
Strangeness Content of the Nucleon

Anthony W. Thomas ILFTN 2005

Jefferson Lab: October 5th, 2005
Thomas Jefferson National Accelerator Facility

Outline

- The QCD Vacuum
- Quarks to Hadrons
- Measurements of Nucleon Form Factors
- Latest Results on Strangeness
- A Precise Theoretical Calculation of G_M^s
- Similar analysis for G_E^s
- What needs measuring?

Powerful Qualitative New Insights From Lattice QCD

QCD sum rules:

$$\left\langle 0 \left| \frac{\alpha_s}{\pi} G_{\mu\nu}^i G_i^{\mu\nu} \right| 0 \right\rangle = \left\langle 0 \left| \frac{2\alpha_s}{\pi} (B^2 - E^2) \right| 0 \right\rangle$$
$$= (350 \pm 30 \text{ MeV})^4,$$

- Non-trivial topological structure of vacuum linked to dynamical chiral symmetry breaking
- There are regions of positive and negative topological charge
- BUT they clearly are <u>NOT spherical</u>
- NOR are they weakly interacting!

Quark Condensate

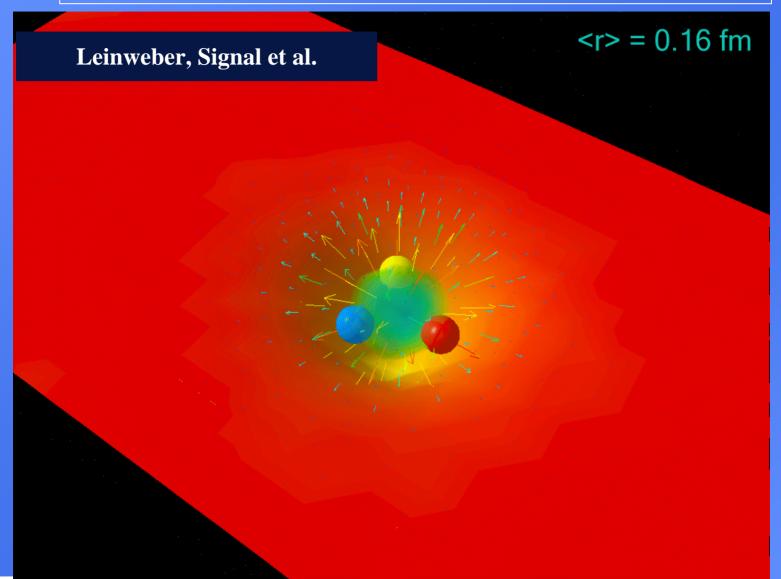
$$\langle \bar{u}u \rangle = \langle \bar{d}d \rangle = \langle \bar{s}s \rangle = -(225 \pm 25 \text{ MeV})^3$$

at a renormalization scale of about 1 GeV.

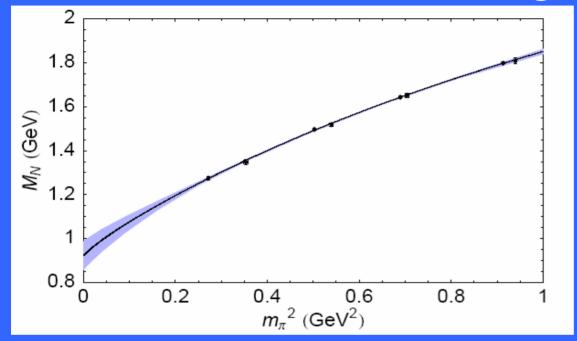
σ commutator measures chiral symmetry breaking
½ valence + pion cloud +
volume * (difference of condensate in & out of N)

and last term is as big as 20 MeV (or more)
i.e. presence of nucleon "cleans out" vacuum to some extent

Hence: Model independent LO term for in-medium condensate


$$\frac{Q(\rho_B)}{Q_0} \simeq 1 - \frac{\sigma_N}{f_\pi^2 m_\pi^2} \rho_B$$

BUT this has no new physics at all!


Lattice QCD Simulation of Vacuum Structure

x'al Extrapolation Under Control when Coefficients Known - e.g. for the nucleon

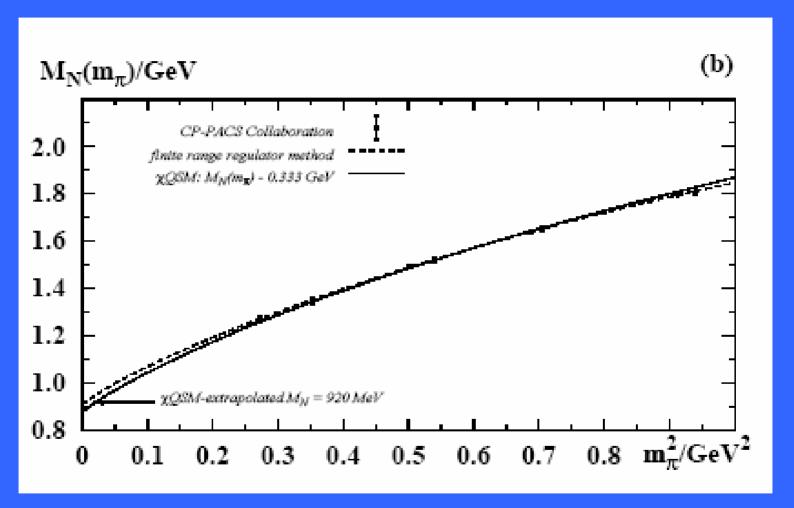
$${
m M_N} = {
m a_0} + {
m a_2} {
m m_\pi}^2 + {
m a_4} {
m m_\pi}^4 + \ \chi \ {
m `al loops}$$

$$^{'}$$
 $c_0 + c_2 m_{\pi}^{\ 2} + c_{LNA} m_{\pi}^{\ 3} + c_4 m_{\pi}^{\ 4} + ..$

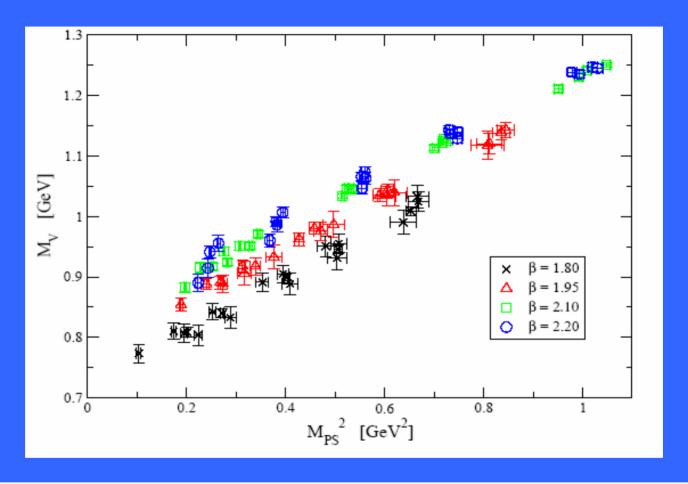
FRR give same answer to <1% systematic error!

	Bare Coefficients			Renormalized Coefficients				
Regulator	a_0^{Λ}	a_2^{Λ}	a_4^{Λ}	Λ	c_0	c_2	c_4	m_N
Monopole	1.74	1.64	-0.49	0.5	0.923(65)	2.45(33)	20.5(15)	0.960(58)
Dipole	1.30	1.54	-0.49	0.8	0.922(65)	2.49(33)	18.9(15)	0.959(58)
Gaussian	1.17	1.48	-0.50	0.6	0.923(65)	2.48(33)	18.3(15)	0.960(58)
Sharp cutoff	1.06	1.47	-0.55	0.4	0.923(65)	2.61(33)	15.3(8)	0.961(58)

Convergence from LNA to NLNA is Rapid – Using Finite Range Regularization

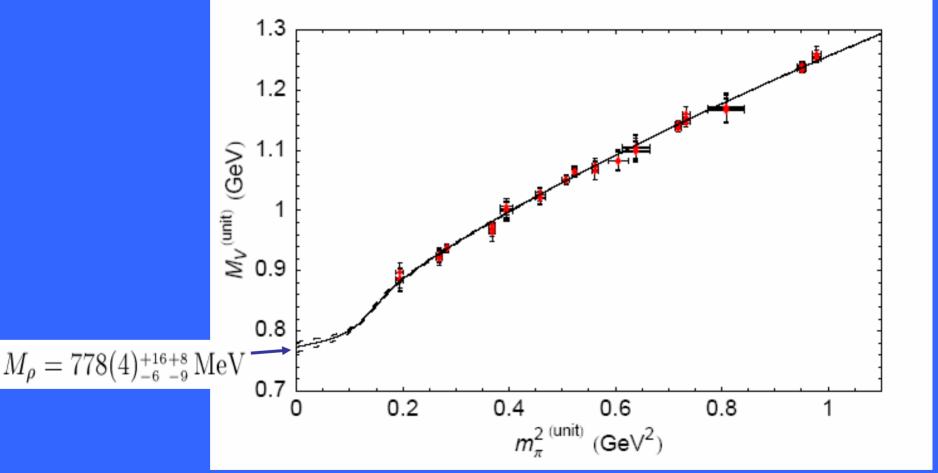

Regulator	LNA	NLNA
Sharp	968	961
Monopole	964	960
Dipole	963	959
Gaussian	960	960
Dim Reg	784	884

Comparison with χ QSM



Goeke et al., hep-lat/0505010

Analysis of pQQCD ρ data from CP PACS


$$\sqrt{(M_V^{deg})^2 - \Sigma_{TOT}} = (a_0^{cont} + X_1 a + X_2 a^2) + a_2 (M_{PS}^{deg})^2 + a_4 (M_{PS}^{deg})^4 + a_6 (M_{PS}^{deg})^6$$

Infinite Volume Unitary Results

All 80 data points move onto single, well defined curve

Allton, Young et al., hep-lat/0504022

Thomas Jefferson National Accelerator Facility

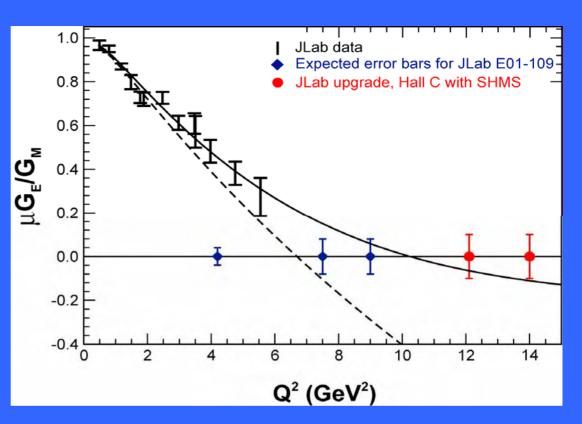
JLAB: Unique Capabilities for Investigating QCD in the Non-Perturbative Regime

JLab is a world leader in SRF technology: SNS, 12 GeV Upgrade, FEL, RIA, and others in the Office of Science 20-Year Facilities Outlook Superconducting rf (SRF) technology makes the circulating accelerator feasible

Providing ~2300 international users with a unique electron beam, three experimental halls, and computational and theory support

High luminosity, high resolution detectors in Halls A, B, and C.

Office of Science


U.S. DEPARTMENT OF ENERGY

Thomas Jefferson National Accelerator Facility

Precision Tests of Nucleon Structure

 Astonishing discovery concerning proton electric form factor

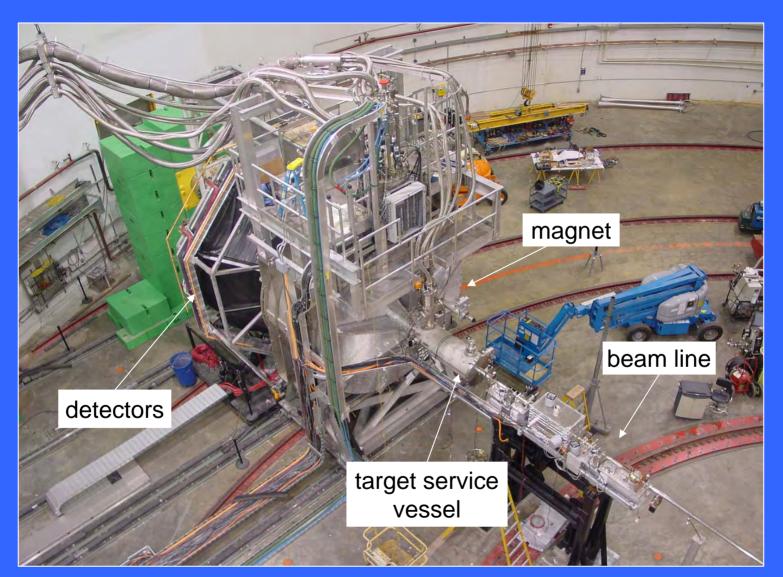
- But what about contribution from non-valence quarks
- especially strange quarks?

Strangeness Widely Believed to Play a Major Role – Does It?

As much as 100 to 300 MeV of proton mass:

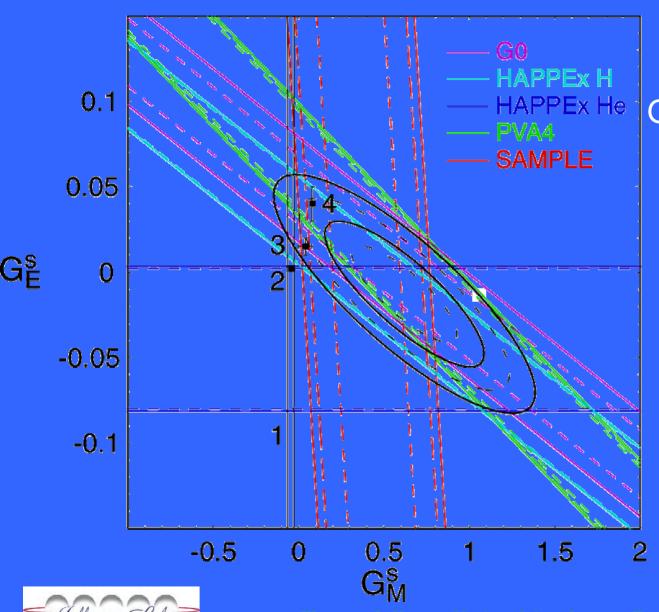
$$M_N = \langle N(P)| - \frac{9\,\alpha_s}{4\,\pi}\, {\rm Tr}(G_{\mu\nu}G^{\mu\nu}) + m_u \bar{\psi}_u \psi_u + m_d \bar{\psi}_d \psi_d + m_s \bar{\psi}_s \psi_s |N(P)\rangle$$

$$\Delta M_N^{s- ext{quarks}} = rac{y m_s}{m_u + m_d} \sigma_N$$
 y=0.2 § 0.2 45 § 8 MeV (or 70?)


Hence 110 § 110 MeV (increasing to 180 for higher σ_N)

- Through proton spin crisis:
 As much as 10% of the spin of the proton
- HOW MUCH OF THE MAGNETIC FORM FACTOR?

G0 Experiment at Jefferson Lab


A4 at Mainz

World Data @ Q² = 0.1 GeV²

$$G_{E}^{s} = -0.013 \pm 0.028$$
 $G_{M}^{s} = +0.62 \pm 0.31$

 \pm 0.62 2 σ

Contours

---- 1σ, 2σ — 68.3, 95.5% CL

Theories

- Leinweber, et al.
 PRL 94 (05) 212001
- 2. Lyubovitskij, et al. PRC **66** (02) 055204
- 3. Lewis, et al. PRD **67** (03) 013003
- 4. Silva, et al.

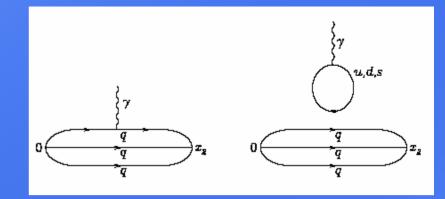
PRD **65** (01) 014016

Thomas Jefferson National Accelerator Facility

Significance & Comparison with Lattice QCD

- Size and sign of the strange magnetic moment is astonishing!
- Experimental <u>isoscalar</u> nucleon moment is 0.88 μ_{N} c.f. this result which is (Beck) 0.54 μ_{N} : i.e. 60% !!
- Also remarkable versus lattice QCD which gives

+0.03 § 0.01 μ_{N} (Leinweber et al., PRL 94 (2005) 212001)


Sign would require violation of universality of

valence quark moments by » 70%!

Magnetic Moments within QCD

$$p = 2/3 u^p - 1/3 d^p + O_N$$

$$p = 2/3 u^p - 1/3 d^p + O_N$$

 $n = -1/3 u^p + 2/3 d^p + O_N$

$$2p + n = u^p + 3 O_N$$

(and
$$p + 2n = d^p + 3 O_N$$
)

$$\Sigma^+ = 2/3 \mathbf{u}^{\Sigma} - 1/3 \mathbf{s}^{\Sigma} + \mathbf{O}_{\Sigma}$$

$$\Sigma^{-} = -1/3 \mathbf{u}^{\Sigma} - 1/3 \mathbf{s}^{\Sigma} + \mathbf{O}_{\Sigma}$$

$$\Sigma^{\scriptscriptstyle +}$$
 - $\Sigma^{\scriptscriptstyle -}=u^\Sigma$

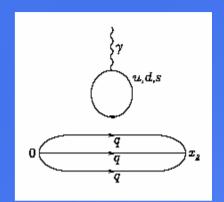
HENCE:

$$O_N = 1/3 [2p + n - (u^p / u^{\Sigma}) (\Sigma^+ - \Sigma^-)]$$

Just these ratios from Lattice QCD

OR

$$O_N = 1/3 [n + 2p - (u^n / u^{\Xi}) (\Xi^0 - \Xi^-)]$$



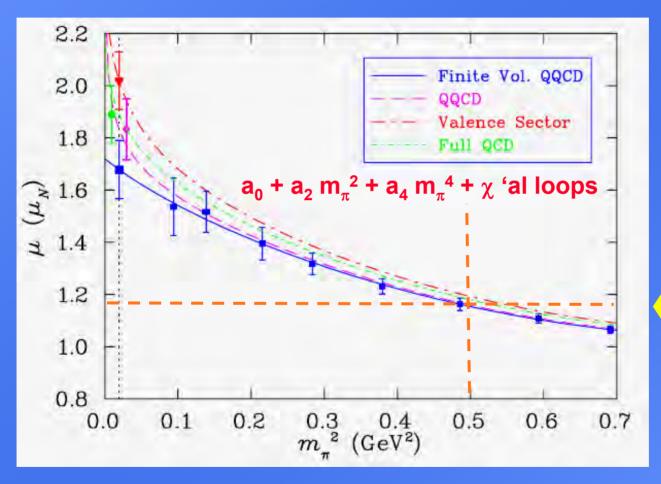
Constraint from Charge Symmetry

$$O_{N} = \frac{2}{3} {}^{\ell}G_{M}^{u} - \frac{1}{3} {}^{\ell}G_{M}^{d} - \frac{1}{3} {}^{\ell}G_{M}^{s}$$

$$= \frac{1}{3} ({}^{\ell}G_{M}^{d} - {}^{\ell}G_{M}^{s}) ,$$

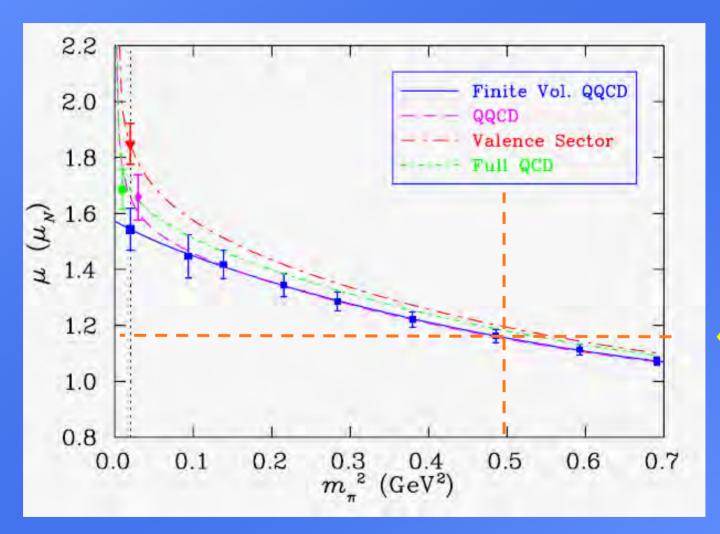
$$= \frac{{}^{\ell}G_{M}^{s}}{3} (\frac{1 - {}^{\ell}R_{d}^{s}}{{}^{\ell}R_{d}^{s}}) ,$$

$$G_M^s = \left(\frac{{}^{\ell}R_d^s}{1 - {}^{\ell}R_d^s}\right) \left[3.673 - \frac{u_p}{u_{\Sigma^+}}(3.618)\right]$$


$$G_M^s = \left(\frac{{}^{\ell}R_d^s}{1 - {}^{\ell}R_d^s}\right) \left[-1.033 - \frac{u_n}{u_{\Xi^0}} \left(-0.599\right)\right]$$

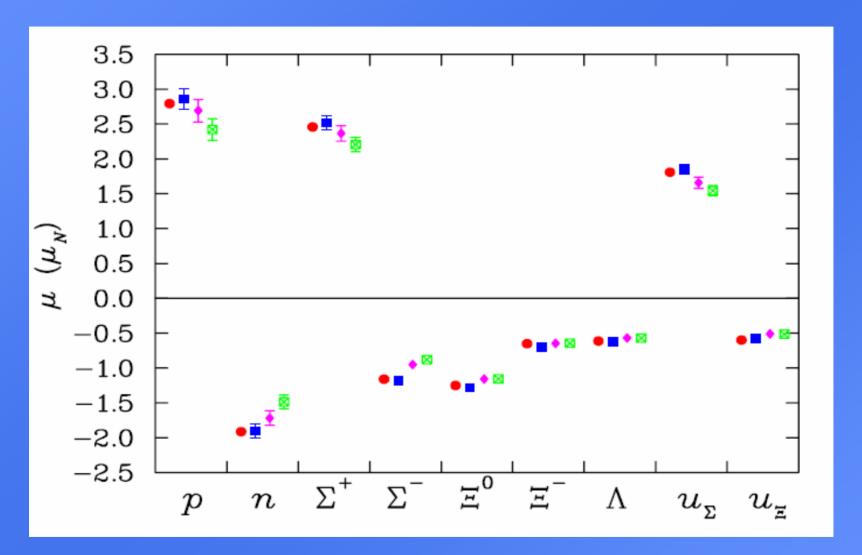
Leinweber and Thomas, Phys. Rev. D62 (2000) 07505.

up_{valence}: QQCD Data Corrected for Full QCD Chiral Coeff's


c.f. CQM 2/3 940/540 » 1.18

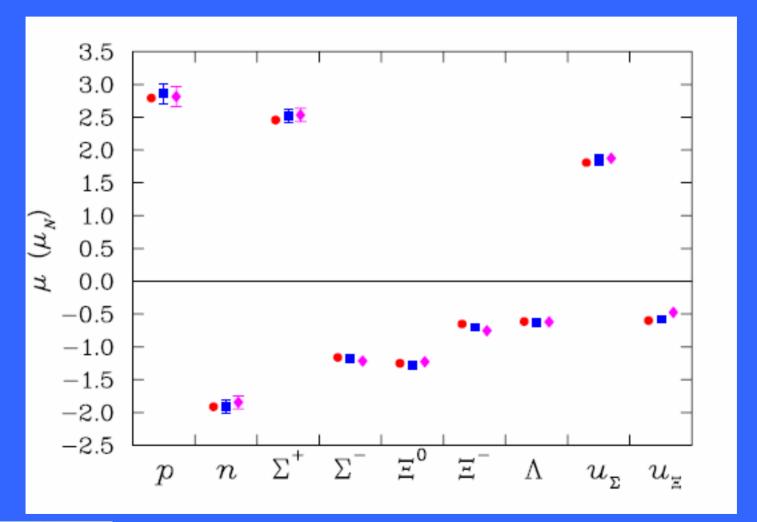
New lattice data from Zanotti et al.; Chiral analysis Leinweber et al.

\mathbf{u}^{Σ} valence



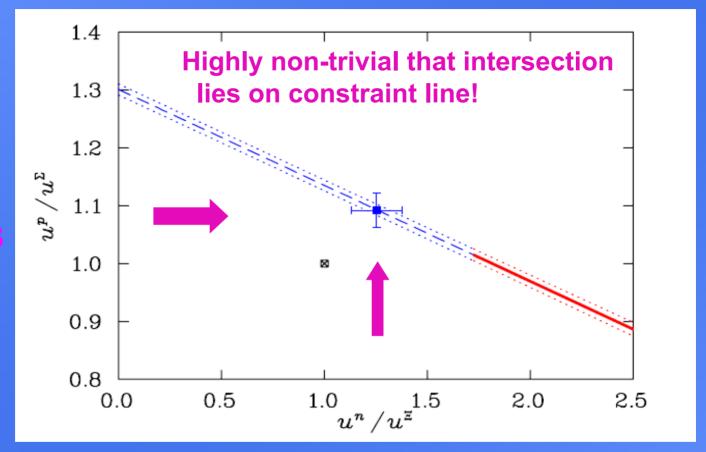
Universal Here!

Check: Octet Magnetic Moments



Leinweber et al., hep-lat/0406002

Convergence LNA to NLNA Again Excellent (Effect of Decuplet)


State of the Art Magnetic Moments

	QQCD	Valence	Full QCD	Expt.
р	2.69 (16)	2.94 (15)	2.86 (15)	2.79
n	-1.72 (10)	-1.83 (10)	-1.91 (10)	-1.91
Σ^{+}	2.37 (11)	2.61 (10)	2.52 (10)	2.46 (10)
Σ^{-}	-0.95 (05)	-1.08 (05)	-1.17 (05)	-1.16 (03)
Λ	-0.57 (03)	-0.61 (03)	-0.63 (03)	-0.613 (4)
Ξ0	-1.16 (04)	-1.26 (04)	-1.28 (04)	-1.25 (01)
Ξ-	-0.65 (02)	-0.68 (02)	-0.70 (02)	-0.651 (03)
u ^p	1.66 (08)	1.85 (07)	1.85 (07)	1.81 (06)
u ^Ξ	-0.51 (04)	-0.58 (04)	-0.58 (04)	-0.60 (01)

Accurate Final Result for G_Ms

1.10±0.03

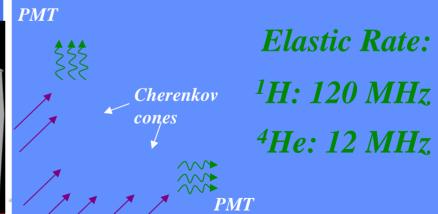
1.25±0.12

Yields : G_M s = -0.046 ± 0.019 μ_N

HAPPEx-II: Parity Violation in H and He

3 GeV beam in Hall A

$$\theta_{\text{lab}} \sim 6^{\circ}$$


$$Q^2 \sim 0.1 (GeV/c)^2$$

target	A _{PV} G ^s = 0 (ppm)	Stat. Error (ppm)	Syst. Error (ppm)	sensitivity
¹ H	-1.6	0.08	0.04	$\delta(G_{E}^{s}+0.08G_{M}^{s})=0.010$
⁴ He	+7.8	0.18	0.18	$\delta(G_{E}^{s}) = 0.015$

Septum magnets (not shown)
High Resolution
Spectrometers detectors

Brass-Quartz integrating detector

Background ≤ 3°

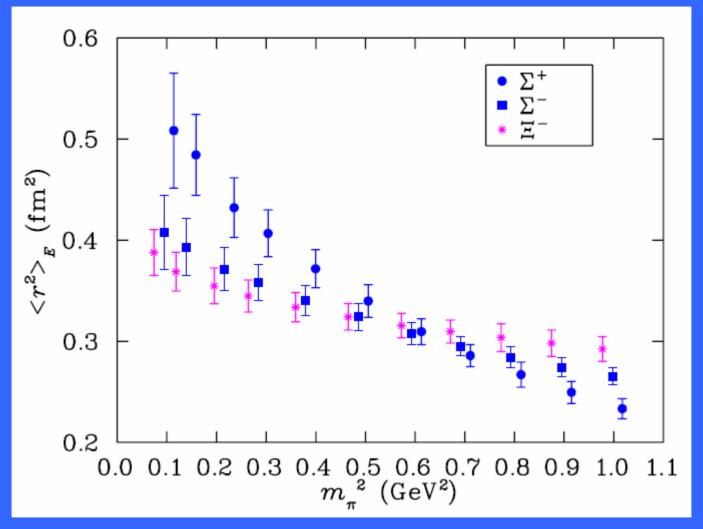
Charge Radii for the Σ Hyperons

 Σ - mean-square radius has been measured:

$$\langle r^2 \rangle_{\Sigma}^- = -0.61 \S 0.12 \S 0.09 \text{ fm}^2$$

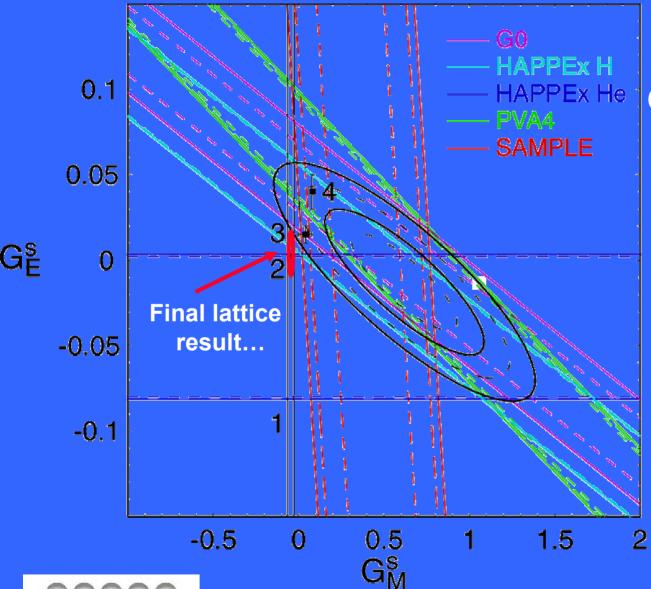
 Σ^{+} has not been measured BUT we now have QQCD data on both Σ^{+} and Σ^{-}

The ratio of Σ^+ to Σ^- mean-square charge radii is of order 1.25 (next slide*)) $\langle r^2 \rangle_{\Sigma}^+ \gg + 0.76 \ \S \ 0.15 \ \S \ 0.11 \ fm^2$


Hence Σ^+ - Σ^- = + 1.37 § 0.19 § 0.14 fm²

* Error to be determined by jacknife analysis including correlations

Hyperon Charge Radii



CSSM calculation FLIC fermions Leinweber, Boinepalli et al.

World Data @ Q² = 0.1 GeV²

$$G_{E}^{s} = -0.013 \pm 0.028$$

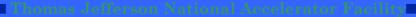
$$G_{M}^{s} = +0.62 \pm 0.31$$
 (± 0.62 2 σ)

Theories

- Leinweber, et al.
 PRL 94 (05) 212001
- 2. Lyubovitskij, et al. PRC **66** (02) 055204
- 3. Lewis, et al. PRD **67** (03) 013003
- 4. Silva, et al. PRD **65** (01) 014016

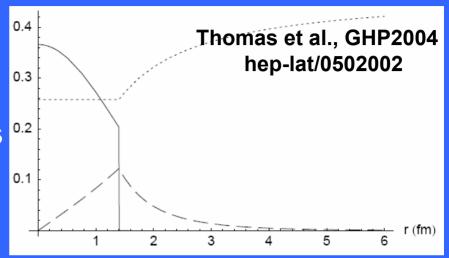
Thomas Jefferson National Accelerator Facility

"Back of the Envelope" Estimates*


- Nowhere that current quark masses enter dynamics
 always constituent quark masses
- Hence s-sbar pair costs 1.0-1.1 GeV plus KE
- K Λ costs 0.65 GeV plus KE (and coupling » π N) (K- Σ much smaller) ignore)
- Lots of evidence that $P_{\pi N}$ » 20%) $P_{K\Lambda}$ » 5%

$$G_{M}^{s} \frac{1}{4} - 3 \pounds P_{K \Lambda} \pounds [2/3 (+0.61 + 1/3) + 1/3(-0.61 + 0)]$$

 $\frac{1}{4}$ -0.067 μ_{N}


Remarkably close to lattice estimate!

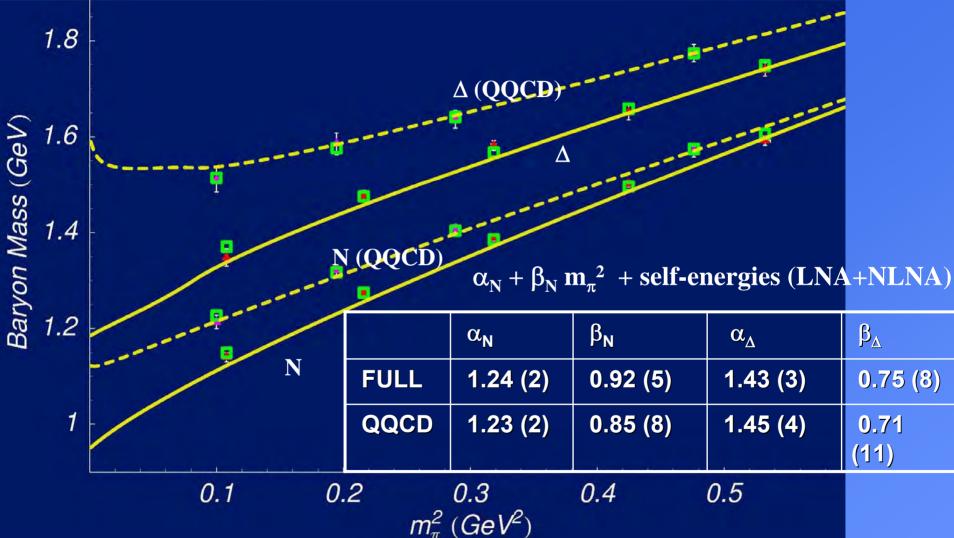
*nucl-th/0509082

Strangeness Radius

- Meson cloud surface peaked
- Core has mean-square radius
 » (0.7 R)²
- Meson cloud » (R + 0.2)²

ε (-0.02, -0.04) fm² for R ε (0.8,1.0) fm

• Hence: G_E^s (0.1 GeV²) » (+0.01, +0.02)



Thomas Jefferson National Accelerator
Facility

- •Lattice data (from MILC Collaboration) : red triangles
- •Green boxes: fit evaluating σ's on same finite grid as lattice
- •Lines are exact, continuum results

Young et al., hep-lat/0111041; Phys. Rev. D66 (2002) 094507

Thomas Jefferson National Accelerator

Error Table – Leinweber et al., hep-lat/0502004

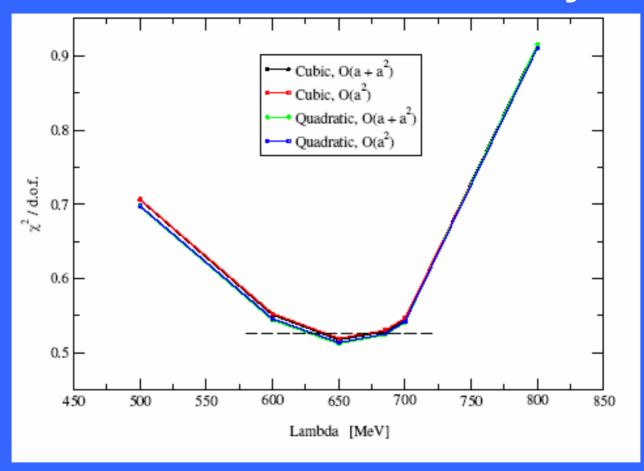

Uncertainty Source	Parameter Range	u^p/u^{Σ} , Eq. (1) $G_M^s = -0.045$	u^n/u^{Ξ} , Eq. (2) $G_M^s = -0.046$	SW Average $G_M^s = -0.046$
Statistical Errors		0.016	0.009	0.008
Chiral corrections	$0.7 \leq \varLambda \leq 0.9~\mathrm{GeV}$	0.001	0.002	0.002
Scale Determination	$0.122 \leq a \leq 0.134~\mathrm{fm}$	0.001	0.002	0.002
$^{\ell}R_d^s$ Determination	$0.096 \le {}^{\ell}R_d^s \le 0.181$	0.016	0.017	0.017
Total Uncertainty		0.023	0.019	0.019

Table 1. Sources of uncertainty and their contribution to the strangeness magnetic moment of the nucleon, G_M^s , in units of nuclear magnetons, μ_N . Uncertainties are documented for G_M^s obtained from the valence-quark ratio u^p/u^{Σ} in Eq. (1), from the valence-quark ratio u^n/u^{Σ} in Eq. (2) and from a statistically weighted (SW) average of these two determinations.

FRR Mass well determined by data

$$\sqrt{(M_V^{deg})^2 - \Sigma_{TOT}} = (a_0^{cont} + X_1 a + X_2 a^2) + a_2 (M_{PS}^{deg})^2 + a_4 (M_{PS}^{deg})^4 + a_6 (M_{PS}^{deg})^6$$

