Two dimensional $\mathcal{N}=(2,2)$
super Yang-Mills theory
on the lattice
via dimensional reduction
H.Suzuki and Y.Taniguchi
3 October, 2005
hep-lat/0507019

$\S 1$ Introduction
- Super Yang-Mills o
- Orbifolding and D
- Nilpotent SUSY Sur
- Non-commutable
\Rightarrow OK for 2D t
\Downarrow

$$
\Downarrow \text { Technical difficulties }
$$

- Complex determinant?
- Fermion zero mode?
- Complex gauge field?
- Unusual gauge action

$$
\begin{aligned}
& \text { Fine tuning approach } \\
& \text { Curci and Veneziano, Montvay et al, Nishinnura, } \\
& \text { - Fine tuning is simple for } 4 D \mathcal{N}=1 \mathrm{SYM} \text { action } \\
& \text { - SUSY point = chiral symmetric point } \\
& \text { - } U(\mathbf{1})_{R} \text { is anomalous } \\
& \text { Fine tuning is not simple for operators }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fine tuning is simple for 2D SYM } \\
& \text { - Theory is super renormalizable } \\
& \text { - UV divergence could appear at one loop } \\
& \text { - Fine tuning can be performed perturbatively } \\
& \text { - Usual gauge and fermion action } \\
& \text { - Fermion determinant is real or positive }
\end{aligned}
$$

§2 Continuum 2 dimensional $\mathcal{N}=(2,2)$ SYM
- Dimensional reduction from 4D $\mathcal{N}=1 S U\left(N_{c}\right)$ SYM

\Downarrow Dimensional reduction
$S=\int \mathrm{d}^{2} x\left\{\frac{1}{4} F_{\mu \nu}^{a} F_{\mu \nu}^{a}+\frac{1}{2} D_{\mu} \phi^{a} D_{\mu} \phi^{a}+\frac{1}{2} D_{\mu} \varphi^{a} D_{\mu} \varphi^{a}\right.$
$+\frac{1}{2} g_{0}^{2} f_{a b c} f_{a d e} \varphi^{b} \phi^{c} \varphi^{d} \phi^{e}+\bar{\psi}^{a} \gamma_{\mu} D_{\mu} \psi^{a}$
$\left.\quad-i g_{0} f_{a b c} \bar{\psi}^{a}\left(\phi^{b}+i \gamma_{5} \varphi^{b}\right) \psi^{c}\right\}$
$g_{0}:$ mass dimension, $\phi=A_{3}, \varphi=A_{2}$
Perturbative expansion

- Effective potential analysis

- Contribution from non-zero m

Cannot treat zero mode along flat direction

$$
[\phi, \varphi]^{a}=i f_{a b c} \varphi^{b} \phi^{c}=0
$$

- Integral is not Gaussian
7|nsə
result
O.əəZ-UOU

- Dimensional reduction by boundary condition
$U_{N}(x+a \hat{M})=U_{N}(x), \lambda(x+a \hat{M})=\lambda(x)$ for
$U_{N}(x+L \hat{M})=U_{N}(x), \lambda(x+L \hat{M})=\lambda(x)$ for
- Scalar fields on the link variable
$U_{3}(x)=\exp \left\{a g_{0} \phi^{a}(x) T^{a}\right\}, \quad U_{2}(x)=\exp \left\{a g_{0} \varphi^{a}(x)\right.$
\Rightarrow Flat direction is compact $\begin{array}{r}\text { - Discrete } S O(2) \text { symmetry } \\ \begin{array}{r}U_{2}(x) \rightarrow U_{3}(x)^{-1}, U_{3}(x) \rightarrow U_{2}(x), \lambda(x) \rightarrow \exp \left\{-\frac{\pi}{4}\right. \\ \text { - } S O(2) \text { symmetric scalar mass term } \\ S_{\text {counter }}[U]=-\mathcal{C} N_{c} \sum_{x}\left(\operatorname{tr}\left\{U_{3}(x)+U_{3}(x)^{-1}\right.\right. \\ + \\ \left.\rightarrow \frac{1}{2} g_{0}^{2} \mathcal{C} N_{c} \int U_{2}(x)+d_{2}(x)^{-1}-2\right\}\left(\phi^{a} \phi^{a}+\varphi^{a} \varphi^{a}\right)\end{array}\end{array}$

- Gauge fixing

- Measure term

$$
\begin{aligned}
& \text { Using overlap Dirac operator } \\
& \qquad S_{\mathrm{F}}[U, \lambda]=-a^{2} \sum_{x} \operatorname{tr}\{\lambda(x) C D \lambda(x)\}, \\
& \qquad D=\frac{1}{a}\left\{1-A\left(A^{\dagger} A\right)^{-1 / 2}\right\}, \quad A=1-a D_{\mathrm{w}} \\
& \text { - Counter term is evaluated with effective potential } \\
& \Rightarrow \mathcal{C}=-0.28891909(1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Virtue of overlap Dirac operator } \\
& \text { - Fermion determinant is real positive (Neuberger) } \\
& \text { - } U(1)_{R} \text { symmetry } \\
& \text { - Broken by measure with } \mathcal{O}(a) \text { artifact }
\end{aligned}
$$

- Property of the CFT
- Phase of the theory

