Quenched Scaling Study of Charm and Bottom Systems

with a Relativistic Heavy Quark Action

Y.Kuramashi (U.Tsukuba) for CP-PACS collaboration

October 3, 2005

\S **1.** Introduction

cutoff effects for $m_Q a \sim O(1)$

 $f_0(m_Q a), f_k(m_Q a)(a \wedge_{QCD})^k$ with $f_{0,k}(0) = \text{const.}$

the relativistic heavy quark action for $O(f_1(m_Q a) a \Lambda_{QCD})$ improvement

$$\mathcal{L}_{q}^{\mathsf{RHQ}} = m_{0}\bar{q}q + \bar{q}\gamma_{0}D_{0}q + \nu \sum_{i}\bar{q}\gamma_{i}D_{i}q - \frac{r_{t}a}{2}\bar{q}D_{0}^{2}q - \frac{r_{s}a}{2}\sum_{i}\bar{q}D_{i}^{2}q - \frac{iga}{2}\sum_{i}\bar{q}\sigma_{0i}F_{0i}q - \frac{iga}{4}c_{B}\sum_{i,j}\bar{q}\sigma_{ij}F_{ij}q,$$

obtained by extending Symanzik's impr. program to massive case r_t is redundant

 ν , r_s , c_E , c_B should be adjusted in a $m_Q a$ dependent way cf. r_t and r_s are redundant in Fermilab approach

what we have achieved so far

- propose the relativistic heavy quark action Prog. Theor. Phys. 109(2003)383
- perturbative determination of ν , r_s , c_B , c_E in the action Nucl. Phys. B697(2004)271
- perturbative improvement of the vector and axial vector currents Nucl. Phys. B689(2004)127

formulation is completed at least perturbatively

next step is a systematic scaling study of charm and bottom systems in quenched QCD

Plan of this talk

- \S **2.** Perturbative determination of impr. coeffs.
- \S **3.** Simulation details
- $\S{\textbf{4.}}$ Dispersion relation for heavy-heavy and heavy-light mesons
- $\S{\bf 5.}~c\overline{c}$ and $b\overline{b}$ spectra
- $\S{\mathbf{6.}}\ f_{D_s}$ and f_{B_s}

§7. $m_c^{\overline{\text{MS}}}$, $m_b^{\overline{\text{MS}}}$ from heavy-heavy and heavy-light AWI §8. Summary

$\S2.$ Perturbative determination of impr. coeffs. $\S2-1.$ Impr. coeffs. in the action at tree level

" \cdots on-shell quantities(particle energies, scattering amplitudes, normalized matrix elements of local composite fields between particle states etc.) \cdots " Lüscher-Sint-Sommer-Weisz, NPB478(1996)365

 ν , r_s , c_E , c_B can be determined by on-shell quark-quark scattering

continuum scattering amplitude should be reproduced massless case done by Wohlert to determine c_{SW}

on-shell improvement condition yields

$$\nu^{(0)} = \frac{\sinh(m_p^{(0)})}{m_p^{(0)}} \longrightarrow 1$$

$$r_s^{(0)} = \frac{\cosh(m_p^{(0)}) + r_t \sinh(m_p^{(0)})}{m_p^{(0)}} - \frac{\sinh(m_p^{(0)})}{m_p^{(0)^2}} \longrightarrow r_t$$

$$c_E^{(0)} = r_t \nu^{(0)} \longrightarrow r_t$$

$$c_B^{(0)} = r_s^{(0)} \longrightarrow r_t$$

points

- 4 parameters are uniquely determined
- r_t is not fixed —– consistent with redundancy
- reproduce correct SW quark action in the chiral limit
- also possible to determine $\nu^{(0)}$, $r_s^{(0)}$ from quark propagator

§2-2. $\nu(m_Q a, g)$, $r_s(m_Q a, g)$ at one-loop level quark self energy

up to one-loop level

$$S_q^{-1}(p,m) = i\gamma_0 \sin p_0 [1 - g^2 B_0(p,m)] + \nu i \sum_i \gamma_i \sin p_i [1 - g^2 B_i(p,m)] + m + 2r_t \sin^2 \left(\frac{p_0}{2}\right) + 2r_s \sum_i \sin^2 \left(\frac{p_i}{2}\right) - g^2 \widehat{C}(p,m)$$

 ν , r_s are determined by dispersion relation and spinor structure

 $u^{(1)}, r_s^{(1)}$ vanish for $m_p^{(0)} \to 0$ assures that $u \to 1, r_s \to r_t$ up to one-loop level

8

§2-3. c_B , c_E at one-loop level vertex corrections

infrared divergences are cancelled out after summation if and only if $\nu^{(0)}$, $r_s^{(0)}$, $c_B^{(0)}$, $c_E^{(0)}$ are properly tuned

$$c_B^{(1)}$$
, $c_E^{(1)}$ from quark-quark scattering

 $c_B^{(1)}$ is increased \longrightarrow hyperfine splitting will be enhanced

§2-4. Renorm. and impr. of the axial current improvement of A_0 for heavy-light case

$$A_0^{\text{latt},R}(x) = Z_{A_0}^{\text{latt}} \left[\bar{q}(x)\gamma_0\gamma_5 Q(x) - g^2 c_{A_0}^+ \partial_0^+ \{ \bar{q}(x)\gamma_5 Q(x) \} - g^2 c_{A_0}^- \partial_0^- \{ \bar{q}(x)\gamma_5 Q(x) \} + O(g^4) \right]$$

 $\partial_0^+ \{\bar{q}(x)\gamma_5 Q(x)\} = \bar{q}(x)\gamma_5 \{\partial_0 Q(x)\} + \{\partial_0 \bar{q}(x)\}\gamma_5 Q(x)$ $\partial_0^- \{\bar{q}(x)\gamma_5 Q(x)\} = \bar{q}(x)\gamma_5 \{\partial_0 Q(x)\} - \{\partial_0 \bar{q}(x)\}\gamma_5 Q(x)$

additional improvement coefficient $c_{A_0}^-$

general form of off-shell vertex function at one-loop level

$$\begin{split} & \wedge_{05}^{(1)}(p,q,m_{H},m_{L}) \\ &= \gamma_{0}\gamma_{5}F_{1}^{05} + \gamma_{0}\gamma_{5}\not{p}F_{2}^{05} + \not{q}\gamma_{0}\gamma_{5}F_{3}^{05} + \not{q}\gamma_{0}\gamma_{5}\not{p}F_{4}^{05} \\ &+ (p_{0}-q_{0}) \left[\gamma_{5}G_{1}^{05} + \gamma_{5}\not{p}G_{2}^{05} + \not{q}\gamma_{5}G_{3}^{05} + \not{q}\gamma_{5}\not{p}G_{4}^{05}\right] \\ &+ (p_{0}+q_{0}) \left[\gamma_{5}H_{1}^{05} + \gamma_{5}\not{p}H_{2}^{05} + \not{q}\gamma_{5}H_{3}^{05} + \not{q}\gamma_{5}\not{p}H_{4}^{05}\right] \\ &+ O(a^{2}) \end{split}$$

12

general form of off-shell vertex function at one-loop level

$$\begin{split} & \Lambda_{05}^{(1)}(p,q,m_H,m_L) \\ &= \gamma_0 \gamma_5 F_1^{05} + \gamma_0 \gamma_5 \not p F_2^{05} + \not q \gamma_0 \gamma_5 F_3^{05} + \not q \gamma_0 \gamma_5 \not p F_4^{05} \quad \Delta_{\gamma_0 \gamma_5} \text{ in } Z_{A_0} \\ &+ (p_0 - q_0) \left[\gamma_5 G_1^{05} + \gamma_5 \not p G_2^{05} + \not q \gamma_5 G_3^{05} + \not q \gamma_5 \not p G_4^{05} \right] \quad c_{A_0}^+ \\ &+ (p_0 + q_0) \left[\gamma_5 H_1^{05} + \gamma_5 \not p H_2^{05} + \not q \gamma_5 H_3^{05} + \not q \gamma_5 \not p H_4^{05} \right] \quad c_{A_0}^- \\ &+ O(a^2) \end{split}$$

with $pu(p) = im_H u(p)$, $\bar{u}(q) \not q = im_L \bar{u}(q)$

12-a

O(a) improvement of V_0 , V_k , A_0 , A_k is done for H-H and H-L cases

\S 3. Simulation details

light quarks

- clover with c_{SW}^{NP}
- 2 kappa to sandwich m_s determined by m_ϕ

heavy quarks

- RHQ(PT) with ν^{PT} vs. RHQ(NP) with ν^{NP}
- perturbative value for r_s
- $-c_{B/E} = \{c_{B/E}^{\mathsf{PT}}(m_Q a) c_{B/E}^{\mathsf{PT}}(0)\} + c_{\mathsf{SW}}^{\mathsf{NP}}$ $\rightarrow \text{ include nonperturbative contribution at } m_Q = 0$
- 6 kappa to cover m_c to m_b

axial vector currents

- perurbative renorm. factor and impr. coeffs.

remaing syst. errors in the heavy quark action except $O((a\Lambda_{QCD})^2)$

 $\frac{\text{RHQ(PT)}}{O(\alpha_s^2) \sim 5\% \text{ from } \nu^{\text{PT}} \sum_i \bar{q} \gamma_i D_i q}$ $\longrightarrow \text{ responsible for } M^{\text{pole}} M^{\text{kin}} \text{ difference}$

RHQ(NP)

 ν^{NP} is determined by adusting ν to satisfy $M_{hh}^{\text{pole}} = M_{hh}^{\text{kin}}$ $O(\alpha_s^2 a \Lambda_{\text{QCD}}) \sim 1\%$ from Wilson and clover terms \rightarrow negligible under current statistical errors

RHQ(NP) should show better scaling behavior

simulation parameters

- Iwasaki gauge action
- the scale is set by $r_0 = 0.5$ fm from CP-PACS, hep-lat/0408010
- -L = 1.8fm with $a(r_0)$
- $-\left| ec{p}
 ight| = 2\pi/L$, $\sqrt{2} imes 2\pi/L$

$L^3 \times T$	eta	a[fm]	a^{-1} [GeV]	#conf(PT)	#conf(NP)
$16^{3} \times 40$	2.5120	0.11250	1.7538	550	550
$20^{3} \times 48$	2.6606	0.09000	2.1922	480	480
$24^{3} \times 48$	2.7863	0.07500	2.6307	450	450
$32^{3} \times 64$	2.9939	0.05625	3.5076	420	0

RHQ(PT) and RHQ(NP) are studied on the same gauge configs.

$\S4$. Dispersion relation for HH and HL mesons

$$E^2 = m_{\text{pole}}^2 + c_{\text{eff}}^2 |\vec{p}|^2$$
 for PS meson RHQ(PT)

10%-15% deviation from 1 both for HH and HL cases

17

$\frac{\text{RHQ(NP)}}{\nu \text{ is determined to satisfy } c_{\text{eff}} = 1 \text{ for heavy-heavy PS meson}$

 $c_{\rm eff}$ for heavy-light PS meson is automatically tuned to be 1 expected from our formulation

§5. $c\overline{c}$ and $b\overline{b}$ spectra

exploratory study of $b\overline{b}$ spectra with RHQ charm and bottom quark masses are fixed by $M_{J/\Psi}$ and M_{Υ}

$2S+1L_J$	J^{PC}	$c\overline{c}$	mass[GeV]	$b\overline{b}$	mass[GeV]	operator
${}^{1}S_{0}$	0-+	η_c	2.980	η_b	_	$ar{q}\gamma_{5}q$
${}^{3}S_{1}$	$1^{}$	J/ψ	3.097	Υ	9.460	$ar q \gamma_i q$
${}^{1}P_{1}$	1^{+-}	h_c	—	h_b	_	$ar{q}\sigma_{ij}q$
${}^{3}P_{0}$	0++	χ_c 0	3.415	χ_{b} 0	9.860	$ar{q} \dot{q}$
${}^{3}P_{1}$	1^{++}	χ_{c} 1	3.511	χ_{b1}	9.893	$ar q \gamma_i \gamma_5 q$
		1 1 5				

 $\chi_{c2}(2^{++}), \chi_{b2}(2^{++})$ are omitted

Previous quenched scaling studies for $c\bar{c}$

- QCDTARO Collab., JHEP0308(2003)022
 - clover on isotropic lattice
 - nonperturbative c_{SW}
 - 4 β values with plaqutte gauge action
- CP-PACS Collab., PRD65(2002)094508
 - clover on anisotropic lattice
 - tadpole improved tree-level c_{SW}
 - anisotropic parameter $a_s/a_t = 3$
 - 4 β values with Iwasaki gauge action

compare scaling properties with clover results

Previous quenched scaling study for $b\overline{b}$

- Davies et al., PRD58(1998)054505
 - NRQCD on isotropic lattice
 - spin-dependent v^4 terms are included
 - tadpole-improved perturbative values for coeffs.
 - 3 β values with plaqutte gauge action

compared with NRQCD results as a benchmark in quenched QCD

results are converted to physical units by $a(r_0)$ taken from Necco-Sommer, NPB622(2002)328

mass splittings

1. orbital excitation: $\Delta M({}^{3}P_{1} - {}^{3}S_{1})$ not spin-avaraged $\Delta M(\chi_{c1} - J/\Psi) = 414 \text{MeV}$ $\Delta M(\chi_{b1} - \Upsilon) = 433 \text{MeV}$ used for determination of α_{s}

2. spin-orbit splitting:
$$\Delta M({}^{3}P_{1} - {}^{3}P_{0})$$

 $\Delta M(\chi_{c1} - \chi_{c0}) = 96 \text{MeV}$
 $\Delta M(\chi_{b1} - \chi_{b0}) = 33 \text{MeV}$

3. hyperfine splitting: $\Delta M({}^{3}S_{1} - {}^{1}S_{0})$ $\Delta M(J/\Psi - \eta_{c}) = 117 \text{MeV}$ η_{b} requires experimental confirmation

orbital excitation: $\Delta M({}^{3}P_{1} - {}^{3}S_{1})$

good scaling behavior consistent with NRQCD results for $b\overline{b}$

23

spin-orbit splitting: $\Delta M({}^{3}P_{1} - {}^{3}P_{0})$

large error for NRQCD scaling property is improved by RHQ(NP) for $b\overline{b}$

hyperfine splitting: $\Delta M(^{3}S_{1} - {}^{1}S_{0})$

better scaling behavior than NRQCD consistent with NRQCD results?

25

<u>comments</u>

- RHQ shows similar or better scaling behavior than NRQCD as far as the quantities we investigated
- scaling property is further improved by RHQ(NP)
- \bullet we also obtain good scaling behavior for $c\bar{c}$

§6. f_{D_s} and f_{B_s} fitting function: $\Phi_P = \sqrt{M_P} f_P = c_0 + c_1/m_p^{(0)} + c_2/m_p^{(0)^2} + c_3/K_l$

27

§7. $m_c^{\overline{\text{MS}}}$, $m_b^{\overline{\text{MS}}}$ from heavy-heavy and heavy-light AVVI <u>method</u>

• axial Ward identities input

$m_{D_s}\langle 0 A_0 D_s\rangle = (m_c + m_s)\langle 0 P D_s\rangle$	m_{D_s}
$m_{B_s}\langle 0 A_0 B_s\rangle = (m_b + m_s)\langle 0 P B_s\rangle$	m_{B_s}

$$\begin{array}{ll} m_{\eta_c} \langle 0|A_0|\eta_c \rangle = 2m_c \langle 0|P|\eta_c \rangle & m_{J/\psi} \\ m_{\eta_b} \langle 0|A_0|\eta_b \rangle = 2m_b \langle 0|P|\eta_b \rangle & m_{\Upsilon} \end{array}$$

- one-loop matching to MS quark mass Nucl. Phys. B689(2004)127
- m_s determined by m_ϕ

$$m_c^{\overline{\text{MS}}}(\mu = m_c^{\overline{\text{MS}}}) \text{ and } m_b^{\overline{\text{MS}}}(\mu = m_b^{\overline{\text{MS}}})$$

feasible to determine m_c , m_b directly from heavy-heavy and heavy-light meson pole masses

next task is nonperturbative determination of Z_A/Z_P

§8. Summary

• detailed scaling study in quenched QCD:

$$\mathcal{L}_{q}^{\mathsf{RHQ}} = m_{0}\bar{q}q + \bar{q}\gamma_{0}D_{0}q + \nu \sum_{i}\bar{q}\gamma_{i}D_{i}q - \frac{r_{t}a}{2}\bar{q}D_{0}^{2}q - \frac{r_{s}a}{2}\sum_{i}\bar{q}D_{i}^{2}q - \frac{iga}{2}\sum_{i}\bar{q}\sigma_{0i}F_{0i}q - \frac{iga}{4}c_{B}\sum_{i,j}\bar{q}\sigma_{ij}F_{ij}q,$$

we have studied RHQ(PT) with ν^{PT} and RHQ(NP) with ν^{NP} tadpole improved one-loop values for r_s , c_E , c_B

- good scaling behavior both for charm and bottom systems
- RHQ shows similar or better scaling behavior than NRQCD for $b\overline{b}$ spectra
- $m_c^{\overline{\text{MS}}}$, $m_b^{\overline{\text{MS}}}$ are determined directly from heavy-heavy and heavy-light spectra using AWI at one-loop level

next step

- renormalization and improvement of 4-fermi ops. (under way)
- nonperturbative determination of Z_A , Z_P
- repeat the calculation on 2+1 flavor gauge configs. of CP-PACS the same formulation from sea to heavy valence quarks