Computations of

All-to-all Propagators

Keisuke Jimmy Juge Carnegie Mellon University

TrinLat Collaboration Justin Foley (Swansea), Alan Ó Cais, Mike Peardon, Sinéad Ryan, Jon-Ivar Skullerud Trinity College Dublin hep-lat/0505023

- Introduction
- Exact All-to-all Propagator

Spectral Decomposition

• Stochastic Estimation

Noise-Dilution

• Hybrid Method

combine exact low eigenmodes and the stochastic method

- Some evidence that it works
- Multi-particle States
- Summary

Introduction

The need for all-to-all propagators

- Anticipating small number of very expensive full QCD configurations in the near future
 - want to get as much information as one can

from the expensive configurations

- point propagators would be a huge waste
- Flavour singlet physics

point propagators not sufficient

disconnected diagrams

• Better operators and the variational method

The Difficulties

• $N_x \times N_y \times N_z \times N_t \times N_{spin} \times N_{colour}$ inversions

typically more than a million quark inversions

• Stochastic Estimates

average over random sources \rightarrow *noisy*

• Spectral Decomposition

get a finite number of the low lying modes exactly

* exact but truncation

The Solution

• solve for low eigenmodes exactly and correct for the truncation using the noisy method (but quietly ... *dilution*)

Spectral Decomposition

The physics in the low lying modes

• A small number of the low lying modes solved exactly will capture much of the important physics (Bardeen *et al.*, SESAM, ...)

Hermitian Dirac Matrix $Q = \gamma_5 M$ Solve low-lying eigenvectors, $v^{(i)}(\vec{x},t)$, and their eigenvalues, λ_i

$$Qv^{(i)} = \lambda_i v^{(i)}$$

Truncated propagator = $\sum_{i}^{N_{ev}} \frac{1}{\lambda_i} v^{(i)}(\vec{x}, t) \otimes v^{(i)\dagger}(\vec{x}_0, t_0) \gamma_5$

brutal truncation

Stochastic Estimation

Average over many random samples on each configuration,

• create noise source $\eta^{(A)}(x)$

with $\langle\!\langle \eta^{(A)} \eta^{(B)\dagger} \rangle\!\rangle = \delta_{AB}$

- solution $\psi^{(A)}(\vec{x},t) = M^{-1}(\vec{x},t;\vec{x}_0,t_0)\eta^{(A)}(\vec{x}_0,t_0)$
- Quark propagator = $\langle\!\langle \psi^{(A)}(\vec{x},t) \otimes \eta^{(A)\dagger}(\vec{x}_0,t_0) \rangle\!\rangle$

Unbiased estimate of the all-to-all quark propagator with N_{st} samples of random noise sources

 \leftrightarrow but is noisy

(various methods of variance reduction C.Michael et al.,...)

Diluting the Noise

Dilute the random noise vector, η

$$\eta = \eta^{(1)} + \eta^{(2)} + \eta^{(3)} + \dots + \eta^{(N_d)}$$

where the vectors $\eta^{(i)}$'s are mostly zero. Solution is,

$$\psi = \psi^{(1)} + \psi^{(2)} + \psi^{(3)} + \dots + \psi^{(N_d)}$$

where $Q\psi^{(i)}=\eta^{(i)}$ The all-to-all quark propagator is then,

$$M^{-1}(\vec{x},t;\vec{x}_0,t_0)^{ab}_{mn} = \sum_{i}^{N_d} \psi^{a\ (i)}_m(\vec{x},t) \otimes \eta^{\dagger\ b\ (i)}_n(\vec{x}_0,t_0)\gamma_5$$

Examples of Dilutions

• Colour Dilution
$$N_{dil} = 3$$

 $\eta_s^c(\vec{x}, t) = \begin{vmatrix} \eta_0^0 & \eta_0^1 & \eta_0^2 \\ \eta_1^0 & \eta_1^1 & \eta_1^2 \\ \eta_2^0 & \eta_2^1 & \eta_2^2 \\ \eta_3^0 & \eta_3^1 & \eta_3^2 \end{vmatrix} \rightarrow$

$$\begin{vmatrix} \eta_0^0 & 0 & 0 \\ \eta_1^0 & 0 & 0 \\ \eta_1^0 & 0 & 0 \\ \eta_2^0 & 0 & 0 \\ \eta_3^0 & 0 & 0 \end{vmatrix} + \begin{vmatrix} 0 & \eta_1^1 & 0 \\ 0 & \eta_1^1 & 0 \\ 0 & \eta_2^1 & 0 \\ 0 & \eta_3^1 & 0 \end{vmatrix} + \begin{vmatrix} 0 & 0 & \eta_2^2 \\ 0 & 0 & \eta_2^2 \\ 0 & 0 & \eta_3^2 \end{vmatrix}$$
 $\eta^{(0)}(\vec{x}, t) + \eta^{(1)}(\vec{x}, t) + \eta^{(2)}(\vec{x}, t)$

• Time dilution $N_{dil} = N_t$

 $\eta^{(i)}$ have only nonzero entries on timeslice t=i

... like wall source on every timeslice (Fukugita et al.)

Example: Pion Correlator

• Time dilution $N_{dil} = N_t$

exponential error reduction for temporal correlations

• Colour dilution $N_{dil} = N_{colour} = 3$

 $\eta^{(i)}$ have only nonzero entries for colour index a=i (first example)

• Spin dilution
$$N_{dil} = N_{spin} = 4$$

can also do "even-odd" dilution $N_{dil} = 2$

• Space-Even-Odd dilution $N_{dil} = 2$, Cubic $N_{dil} = 8$, etc. etc.

Continue diluting . . .

\star homeopathic limit \equiv exact all-to-all propagator!

- If you choose the wrong dilution, then there will be little/no gain eg. diluting components that do not communicate with each other
- But if chosen wisely, one can get a large gain

variance from noise vectors can be effectively reduced to zero before reaching the "*homeopathic limit*"

Some comments ...

- the best dilution may depend on the application of interest (Wilcox, SESAM) ··· some tuning involved
- exploit $\eta=\eta^{(1)}+\eta^{(2)}$ and $\psi=\psi^{(1)}+\psi^{(2)}$ for further dilutions
- don't have to save all of the η 's (just the original random numbers)
- many entries are zero due to dilution
- for a "single displaced" meson operator ($ar{\psi}\gamma_5 \mathbf{D}_x\psi$)

 $2 \times N_c \times N_s = 24$ quark inversions already

for an $N_t = 12$ lattice, this is equal in cost to "time-dilution"

• effective mass vs fit, looks "funny"

 random noise on every timeslice makes "local measurements" look noisy

fit to exponential over many timeslices is not affected

Pion effective mass

Correcting the Truncation: The Hybrid Method

- Solved for N_{ev} lowest eigenmodes exactly
- Correct for the truncation with the "noisy" method
- Want to do this without losing the low modes

The truncation naturally divides the space of solutions, V, into two subspaces, V_0 and V_1 .

$$V = V_0 \oplus V_1$$

$$Q = \sum_{i}^{N_{ev}} \lambda_i \vec{v}^{(i)} \otimes \vec{v}^{(i)\dagger} + \sum_{N_{ev}+1}^{N} \lambda_i \vec{v}^{(i)} \otimes \vec{v}^{(i)\dagger}$$

$$= Q_0 + Q_1$$

Define $\bar{Q}_0 \equiv \sum_{i}^{N_{ev}} \frac{1}{\lambda_i} \vec{v}_i \otimes \vec{v}^{(i)\dagger}$ and $\bar{Q}_1 \equiv \sum_{N_{ev}+1}^{N} \frac{1}{\lambda_i} \vec{v}_i \otimes \vec{v}^{(i)\dagger}$, we have $Q^{-1} = \bar{Q}_0 + \bar{Q}_1$

... So we just need to calculate Q_1

Define the projection operators,

$$\mathcal{P}_0 = \sum_{i=1}^{N_{ev}} \vec{v}^{(i)} \otimes \vec{v}^{(i)} \dagger$$

$\mathcal{P}_0 + \mathcal{P}_1 = 1$	$\mathcal{P}_0\mathcal{P}_1=0$
$\mathcal{P}_0^2=\mathcal{P}_0$	$\mathcal{P}_1^2=\mathcal{P}_1$

By projecting the "noisy" sources onto V_1 with $\mathcal{P}_1\eta = (1 - \mathcal{P}_0)\eta$, we can correct for the truncation without introducing noise in the low modes.

In other words,

$$Q^{-1} = \bar{Q}_0 + \bar{Q}_1$$

= $\bar{Q}_0 + Q^{-1} \mathcal{P}_1$
= $\bar{Q}_0 + Q^{-1} \mathcal{P}_1 \langle\!\langle \eta \otimes \eta^\dagger \rangle\!\rangle$
= $\bar{Q}_0 + \langle\!\langle \psi \otimes \eta^\dagger \rangle\!\rangle$

where $\langle\!\langle \eta_i \otimes \eta_j^\dagger \rangle\!\rangle = \delta_{ij}$ and ψ is the solution to,

$$Q\psi = (\mathcal{P}_1\eta)$$
$$= (1 - \mathcal{P}_0)\eta$$

Note: If additional eigenvectors are computed at some later time, one can continue to project onto the reduced orthogonal subspace without re-doing all the inversions

PS

V

• Spectral Decomposition

$$G \simeq \sum_{i}^{N_{ev}} \frac{1}{\lambda_i} v^{(i)}(\vec{x}, t) \otimes v^{(i)\dagger}(\vec{x}_0, t_0) \gamma_5$$

• Noise Method

$$G \simeq \sum_{i}^{N_d} \psi^{(i)}(\vec{x}, t) \otimes \eta^{(i)\dagger}(\vec{x}_0, t_0) \gamma_5$$

One can naturally combine the two approaches by forming a long ('hybrid') list,

$$u^{(i)} = \left\{ v^{(1)}, v^{(2)}, \cdots, v^{(N_{ev})}, \psi^{(1)}, \psi^{(2)}, \cdots, \psi^{(N_{dil})} \right\}$$
$$w^{(i)} = \left\{ \frac{1}{\lambda_1} v^{(1)}, \frac{1}{\lambda_2} v^{(2)}, \cdots, \frac{1}{\lambda_{N_{ev}}} v^{(N_{ev})}, \eta^{(1)}, \eta^{(2)}, \cdots, \eta^{(N_{dil})} \right\}$$

The all-to-all quark propagator is then simply,

$$G = \sum_{i}^{N_{list}} u^{(i)}(\vec{x}, t) \otimes w^{(i)\dagger}(\vec{x}_0, t_0) \gamma_5$$

Meson Correlation Functions

$$\begin{split} C(t,t_0) &= \langle \bar{\Psi}_{[0]}(x,t)\gamma_x \Psi_{[1]}(x,t)\bar{\Psi}_{[1]}(x_0,t_0)\gamma_x \Psi_{[0]}(x_0,t_0) \rangle \\ &= \gamma_x G_{[0]}(x_0,t_0;x,t)\gamma_x G_{[1]}(x,t;x_0,t_0) \\ &= \gamma_x \sum_{i}^{N_{list}} u_{[0]}^{(i)}(\vec{x}_0,t_0) \otimes w_{[0]}^{(i)\dagger}(\vec{x},t)\gamma_5\gamma_x \sum_{j}^{N_{list}} u_{[1]}^{(j)}(\vec{x},t) \otimes w_{[1]}^{(j)\dagger}(\vec{x}_0,t_0)\gamma_5 \\ C(t,t_0;\vec{p}=0) &= \sum_{i}^{N_{list}} \sum_{j}^{N_{list}} \left\{ w_{[0]}^{(i)\dagger}(t)\gamma_5\gamma_x u_{[1]}^{(j)}(t) \right\} \left\{ w_{[1]}^{(j)\dagger}(t_0)\gamma_5\gamma_x u_{[0]}^{(i)}(t_0) \right\} \end{split}$$

General Two-Point Function

$$C_{AB}(t,t_0) = \sum_{i}^{N_{list}} \sum_{j}^{N_{list}} \left\{ w_{[0]}^{(i)\dagger}(t)\gamma_5 \Gamma u_{[1]}^{(j)(A)}(t) \right\} \left\{ w_{[1]}^{(j)(B)\dagger}(t_0)\gamma_5 \Gamma^{\dagger} u_{[0]}^{(i)}(t_0) \right\}$$

Disconnected pieces,

$$C_{disconn} = \sum_{j}^{N_{list}} \left\{ w_{[1]}^{(j)\dagger}(t) \gamma_5 \Gamma u_{[1]}^{(j)}(t) \right\} \sum_{i}^{N_{list}} \left\{ w_{[0]}^{(i)\dagger}(t_0) \gamma_5 \Gamma^{\dagger} u_{[0]}^{(i)}(t_0) \right\}$$

Simplify programming for user:

- user supplies function that performs " $\Gamma\psi$ "
- hide the hybrid list index contraction
- further simplification for mesons (later)

- stochastic method can correct for the truncation without ruining the exactly solved low eigenmodes
- depending on the problem, one can increase/decrease the number of the exactly solved modes (tunable)
- operator construction becomes much easier and more intuitive $(\bar{\psi}\Gamma\psi$ type construction)
- dilution will be needed to keep the noise level down recall that dilution method gives the exact all-to-all in a finite number of steps

Recipe

- 1 Determine some number of low lying eigenvalues and eigenmodes
- 2 Decide on the lowest level of dilution
- 3 Solve for all of the N_{dil} solutions $\{\psi^{(d)}\}$ in V_1
- 4 Construct the meson operator field, $w^{[i]\dagger}(\vec{x},t)\Gamma u^{[j]}(\vec{x},t)$ (for every symmetry channel and momenta of interest) compute and store $\Gamma u^{[j]}(\vec{x},t)$ to avoid recalculating this for all $w^{[i]}$
- 5 Make the desired correlation function through hybrid list matrix multipication

How well does it work?

Comparison with point propagators 75 configurations (Wilson action)

Static-light effective masses for S and P-waves. (Wilson action 75 configs, time-diluted: p-wave gap to less than 1%)

Fractional errors of the pion correlator (t = 3)

Fractional errors of the rho correlator (t = 3)

Multi-particle States (Operators)

Recall, (meson correlation functions)

$$C(t,t_0) = \sum_{i}^{N_{list}} \sum_{j}^{N_{list}} \left\{ w_{[0]}^{(i)\dagger}(t)\gamma_5 \Gamma u_{[1]}^{(j)}(t) \right\} \left\{ w_{[1]}^{(j)\dagger}(t_0)\gamma_5 \Gamma^{\dagger} u_{[0]}^{(i)}(t_0) \right\}$$

Save

$$\mathcal{M}_{[r,r']}(t)^{i,j} = w_{[r]}^{(i)\dagger}(t)\gamma_5\Gamma u_{[r']}^{(j)}(t)$$

on every timeslice.

Then constructing the correlation function becomes a simple multipication,

$$C(t, t_0) = \sum_{i,j} \mathcal{M}_{[r,r']}(t)^{i,j} \mathcal{M}_{[r',r]}(t_0)^{j,i}$$

Multi-particle states can be built up in the same way,

$$\sum_{ijk} [\mathcal{M}_{[r_1,r_2]}^{c\bar{c}g}(t_0)]^{i,j} \times [\mathcal{M}_{[r_3,r_1]}^D(x,t)]^{k,i} \times [\mathcal{M}_{[r_2,r_3]}^{\bar{D}^*}(y,t)]^{j,k}$$

with the appropriate momentum projection.

Glueballs and Isoscalars

Non-zero matrix element $\left< ar{\psi} \psi | glueball \right>$ (A. O'Cais Lattice 2005)

Summary

- No more "point quark propagators"!
- for light quarks, exact low eigenmodes are important solve "a few" exactly
- correct for the truncation with stochastic method

Dilution method has zero variance in the homeopathic limit (expect small variance if dilution is chosen appropriately)

- Hybrid List allows a natural way to combine the methods
 # of exact modes and # of dilutions can be tuned
- variational methods with different operators

- multi-particle states are easy to accomodate (variational methods)
- once the hybrid list mechanism is coded, the end-user never has to worry about it
- a lot of physics that was difficult/impossible to access should now be easier/possible!
- one cannot lose except for diskspace