
Staggered chiral perturbation

theory and heavy light form

factors

Jack Laiho

Fermilab

Oct 3, 2005



Introduction

1) Recent Fermilab results

2) Intro to staggered chiral perturbation theory

3) Heavy light calculations in progress
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CKM matrix from lattice QCD

hep-lat/0412044




Vud Vus Vub
0.225(2)(1) 3.5(5)(5)× 10−3

Kl3 B → π

Vcd Vcs Vcb
0.24(3)(2) 0.97(10)(2) 3.9(1)(3)× 10−2

D → π D → K B → D

Vtd Vts Vtb
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Some discretizations of fermions:

Staggered: A remnant of chiral symmetry is

preserved, but additional flavors, called“tastes”

are introduced. These vanish in the contin-

uum limit, but must be accounted for in typ-

ical simulations. (Also concern over the “4th

root trick.”)

Domain wall: Good chiral properties due to an

added dimension, but more expensive.
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Chiral Perturbation Theory

Operators are constructed out of the unitary

chiral matrix field Σ,

Σ = exp

[
2iφaλa

f

]
, (2)

where λa are proportional to the Gell-Mann

matrices with tr(λaλb) = δab, φa are the real

pseudoscalar-meson fields, and f is the meson

decay constant in the chiral limit.
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Leading order Strong Lagrangian

At leading order [O(p2)] in ChPT, the strong

Lagrangian is

L(2)
st =

f2

8
tr[∂µΣ∂µΣ] +

f2B0

4
tr[χ†Σ + Σ†χ],

(3)

where χ = (mu, md, ms)diag and

B0 =
m2

π+
mu+md

=
m2

K+
mu+ms

=
m2

K0
md+ms

.
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Strong Lagrangian at NLO

According to Gasser and Leutwyler, L(4)
st =

∑
LiO(st)

i . Here Li is defined

Li = Lr
i +

1

16π2

[
1

d− 4
+

1

2
(γE − 1− ln 4π)

]
Γi.

(4)
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Partially Quenched ChPT of Bernard and
Golterman

1) The valence quarks are quenched by intro-
ducing “ghost” quarks which have the same
mass and quantum numbers as the valence
quarks but opposite statistics.

2) Sea quarks are then introduced which can
appear in the loops.

3) In the partially quenched case, the chiral
field

Σ = exp

[
2iφaλa

f

]
, (5)

has φaλa replaced by a larger matrix,

Φ ≡
(

φ χ†
χ φ̃

)
. (6)
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Where does PQChPT get us?

1) The sea quarks generated in the configura-

tions can have different masses from the va-

lence quarks calculated in the propagator in-

versions.

2) Nsea can be arbitrary. When Nsea = 3 the

LEC’s take on the same values as in the full

theory.
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Extending to PQChPT

A general operator U is made up of products

of Σ and its partial derivatives

U =

(
A B
C D

)
, (7)

The transition to the partially quenched theory

is made by replacing φaλa by Φ, and replacing

the traces in the operators with supertraces,

defined as

str(U) = tr(A)− tr(D). (8)
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Staggered Chiral Perturbation Theory

Σ = σ2 = exp

[
2iΦ

f

]
, (9)

Φ =




U π+ K+

π− D K0

K− K
0

S


 , (10)

U =
∑16

a=1 UaTa, etc, with

Ta = {ξ5, iξµ5, iξµν, ξµ, ξI} (11)

Aubin and Bernard, hep-lat/0304014.
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Leading order staggered Lagrangian

L(2)
S =

f2

8
tr[∂µΣ∂µΣ] +

f2B0

4
tr[χ†Σ + Σ†χ]

+
2m2

0

3
(UI + DI + SI + ...)2 + a2V,

(12)

where

V =
∑

k

CkOk +
∑

k′
Ck′Ok′, (13)

are taste breaking operators.
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Staggered mass splittings
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Heavy light ChPT

L(2) = itrD[Havµ(δab∂µ + iV ba
µ )Hb]

+gπtrD(HaHbγ
νγ5Aba

ν ) + LSχPT ,

(14)

Vµ ≡ i

2
[σ†∂σ + σ∂µσ†], (15)

Aµ ≡ i

2
[σ†∂σ − σ∂µσ†]. (16)

19



Obtaining Vcb from B → Dlνl

dΓ

dw
=

G2
F

48π3
m3

D(mB + mD)2(w2 − 1)3/2

×|Vcb|2|FB→D(w)|2 (17)

where FB→D(w) = h+(w)− mB−mD
mB+mD

h−(w).
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Double ratio method

〈D|cγ0b|B〉〈B|bγ0c|D〉
〈D|cγ0c|D〉〈B|bγ0b|B〉 =

∣∣∣h+(1)
∣∣∣2 . (18)

h+(1) is constrained by heavy quark symmetry:

h+(1) = ηV


1− lP

(
1

2mc
− 1

2mb

)2

 ,

(19)
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Diagrams contributing to B → D(∗)

One-loop diagrams that contribute to B → D(∗). The
solid line represents a meson containing a heavy quark,
and the dashed line represents light mesons. The small
solid circles are strong vertices and contribute a factor
of gπ. The large solid square is a weak interaction ver-
tex. Diagram (a) is a vertex correction, and (b) and (c)
correspond to wavefunction renormalization.
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Staggered ChPT formula

h2+1
+ (1) = 1 + X+ +

g2
π

16π2f2

[
3

2
FπI + FKI +

1

6
FηI

+a2δ′V

(
m2

SV
−m2

πV

(m2
ηV
−m2

πV
)(m2

πV
−m2

η′
V

)
FπV

+
m2

ηV
−m2

SV

(m2
ηV
−m2

η′
V

)(m2
ηV
−m2

πV
)
FηV

+
m2

SV
−m2

η′
V

(m2
ηV
−m2

η′
V

)(m2
η′

V

−m2
πV

)
Fη′

V

)
+ (V → A)

]
,

(20)
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Chiral extrapolation for B → D
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top curve: fit to staggered ChPT
bottom curve: staggered ChPT with order a2 terms dropped
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Obtaining Vcb from B → D∗lνl

dΓ

dw
=

G2
F

4π3
m3

D∗(mB −mD∗)2
√

w2 − 1G(w)

×|Vcb|2|FB→D∗(w)|2 (21)

where G(w) is a kinematic factor and FB→D∗
is a nonperturbative matrix element.
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Calculating B → D∗

FB→D∗(1) = hA1
(1), (22)

〈D∗(v)|Aµ|B(v)〉 = i
√

2mB2mD∗ε′µhA1
(1).

(23)

hA1
(1) is constrained by heavy quark symmetry:

hA1
(1) = ηA

[
1− lV

(2mc)2
+

2lA

2mc2mb

− lP

(2mb)2

]

(24)
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Double ratio method

〈D∗|cγ4b|B∗〉〈B∗|bγ4c|D∗〉
〈D∗|cγ4c|D∗〉〈B∗|bγ4b|B∗〉 = |h1(1)|2 . (25)

〈D∗|cγjγ5b|B〉〈B∗|bγjγ5c|D〉
〈D∗|cγjγ5c|D〉〈B∗|bγjγ5b|B〉

=
∣∣ȟA1

(1)
∣∣2 . (26)

h1(1) and ȟA1
(1) are constrained by heavy quark sym-

metry:

h1(1) = ηV

[
1− lV

(
1

2mc
− 1

2mb

)2
]

,

ȟA1
(1) = η̌A

[
1− lA

(
1

2mc
− 1

2mb

)2
]

.

(27)
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Staggered ChPT formula

h2+1
A1

(1) = 1 + XA +
g2

π

48π2f2

[
3

2
F πI + F KI +

1

6
F ηI

+a2δ′V

(
m2

SV
−m2

πV

(m2
ηV
−m2

πV
)(m2

πV
−m2

η′
V

)
F πV

+
m2

ηV
−m2

SV

(m2
ηV
−m2

η′
V

)(m2
ηV
−m2

πV
)
F ηV

+
m2

SV
−m2

η′
V

(m2
ηV
−m2

η′
V

)(m2
η′

V

−m2
πV

)
F η′

V

)
+ (V → A)

]
,

(28)

where a is the lattice spacing, δ′V , gπ and XA are constants, and F
is a complicated function involving logs.
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Possible Chiral Extrapolation

for B → D∗
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Lower (upper) curves add to linear behavior the contri-
bution from chiral logs with gπ = 0.60 (gπ = 0.27). The
curves with the large cusp are continuum extrapolated
curves; the ones without the cusp include also staggered
effects.



Conclusion

1) Staggered quarks trade living with the fourth root
trick for speed. Good agreement with experiment is
found for all quantities so far, including predictions (not
“post-dictions”).

2) Staggered lattice calculations require staggered ChPT
because of taste-breaking. The ChPT necessary for
B → D(∗) has been done. In B → D, the extrapola-
tion is nearly linear, and the error is small. In B → D∗,
the effect is larger due to the “cusp”.

3) The lattice calculation of B → D∗ is underway, and
will lower the error on exclusive Vcb.
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