Nucleon Form Factors from $N_{\mathrm{f}}=2$ Clover Fermions

QCDSF Collaboration

M. Göckeler, P. Hägler, R. Horsley, D. Pleiter, P. Rakow, G. Schierholz, W. Schroers, J.M. Zanotti

Introduction

- Electromagnetic form factors hints at internal structure of nucleon
- Recent interest triggered by JLAB results for

$$
\mu^{(p)} G_{e}^{(p)}\left(q^{2}\right) / G_{m}^{(p)}\left(q^{2}\right)
$$

\square We compute G_{e} and G_{m} from

$$
\begin{aligned}
G_{e}\left(q^{2}\right) & =F_{1}\left(q^{2}\right)+\frac{q^{2}}{\left(2 M_{N}\right)^{2}} F_{2}\left(q^{2}\right) \\
G_{m}\left(q^{2}\right) & =F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)
\end{aligned}
$$

- Key issue: q^{2} scaling

Report on Work in Progress

The form factors are calculated on dynamical configurations with $N_{\mathrm{f}}=2 \mathrm{O}(\mathrm{a})$-improved Wilson fermions
\square Renormalisation factors are determined non-perturbatively Reduction of discretisation effects
\square Results are for various lattice spacings available Check for discretisation effects

Simulations cover larger range of sea quark masses and some partially quenched results are available
Investigation of quark mass dependence
Check for unquenching effects

Simulation Details

Configurations with $N_{\mathrm{f}}=2 \mathrm{O}(\mathrm{a})$-improved dynamical quarks generated by UKQCD+QCDSF:

$$
\begin{array}{ll}
m_{\mathrm{PS}, \text { sea }}=590, \ldots, 1170 \mathrm{MeV} & a=0.07, \ldots, 0.11 \mathrm{fm} \\
m_{\mathrm{PS}, \text { val }}=470, \ldots, 1140 \mathrm{MeV} & V=1.4, \ldots, 2.0 \mathrm{fm}
\end{array}
$$

Scale Definition

$\square r_{0}$ can be determined with good precision on the lattice
\rightarrow Good for scaling lattice results
[Experimental value less well known
\rightarrow Use nucleon mass for conversion into physical units
$\rightarrow r_{0}=0.467 \mathrm{fm}$

DP, ILFTN, JLAB, 5 October 2005, 4

Nucleon Form Factors

$$
\left\langle p^{\prime}, s^{\prime}\right| J^{\mu}|p, s\rangle=\bar{\psi}\left(p^{\prime}, s^{\prime}\right)\left[\gamma_{\mu} F_{1}\left(q^{2}\right)+i \sigma^{\mu \nu} \frac{q_{\nu}}{2 M_{N}} F_{2}\left(q^{2}\right)\right] \psi(p, s)
$$

- Momentum transfer is defined as $q=p^{\prime}-p$
- We will consider

Proton form factors: $\quad \frac{2}{3} \bar{u} \gamma^{\mu} u-\frac{1}{3} \bar{d} \gamma^{\mu} d$
Isovector form factors: $\bar{u} \gamma^{\mu} u-\bar{d} \gamma^{\mu} d \rightarrow$ Disconnected terms cancel

Matrix Elements on the Lattice

$$
R\left(t, \tau, \vec{p}^{\prime}, \vec{p}\right)=\frac{C_{3}\left(t, \tau, \vec{p}^{\prime}, \vec{p}\right)}{C_{2}\left(t, \vec{p}^{\prime}\right)} \times\left[\frac{C_{2}\left(\tau, \vec{p}^{\prime}\right) C_{2}\left(t, \vec{p}^{\prime}\right) C_{2}(t-\tau, \vec{p})}{C_{2}(\tau, \vec{p}) C_{2}(t, \vec{p}) C_{2}\left(t-\tau, \vec{p}^{\prime}\right)}\right]^{1 / 2}
$$

where

$$
C_{2}(t, \vec{p})=\sum_{\alpha \beta} \Gamma_{\beta \alpha}\left\langle B_{\alpha}(t, \vec{p}) \bar{B}_{\beta}(0, \vec{p})\right\rangle
$$

and

$$
C_{3}\left(t, \tau, \vec{p}^{\prime}, \vec{p}\right)=\sum_{\alpha \beta} \Gamma_{\beta \alpha}\left\langle B_{\alpha}\left(t, \vec{p}^{\prime}\right) \mathcal{O}(\tau) \bar{B}_{\beta}(0, \vec{p})\right\rangle
$$

We use the local vector current: $\bar{\psi}(x) \gamma_{\mu} \psi(x)$

Renormalisation and Improvement

$$
V_{\mu}=Z_{V}\left(1+b_{V} a m_{q}\right)\left[\bar{\psi} \gamma_{\mu} \psi+\mathrm{i} c_{V} a \partial_{\lambda}\left(\bar{\psi} \sigma_{\mu \lambda} \psi\right)\right]
$$

\square Demand same behaviour for conserved and local vector current \rightarrow non-perturbative determination of Z_{V} and b_{V}

] c_{V} known only perturbatively \rightarrow neglected here

Momenta and Polarisations

- 3 initial state momentum:

$$
\frac{L}{2 \pi} \vec{p}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

- 3 choices for polarisations:

$$
\begin{aligned}
\Gamma & =\frac{1}{2}\left(1+\gamma_{4}\right) \\
\Gamma & =\frac{1}{2}\left(1+\gamma_{4}\right) \mathrm{i} \gamma_{5} \gamma_{1} \\
\Gamma & =\frac{1}{2}\left(1+\gamma_{4}\right) \mathrm{i} \gamma_{5} \gamma_{2}
\end{aligned}
$$

- 17 different choices of $\vec{q}=\vec{p}^{\prime}-\vec{p}$

Example for some nice data ...

$$
\beta=5.25, \kappa_{\text {sea }}=0.13575, V=24^{3} \times 48
$$

DP, ILFTN, JLAB, 5 October 2005, 9

Example for some less nice data ...

$$
\beta=5.20, \kappa_{\text {sea }}=0.13550, V=16^{3} \times 32
$$

q^{2} Scaling of F_{1} and F_{2}

Naive expectation from dimensional counting:

$$
\begin{aligned}
& F_{1} \propto \frac{1}{Q^{4}} \\
& F_{2} \propto \frac{1}{Q^{6}}
\end{aligned}
$$

and therefore

$$
Q^{2} \frac{F_{2}}{F_{1}} \propto \mathrm{const}
$$

Test Scaling of $F_{2}^{(v)}$

$$
\beta=5.25, \kappa_{\text {sea }}=0.13575, V=24^{3} \times 48
$$

Test Scaling of $F_{2}^{(v)} / F_{1}^{(v)}$

$m_{\mathrm{PS}} \approx 600 \mathrm{MeV}, a=0.084, \ldots, 0.070 \mathrm{fm}$

Test Scaling of $F_{2}^{(p)} / F_{1}^{(p)}(1)$

Experimental data suggest $1 / \sqrt{Q^{2}}$ scaling:

DP, ILFTN, JLAB, 5 October 2005, 14

Test Scaling of $F_{2}^{(p)} / F_{1}^{(p)}$ (2)

Perturbative QCD: asymptotic scaling $\sim \log \left(Q^{2} / \Lambda^{2}\right) / Q^{2} \quad$ [Belitsky et al., 2003]

$\Lambda=200 \mathrm{MeV}, m_{\mathrm{PS}} \approx 600 \mathrm{MeV}$

Scaling Ansatz

- Dipole for F_{1} :

$$
F_{1}\left(q^{2}\right)=\frac{A_{1}}{\left(1-q^{2} / M_{1}^{2}\right)^{2}}
$$

- Tripole for F_{2} :

$$
F_{2}\left(q^{2}\right)=\frac{A_{2}}{\left(1-q^{2} / M_{2}^{2}\right)^{3}}
$$

F_{1} Dipole Masses

Discretisation errors small
Extrapolation linear in m_{PS}

DP, ILFTN, JLAB, 5 October 2005, 17

Unquenching Effects

Line from fit to unquenched data
No significant unquenching effects

$F_{2}^{(v)}$ Tripole Ansatz (1)

DP, ILFTN, JLAB, 5 October 2005, 19
$F_{2}^{(v)}$ Tripole Ansatz (2)

DP, ILFTN, JLAB, 5 October 2005, 20

Form Factor Radii and Magnetic Moment

Definitions:

- Form factor radii r_{i} :

$$
F_{i}\left(q^{2}\right)=F_{i}(0)\left[1+\frac{1}{6} \mathbf{r}_{\mathbf{i}}^{2} q^{2}+\mathcal{O}\left(q^{4}\right)\right]
$$

- Magnetic moment μ / anomalous magnetic moment κ :

$$
\mu=1+\kappa=G_{m}(0)
$$

ChEFT Result for $\left[r_{1}^{(v)}\right]^{2}$

[Hemmert and Weise, 2002; QCDSF 2003]

$$
\begin{aligned}
& \quad\left(r_{1}^{(v)}\right)^{2}=-\frac{1}{\left(4 \pi F_{\pi}\right)^{2}}\left\{1+7 g_{A}^{2}+\left(10 g_{A}^{2}+2\right) \log \left[\frac{m_{\mathrm{PS}}}{\lambda}\right]\right\} \\
& +\frac{c_{A}{ }^{2}}{54 \pi^{2} F_{\pi}^{2}}\left\{26+30 \log \left[\frac{m_{\mathrm{PS}}}{\lambda}\right]+30 \frac{\Delta}{\sqrt{\Delta^{2}-m_{\mathrm{PS}}^{2}}} \log \left[\frac{\Delta}{m_{\mathrm{PS}}}+\sqrt{\left.\left.\frac{\Delta^{2}}{m_{\mathrm{PS}}^{2}}-1\right]\right\} .}\right.\right.
\end{aligned}
$$

$\left[r_{1}^{(v)}\right]^{2}$: Comparison ChEFT vs. Lattice

DP, ILFTN, JLAB, 5 October 2005, 23

ChEFT Result for $\left[r_{2}^{(v)}\right]^{2}$

$$
\begin{aligned}
& \left(r_{2}^{(v)}\right)^{2}=\frac{g_{A}^{2} M_{N}}{8 F_{\pi}^{2} \kappa^{(v)}\left(m_{\mathrm{PS}}\right) \pi m_{\mathrm{PS}}}+ \\
& \frac{c_{A}^{2} M_{N}}{9 F_{\pi}^{2} \kappa^{(v)}\left(m_{\mathrm{PS}}\right) \pi^{2} \sqrt{\Delta^{2}-m_{\pi}^{2}}} \log \left[\frac{\Delta}{m_{\mathrm{PS}}}+\sqrt{\frac{\Delta^{2}}{m_{\pi}^{2}}-1}\right]+\frac{24 M_{N}}{\kappa^{(v)}\left(m_{\mathrm{PS}}\right)} B_{c 2} .
\end{aligned}
$$

ChEFT Result for $\kappa^{(v)}$

$$
\begin{aligned}
& \kappa^{(v)}\left(m_{\mathrm{PS}}\right)=\kappa^{(v) 0}-\frac{g_{A}^{2} m_{\mathrm{PS}} M_{N}}{4 \pi F_{\pi}^{2}}+ \\
& \frac{2 c_{A}^{2} \Delta M_{N}}{9 \pi^{2} F_{\pi}^{2}}\left\{\sqrt{1-\frac{m_{\mathrm{PS}}^{2}}{\Delta^{2}}} \log R\left(m_{\mathrm{PS}}\right)+\log \left[\frac{m_{\mathrm{PS}}}{2 \Delta}\right]\right\} \\
& -8 E_{1}^{(r)}(\lambda) M_{N} m_{\mathrm{PS}}^{2}+\frac{4 c_{A} c_{V} g_{A} M_{N} m_{\mathrm{PS}}^{2}}{9 \pi^{2} F_{\pi}^{2}} \log \left[\frac{2 \Delta}{\lambda}\right]+\frac{4 c_{A} c_{V} g_{A} M_{N} m_{\mathrm{PS}}^{3}}{27 \pi F_{\pi}^{2} \Delta} \\
& -\frac{8 c_{A} c_{V} g_{A} \Delta^{2} M_{N}}{27 \pi^{2} F_{\pi}^{2}}\left\{\left(1-\frac{m_{\mathrm{PS}}^{2}}{\Delta^{2}}\right)^{3 / 2} \log R\left(m_{\mathrm{PS}}\right)+\left(1-\frac{3 m_{\mathrm{PS}}^{2}}{2 \Delta^{2}}\right) \log \left[\frac{m_{\mathrm{PS}}}{2 \Delta}\right]\right\}
\end{aligned}
$$

where $R(m)=\frac{\Delta}{m}+\sqrt{\frac{\Delta^{2}}{m^{2}}-1}$

$\left[r_{2}^{(v)}\right]^{2}$: Comparison ChEFT vs. Lattice

Joined fit to $\left[r_{2}^{(v)}\right]^{2}$ and $\kappa^{(v)}$:

DP, ILFTN, JLAB, 5 October 2005, 26

$\kappa^{(v)}$: Comparison ChEFT vs. Lattice

$\kappa^{(v) \text { norm }}=\kappa^{(v)} m_{\mathrm{N}}\left(m_{\pi}\right) / m_{\mathrm{N}}\left(m_{\mathrm{PS}}\right)$

DP, ILFTN, JLAB, 5 October 2005, 27

Calculation of $\mu^{(p)} G_{e}^{(p)}\left(q^{2}\right) / G_{m}^{(p)}\left(q^{2}\right)$

- Assume dipole (tripole) scaling to fit $\frac{2}{3} u-\frac{1}{3} d$ data for $F_{1}\left(F_{2}\right)$
- Perform (naive) chiral extrapolation of $M_{1}, F_{2}(0)$ and M_{2}
- Calculate $\mu^{(p)}, G_{e}^{(p)}\left(q^{2}\right)$ and $G_{m}^{(p)}\left(q^{2}\right)$ in the chiral limit using:

$$
\begin{aligned}
G_{e}\left(q^{2}\right) & =F_{1}\left(q^{2}\right)+\frac{q^{2}}{\left(2 M_{N}\right)^{2}} F_{2}\left(q^{2}\right) \\
G_{m}\left(q^{2}\right) & =F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)
\end{aligned}
$$

Comparison with JLAB Data

DP, ILFTN, JLAB, 5 October 2005, 29

Conclusions

\square We presented initial results for the electromagnetic form factors from full QCD on the lattice using $\mathrm{O}(\mathrm{a})$-improved Wilson fermions

With current data it is possible to

- Explore quark mass dependency
- Check for unquenching effects
- Check for discretisation effects

We find good agreement with experimental data assuming $F_{1}\left(F_{2}\right)$ scaling as a dipole (tripole)
\square Comparison with ChEFT raises questions concerning the chiral extrapolation more work needs to be done

