiple time scales.
- SW impr. scheme is one particular version of so-called second order minimal (2MN) norm integration schemes. (de Forcrand, Takaishi, 2005)
 However, SW impr. scheme is close to optimal.
- Interchange of the order of momentum and gauge field updates reveals a speedup.

Multiple Time Scale Integration and Preconditioning Numerical Results

Mass Preconditioning

▶ Precondition the fermion determinant ($Q = \gamma_5 D_W$, $n_f = 2$):

$$\det Q^2 = \det \left[Q^2 + \mu^2
ight] \cdot \det \left[rac{Q^2}{Q^2 + \mu^2}
ight].$$

(Hasenbusch, 2001)

Corresponding effective action:

$$S_{\text{eff}} = S_{\text{G}} + \phi_1^{\dagger} \frac{1}{Q^2 + \mu^2} \phi_1 + \phi_2^{\dagger} \frac{Q^2 + \mu^2}{Q^2} \phi_2 = S_{\text{G}} + S_{\text{PF}_1} + S_{\text{PF}_2} \,.$$

- Can be extended to $N_{\rm PF}$ > 2 pseudo-fermion fields.
- Can be combined with even/odd preconditioning.

Mass Preconditioning

▶ Precondition the fermion determinant ($Q = \gamma_5 D_W$, $n_f = 2$):

$$\det Q^2 = \det \left[Q^2 + \mu^2 \right] \cdot \det \left[\frac{Q^2}{Q^2 + \mu^2} \right].$$

- ► Original idea: Choose µ such that the condition numbers of Q² + µ² and Q²/(Q² + µ²) are equal
- ▶ condition number: $K \rightarrow \sqrt{K}$ (Hasenbusch, Jansen, 2002, ALPHA, 2003)
- ► Pseudo-fermion forces are reduced → larger HMC step sizes (factor two (at large mass))
- Caveat: Q² must still be inverted.

Strategy

If possible, tune μ such that:

- ► the more expensive the computation of δS_{PF_i} is, the less it contributes to the total force
- different parts can be integrated on *different* time scales chosen according to their force magnitude.

 $\Delta \tau_j \|F_j\| = \text{const}$

 Remark: also variance and time dependence of F_j is of importance

Similar approaches: Peardon, Sexton, 2003, QCDSF, 2003

Simulation Set-up

- ► Wilson-Dirac operator, r = 1, bare mass m_0 , $\kappa = (2m_0 + 8)^{-1}$
- Wilson plaquette gauge action with β = 5.6, a ≈ 0.08 fm. on 24³ × 32 lattices (cf. Lüscher, 2004)
- ► HMC with even/odd preconditioning and up to three pseudo fermion fields, trajectory length τ = 0.5
- Used $r_0 = 0.5$ fm to set the scale
- Reversibility violation in $H: \mathcal{O}(10^{-5})$
- Multiple time scale integration schemes:
 - Plain Leap Frog (LF) integration scheme
 - Sexton-Weingarten (SW) improved scheme

Simulation Points

	Int.	κ	m _{PS} [MeV]	a [fm]	$ au_{ ext{int}}(oldsymbol{P})$
A	SW	0.1575	665(17)	0.083(1)	6(2)
В	SW	0.1580	485(13)	0.081(1)	7(2)
С	LF	0.15825	380(17)	0.078(2) -	10(4)
D	SW	0.15835	294	_	15

- Simulation point *D* still running, τ_{int} extrapolated
- Full agreement with Lüscher, 2004 and Orth et al., 2005
- Acceptance around 80% for all runs.

Multiple Time Scale Integration and Preconditioning Numerical Results

Molecular Dynamics Forces

run B (485 MeV):

Multiple Time Scale Integration and Preconditioning Numerical Results

Molecular Dynamics Forces

run B (485 MeV):

run D (294 MeV):

C. Urbach Algorithmic Challenges in Lattice QCD

Multiple Time Scale Integration and Preconditioning Numerical Results

Performance

Cost figure

$$\nu = 10^{-3}(2n+3)\tau_{\rm int}(P)$$

n: number of integration steps for physical operator

Machine and implementation independent

	κ	ν	u (Lüscher)	u (Orth et al.)
A	0.15750	0.09(3)	0.69(29)	1.8(8)
В	0.15800	0.11(3)	0.50(17)	5.1(5)
С	0.15825	0.23(9)	0.62(23)	
D	0.15835	0.35	0.74(18)	

Multiple Time Scale Integration and Preconditioning Numerical Results

Simulation Cost

Cost for 1000 independent configurations, $a \approx 0.08$ fm, $24^3 \times 40$ lattices.

C. Urbach

Algorithmic Challenges in Lattice QCD

Multiple Time Scale Integration and Preconditioning Numerical Results

How exactly does it work ...?

Is the main effect

- the noise reduction due to the additional pseudo fermion fields?
- the infra-red regulation of the eigenvalue spectrum provided by the preconditioning?

A comprehensive understanding of the mechanism would possibly help us to further improve the HMC algorithm.

Conclusion

- Overlap versus twisted mass cost comparison (quenched): depending on the mass value overlap is a factor 20 – 70 more expensive.
- HMC with a combination of mass preconditioning and multiple time scale integration:
 - Straightforward to implement and applicable to a wide variety of lattice Dirac operators.
 - Performance (in terms of the cost figure) comparable to SAP (Lüscher, 2004)
 - ► Stable simulations with $n_f = 2$ flavors of Wilson fermions are possible and affordable with $a \approx 0.08$ fm and pseudo scalar masses as low as 300 MeV.
 - Promising update of the Berlin wall figure (Ukawa, 2002, Jansen, 2004)

Dependence on the lattice spacing needs to be investigated

Further improvements possible

- Chronological Inverter (Brower et al., 1997)
- PHMC (Frezzotti, Jansen, 1997, 1999) direction n_f > 2 flavours.