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Introduction

The need for all-to-all propagators

• Anticipating small number of very expensive full QCD configura-

tions in the near future

− want to get as much information as one can

from the expensive configurations

− point propagators would be a huge waste

• Flavour singlet physics

point propagators not sufficient

disconnected diagrams

• Better operators and the variational method
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The Difficulties

• Nx ×Ny ×Nz ×Nt ×Nspin ×Ncolour inversions

typically more than a million quark inversions

• Stochastic Estimates

average over random sources → noisy

• Spectral Decomposition

get a finite number of the low lying modes exactly

⋆ exact but truncation

The Solution

• solve for low eigenmodes exactly and correct for the truncation

using the noisy method (but quietly ... dilution)
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Spectral Decomposition

The physics in the low lying modes

• A small number of the low lying modes solved exactly will capture

much of the important physics (Bardeen et al. , SESAM, ...)

Hermitian Dirac Matrix Q = γ5M

Solve low-lying eigenvectors, v(i)(~x, t), and their eigenvalues, λi

Qv(i) = λiv
(i)

Truncated propagator =
∑Nev

i
1
λi

v(i)(~x, t) ⊗ v(i)†(~x0, t0)γ5

brutal truncation
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Stochastic Estimation

Average over many random samples on each configuration,

• create noise source η(A)(x)

with 〈〈η(A)η(B)†〉〉 = δAB

• solution ψ(A)(~x, t) = M−1(~x, t; ~x0, t0)η
(A)(~x0, t0)

• Quark propagator = 〈〈ψ(A)(~x, t) ⊗ η(A)†(~x0, t0)〉〉

Unbiased estimate of the all-to-all quark propagator with Nst samples

of random noise sources

↔ but is noisy

(various methods of variance reduction C.Michael et al. ,...)
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Diluting the Noise

Dilute the random noise vector, η

η = η(1) + η(2) + η(3) + · · · + η(Nd)

where the vectors η(i)’s are mostly zero. Solution is,

ψ = ψ(1) + ψ(2) + ψ(3) + · · · + ψ(Nd)

where Qψ(i) = η(i) The all-to-all quark propagator is then,

M−1(~x, t; ~x0, t0)
ab
mn =

Nd
∑

i

ψa (i)
m (~x, t) ⊗ η† b (i)

n (~x0, t0)γ5
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Examples of Dilutions

• Colour Dilution Ndil = 3

ηc
s(~x, t) =

η0
0 η1

0 η2
0

η0
1 η1

1 η2
1

η0
2 η1

2 η2
2

η0
3 η1

3 η2
3

→

η0
0 0 0

η0
1 0 0

η0
2 0 0

η0
3 0 0

+

0 η1
0 0

0 η1
1 0

0 η1
2 0

0 η1
3 0

+

0 0 η2
0

0 0 η2
1

0 0 η2
2

0 0 η2
3

η(0)(~x, t) + η(1)(~x, t) + η(2)(~x, t)
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• Time dilution Ndil = Nt

η(i) have only nonzero entries on timeslice t = i

... like wall source on every timeslice (Fukugita et al. )

Example: Pion Correlator
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• Time dilution Ndil = Nt

exponential error reduction for temporal correlations

• Colour dilution Ndil = Ncolour = 3

η(i) have only nonzero entries for colour index a = i

(first example)

• Spin dilution Ndil = Nspin = 4

can also do “even-odd” dilution Ndil = 2

• Space-Even-Odd dilution Ndil = 2, Cubic Ndil = 8, etc. etc.

Continue diluting . . .

⋆ homeopathic limit ≡ exact all-to-all propagator!
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• If you choose the wrong dilution, then there will be little/no gain

eg. diluting components that do not communicate with each other

• But if chosen wisely, one can get a large gain

variance from noise vectors can be effectively reduced to

zero before reaching the “homeopathic limit”

0 N
max

N
dilution

er
ro

r

1/√N
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Some comments ...

• the best dilution may depend on the application of interest (Wilcox,

SESAM) · · · some tuning involved

• exploit η = η(1) + η(2) and ψ = ψ(1) + ψ(2) for further dilutions

• don’t have to save all of the η’s (just the original random numbers)

• many entries are zero due to dilution

• for a “single displaced” meson operator (ψ̄γ5Dxψ)

2 ×Nc ×Ns = 24 quark inversions already

for an Nt = 12 lattice, this is equal in cost to “time-dilution”

• effective mass vs fit, looks “funny”
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• random noise on every timeslice makes “local measurements” look

noisy

fit to exponential over many timeslices is not affected

Pion effective mass
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Correcting the Truncation: The Hybrid Method

• Solved for Nev lowest eigenmodes exactly

• Correct for the truncation with the “noisy” method

• Want to do this without losing the low modes

The truncation naturally divides the space of solutions, V , into two

subspaces, V0 and V1.

V = V0 ⊕ V1

Q =

Nev
∑

i

λi~v
(i) ⊗ ~v(i)† +

N
∑

Nev+1

λi~v
(i) ⊗ ~v(i)†

= Q0 +Q1
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Define Q̄0 ≡
∑Nev

i
1
λi

~vi ⊗ ~v(i)† and Q̄1 ≡
∑N

Nev+1
1
λi

~vi ⊗ ~v(i)†,

we have Q−1 = Q̄0 + Q̄1

... So we just need to calculate Q̄1

Define the projection operators,

P0 =
Nev
∑

i=1

~v(i) ⊗ ~v(i) †

P0 + P1 = 1 P0P1 = 0

P2
0 = P0 P2

1 = P1

By projecting the “noisy” sources onto V1 with P1η = (1 − P0)η,

we can correct for the truncation without introducing noise in the low

modes.
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In other words,

Q−1 = Q̄0 + Q̄1

= Q̄0 +Q−1P1

= Q̄0 +Q−1P1〈〈η ⊗ η†〉〉

= Q̄0 + 〈〈ψ ⊗ η†〉〉

where 〈〈ηi ⊗ η†j〉〉 = δij and ψ is the solution to,

Qψ = (P1η)

= (1 − P0)η

Note: If additional eigenvectors are computed at some later time, one

can continue to project onto the reduced orthogonal subspace without

re-doing all the inversions
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V
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Hybrid List Method

• Spectral Decomposition

G ≃
∑Nev

i
1
λi

v(i)(~x, t) ⊗ v(i)†(~x0, t0)γ5

• Noise Method

G ≃
∑Nd

i ψ(i)(~x, t) ⊗ η(i)†(~x0, t0)γ5

One can naturally combine the two approaches by forming

a long (‘hybrid’) list,

u(i) =
{

v(1), v(2), · · · , v(Nev), ψ(1), ψ(2), · · · , ψ(Ndil)
}

w(i) =

{

1

λ1

v(1),
1

λ2

v(2), · · · ,
1

λNev

v(Nev), η(1), η(2), · · · , η(Ndil)

}
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The all-to-all quark propagator is then simply,

G =

Nlist
∑

i

u(i)(~x, t) ⊗ w(i)†(~x0, t0)γ5

Meson Correlation Functions

C(t, t0) = 〈Ψ̄[0](x, t)γxΨ[1](x, t)Ψ̄[1](x0, t0)γxΨ[0](x0, t0)〉

= γxG[0](x0, t0;x, t)γxG[1](x, t;x0, t0)

= γx

Nlist
∑

i

u
(i)
[0](~x0, t0)⊗w

(i)†
[0] (~x, t)γ5γx

Nlist
∑

j

u
(j)
[1] (~x, t)⊗w

(j)†
[1] (~x0, t0)γ5

C(t, t0; ~p = 0) =

Nlist
∑

i

Nlist
∑

j

{

w
(i)†
[0] (t)γ5γxu

(j)
[1] (t)

}{

w
(j)†
[1] (t0)γ5γxu

(i)
[0](t0)

}
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General Two-Point Function

CAB(t, t0) =

Nlist
∑

i

Nlist
∑

j

{

w
(i)†
[0] (t)γ5Γu

(j)(A)
[1] (t)

}{

w
(j)(B)†
[1] (t0)γ5Γ

†u
(i)
[0](t0)

}

Disconnected pieces,

Cdisconn =

Nlist
∑

j

{

w
(j)†
[1] (t)γ5Γu

(j)
[1] (t)

}

Nlist
∑

i

{

w
(i)†
[0] (t0)γ5Γ

†u
(i)
[0](t0)

}

Simplify programming for user:

• user supplies function that performs “Γψ”

• hide the hybrid list index contraction

• further simplification for mesons (later)
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• stochastic method can correct for the truncation without ruining the

exactly solved low eigenmodes

• depending on the problem, one can increase/decrease the number

of the exaclty solved modes (tunable)

• operator construction becomes much easier and more intuitive

(ψ̄Γψ type construction)

• dilution will be needed to keep the noise level down

recall that dilution method gives the exact all-to-all

in a finite number of steps
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Recipe

1 Determine some number of low lying eigenvalues and eigenmodes

2 Decide on the lowest level of dilution

3 Solve for all of the Ndil solutions {ψ(d)} in V1

4 Construct the meson operator field, w[i]†(~x, t)Γu[j](~x, t)

(for every symmetry channel and momenta of interest)

compute and store Γu[j](~x, t) to avoid recalculating this for

all w[i]

5 Make the desired correlation function through hybrid list matrix

multipication
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How well does it work?
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J/ψ and ηc’s
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Multi-particle States (Operators)

Recall, (meson correlation functions)

C(t, t0) =

Nlist
∑

i

Nlist
∑

j

{

w
(i)†
[0] (t)γ5Γu

(j)
[1] (t)

}{

w
(j)†
[1] (t0)γ5Γ

†u
(i)
[0](t0)

}

Save

M[r,r′](t)
i,j = w

(i)†
[r] (t)γ5Γu

(j)
[r′](t)

on every timeslice.

Then constructing the correlation function becomes a simple multipi-

cation,

C(t, t0) =
∑

i,j

M[r,r′](t)
i,jM[r′,r](t0)

j,i
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Multi-particle states can be built up in the same way,
∑

ijk

[Mcc̄g

[r1,r2]
(t0)]

i,j × [MD
[r3,r1]

(x, t)]k,i × [MD̄∗

[r2,r3]
(y, t)]j,k

with the appropriate momentum projection.

ψ
[1]

η
+

[1](x,t) (z,0)x

t=0

tD D *

Hybrid Operator

ψ x η+
[2] [2]

ψ x η+
[3] [3]

ψ
[3]

x η+
[3]

(z,0) (y,t)

(x,t)

(z,0)

(x,t) (y,t)

(y,t)

(w,s)

(w,s)

(w,s)
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Glueballs and Isoscalars

Non-zero matrix element
〈

ψ̄ψ|glueball
〉

(A. O’Cais Lattice 2005)
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Summary

• No more “point quark propagators”!

• for light quarks, exact low eigenmodes are important

solve “a few” exactly

• correct for the truncation with stochastic method

Dilution method has zero variance in the homeopathic limit

(expect small variance if dilution is chosen appropriately)

• Hybrid List allows a natural way to combine the methods

# of exact modes and # of dilutions can be tuned

• variational methods with different operators
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• multi-particle states are easy to accomodate (variational methods)

• once the hybrid list mechanism is coded, the end-user never has

to worry about it

• a lot of physics that was difficult/impossible to access should now

be easier/possible!

• one cannot lose .... except for diskspace

October 2005 3
rd Int’l Lattice Field Theory Network Workshop Page 37


