ILFTN-Jlab 2005

Hadron structure with domain wall fermions - I

Kostas Orginos College of William and Mary - JLab

LHPC collaborators (SF project)

- R. Edwards (Jlab)
- G. Fleming (Yale)
- P. Hagler (Vrije Universiteit)
- J. Negele (MIT)
- A. Pochinsky (MIT)
- D. Renner (UofA)
- D. Richards (Jlab)
- W. Schroers (DESY)

• The LHPC program O Details of the calculation • The hybrid scheme O Domain wall fermion checks • Calculating diquark binding energy O Results and discussion

Moments of Structure Functions

• $\langle x^n \rangle_q$, $\langle x^n \rangle_{\Delta q}$ Nucleon matrix elements of local operators $\langle P, S | \mathcal{O} | P, S \rangle$

$$\mathcal{O}_{\{\mu_{1}\mu_{2}\cdots\mu_{n}\}}^{q} = \overline{q} \left[\left(\frac{i}{2}\right)^{n-1} \gamma_{\mu_{1}} \stackrel{\leftrightarrow}{D}_{\mu_{2}} \cdots \stackrel{\leftrightarrow}{D}_{\mu_{n}} - trace \right] q$$
$$\mathcal{O}_{\{\mu_{1}\mu_{2}\cdots\mu_{n}\}}^{5q} = \overline{q} \left[\left(\frac{i}{2}\right)^{n-1} \gamma_{5}\gamma_{\mu_{1}} \stackrel{\leftrightarrow}{D}_{\mu_{2}} \cdots \stackrel{\leftrightarrow}{D}_{\mu_{n}} - trace \right] q$$

GPDs and Form Factors

Deeply virtual Compton scattering:

Euclidean Matrix elements:

 $\langle P' | \mathcal{O}_q^{\{\mu_1 \mu_2 \dots \mu_n\}} | P \rangle$ $\sim \int dx \, x^{n-1} [H(x,\xi,t), E(x,\xi,t)]$ $\to A_{ni}(t), B_{ni}(t), C_n(t)$

Realistic Calculations

- 2+1 Dynamical flavors
 - 2 light (up down) 1 heavy (strange)
 - charm bottom top (treated in HQET as extremnal)
- Light quark masses $m_{\pi} < 400 MeV$
 - Chiral extrapolations
 - Finite volume corrections
 - Numerical algorithm slows down (algorithm scaling $\sim \frac{1}{m_a^{2.5}}$)
- Continuum extrapolations
 - compute at several lattice spacings (algorithm scaling $\sim \frac{1}{a^7}$)

The LHPC program

- Domain wall fermions for valence (with hyp smeared links)
 - Chiral symmetry
 - Ward Identities
- Kogut-Susskind 2+1 Dynamical flavors
 - Improved KS action (Asqtad: $O(a^4, g^2 a^2)$) [KO, Sugar, Toussaint '99]
 - MILC has generated lattices: Ready to milk the MILC
- Light quark masses: Lightest pion

m_π - 250MeV

- Volumes: 2.6 to 3.2 fm
- Future: Continuum extrapolation
 - MILC lattice spacings: a=0.125fm, 0.09fm
 - a=0.06fm in 1 2 years

LHPC-SESAM:

diamonds - quenched, squares - dynamical QCDSF:

quenched - triangles

hep-lat/0201021

$$\langle x \rangle_{u-d} \sim a_1 \Big[1 - \frac{(3g_A^2 + 1)m_\pi^2}{(4\pi f_\pi)^2} \ln\Big(\frac{m_\pi^2}{m_\pi^2 + \mu^2}\Big) \Big] + b_1 m_\pi^2$$

Where $\mu = 550 MeV$

The log coefficient is valid for full QCD

[Detmold et.al. Phys.Rev.D87 2001]

Ratio of first moments

(polarized and unpolarized)

- No curvature observed down to **400MeV** pions (Quenched)
- Renormalization constant cancels in the ratio for DWF
- Ratio agrees with experimental expectations

The DWF quark masses

- Domain wall fermions for valence (hyp smeared links)
 - We tune the DWF quark mass to the staggered Goldstone pion
- Baer et.al.: tune to the taste singlet for m_{π}
- Not clear it helps for other quantities (ex. f_{π})
- Unitarity is restored in the continuum in any case

Checks of the scheme

- The residual mass
- Dependence on L5

[W. Schroers LAT04]

- Locality of the action
- The iso-vector scalar correlator

Chiral symmetry breaking

 $\Delta_{\mu} \langle \mathcal{A}^{a}_{\mu}(x)\mathcal{O} \rangle = 2 m_{f} \langle J^{a}_{5}(x)\mathcal{O} \rangle + 2 \langle J^{a}_{5q}(x)\mathcal{O} \rangle + i \langle \delta^{a}_{x}\mathcal{O} \rangle$

- The size of $\langle J_{5q}^a(x)\mathcal{O}\rangle$ measures chiral symmetry breaking
- Let's use for the operator $O = J_5^a(0)$
- Assume at long distances $J_{5q}^a \sim J_5^a$
- The proportionality constant is the residual mass

$$M_{\text{res}} = \frac{\sum_{x,y} \langle J_{5q}^a(y,t) J_5^a(x,0) \rangle}{\sum_{x,y} \langle J_5^a(y,t) J_5^a(x,0) \rangle} \Big|_{t \ge t_{min}}$$

 $\mathbf{L}_{\mathbf{s}}$

At Ls = 12: 0.2MeV<m_{res} <0.7MeV

The 4D effective operator

With a little algebra we get

$$\mathcal{P}^{-1} \frac{1}{D_{dwf}(1)} D_{dwf}(m) \mathcal{P} = \begin{bmatrix} -(1-m)T^{-L_s/2+1} \frac{1}{T^{-L_s/2}+T^{L_s/2}} & 1 & 0 & 0 & \cdots & \cdots & 0\\ -(1-m)T^{-L_s/2+2} \frac{1}{T^{-L_s/2}+T^{L_s/2}} & 0 & 1 & 0 & \cdots & \cdots & 0\\ & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots\\ -(1-m)\frac{1}{T^{-L_s/2}+T^{L_s/2}} & 0 & \cdots & \cdots & 1 & 0 & \cdots\\ & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots\\ -(1-m)T^{L_s/2-1} \frac{1}{T^{-L_s/2}+T^{L_s/2}} & 0 & \cdots & \cdots & 0 & 1 \end{bmatrix}$$

$$\mathcal{P} = \begin{bmatrix} P_{-} & P_{+} & \cdots & 0 \\ 0 & P_{-} & P_{+} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & P_{+} \\ P_{+} & 0 & \cdots & P_{-} \end{bmatrix} \qquad L = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ -T^{-L_{s}+1}M_{+} & 1 & 0 & 0 & \cdots \\ -T^{-L_{s}+2}M_{+} & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ -T^{-1}M_{+} & 0 & \cdots & 0 & 1 \end{bmatrix} \qquad M_{-} = P_{-} - m P_{+} \qquad T^{-1} = \frac{1 + H_{T}}{1 - H_{T}} \\ M_{+} = P_{+} - m P_{-} \qquad H_{T} = \gamma_{5}D$$

$$D_{ov}(m) = \frac{1+m}{2} + \frac{1-m}{2}\gamma_5 \mathcal{E}_{L_s}[\gamma_5 D(M_5)]$$

 $\varepsilon_{L_s} = \frac{T^{-L_s} - 1}{T^{-L_s} + 1} = \frac{(1 + H_T)^{L_s} - (1 - H_T)^{L_s}}{(1 + H_T)^{L_s} + (1 - H_T)^{L_s}} \qquad D = (b_5 + c_5) \frac{D_w}{2 + (b_5 - c_5)D_w} = \alpha \frac{D_w}{2 + a_5D_w}$ • Overlap: $\alpha = 2, a_5 = 0$ (Borici) • DWF: $\alpha = 1, a_5 = 1$ (Shamir)

Locality of the 4D action

Locality of the 4D action

Localization: ~1.3a

4D couplings

a=0.09fm

The DWF quark masses

IsoVector scalar correlator

χPT calculation: Prelovsek LAT 05

Pion decay constant

Diquarks

The diquark: made out of two quarks

$$3 \times 3 \rightarrow 6 + \overline{3}$$
 diquark

- Anti-fundamental channel attractive
- One gluon exchange
- 'tHooft interaction

Diquark Properties

- Scalar diquark most attractive channel ("good") $q_f^a C \gamma_5 q_{f'}^b \epsilon_{cab} \epsilon^{ff'}$
- Spin triplet flavor symmetric ("bad")

 $q_f^a C \gamma_\mu q_{f'}^b \epsilon_{cab}$

• Spin interaction: Stronger for light quarks

Questions

- Weak coupling arguments / instanton model
- Expect to be valid of finite density
- Color supperconductivity [Alford/Wilczek/Rajakopal]
- Do we have any non-perturbative information?
- Any evidence in the QCD spectrum? [Jaffe/Salem/Wilczek]
- What is the binding energy non-perturbatively?

Diquarks in QCD

• Pentaquarks

[Jaffe/Salem/Wilczek]

• Color supercoductivity

[Alford/Wilczek/Rajakopal]

• QCD spectrum

[Salem/Wilczek]

- The Δ N, Λ Σ^* mass splittings
- The $\Delta I = 1/2$ rule in Kaon decays [Stee

[Stech - Neurbert]

Diquarks in Hadrons

- Baryon: closely bound diquark connected with a flux tube to the quark [Salem/Wilczek]
- Good and bad diquarks: 0⁺ is energetically favored [Jaffe/Wilczek]
- QCD spectrum implies ~250MeV diquark binding energy splitting [Wilczek]

Diquarks in Lattice QCD

- Study the spectrum
 - The quark mass is tunable parameter
 - Artificial calculations to probe specific properties such as binding energy
- Major issue: the diquark is a color source!
 - Can study it embedded in color singlet objects

The calculation

- Compute the binding energy difference of good and bad diquarks
- Mass splitting of baryons (Δ -N, Λ Σ ...)
- Light baryons: spin interactions present problem
- One heavy quark attached to the diquark $(\Lambda_0 \Sigma_0)$
- $\Lambda_{\rm b}$ mass is known while the $\Sigma_{\rm b}$ mass is not
- On the lattice can use an infinitely heavy quark

Compute the $\Sigma_Q - \Lambda_Q$ mass splitting

 $ar{u}C\gamma_\mu d$

with M. Savage

Lattice Correlators

staggered quark mass: 0.010

Correlator ratio

<u>Diquark binding energy</u>

 $ar{u}C\gamma_5 d \qquad ar{u}C\gamma_\mu d$

 $\Sigma_Q - \Lambda_Q$ mass splitting $\Sigma_c - \Lambda_c$ mass splitting 215MeV $\Sigma(3/2^+) - \Lambda$ mass splitting 268MeV $\Delta(3/2^+) - N$ mass splitting 292MeV

Hess et.al '98: diquark mass splitting 100MeV

Conclusions

- Can measure diquark binding energy splitting
- Linear extrapolation 360(70)MeV
- Result is large compared to QCD scale
- Splitting increases with quark mass
- Future: increase precision to address systematics