Lattice QCD study of Radiative Transitions in Charmonium

(with a little help from the quark model)

Jo Dudek, Jefferson Lab

with Robert Edwards & David Richards

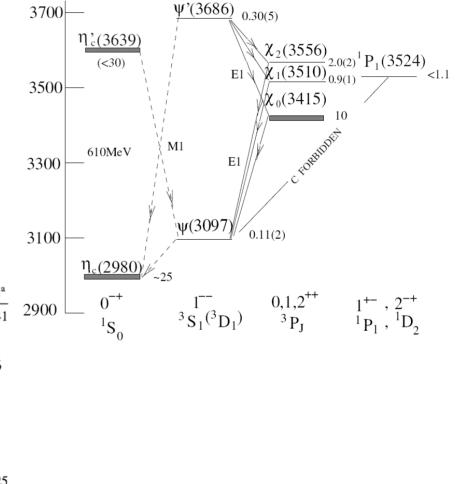
Charmonium spectrum & radiative transitions

most charmonium states below $Dar{D}$ threshold have measured radiative transitions to a lighter charmonium state

transitions are typically *E1* or *M1* multipoles, although transitions involving χ_{c1}, χ_{c2} also admit *M2* & *E3*, whose amplitude is measured through angular distributions

 these transitions are described reasonably well in quark potential

models		γ energy	Partial width (keV)		
Eichten, Lane & Ouigg PRL.89:162002,2002	Transition	k (MeV)	Computed	Measured ^a	
	$\psi \xrightarrow{\text{M1}}_{\text{E1}} \eta_c \gamma$ $\chi_{c0} \xrightarrow{\text{E1}} J/\psi \gamma$	115	1.92	1.13 ± 0.41	290
	$\chi_{c0} \xrightarrow{E1} J/\psi\gamma$	303	120 (105) ^b	98 ± 43	
	$\chi_{c0} \stackrel{\text{E1}}{\underset{\text{E1}}{\longrightarrow}} J/\psi\gamma$ $\chi_{c1} \stackrel{\text{E1}}{\underset{\text{E1}}{\longrightarrow}} J/\psi\gamma$	390	242 (215) ^b	240 ± 51	
	$\chi_{c2} \xrightarrow{\mathrm{E1}}_{\mathrm{E1}} J/\psi\gamma$	429	315 (289) ^b	270 ± 46	
	$n_c \rightarrow \eta_c \gamma$	504	482		
	$\eta_c' \stackrel{\text{EI}}{\longrightarrow} h_c \gamma$	126	51		
	$\psi' \xrightarrow{\text{EI}}_{\text{E1}} \chi_{c2} \gamma$	128	29 (25) ^b	22 ± 5	
	$\psi' \xrightarrow{\mathrm{EI}}_{\mathrm{EI}} \chi_{c1} \gamma$	171	41 (31) ^b	24 ± 5	
	$\psi' \stackrel{\text{EI}}{\longrightarrow} \chi_{c0} \gamma$	261	46 (38) ^b	26 ± 5	
	$\psi' \stackrel{\text{MI}}{\longrightarrow} \eta'_c \gamma$	32	0.04		
	$\psi' \stackrel{\text{MI}}{\rightarrow} \eta_c \gamma$	638	0.91	0.75 ± 0.25	
			Jo D	udek, Jeffe	erso



Simulation details

anisotropic Wilson gauge action

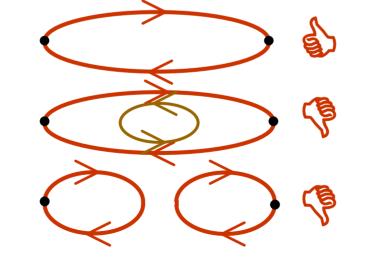
$$\xi = \frac{a_s}{a_t} = 3.0$$
 $\beta = 6.1$
 $a_s \sim 0.1 \text{fm}$ $12^3 \times 48$

domain wall fermions for charm quark propagators

$$M = 1.7 \quad L_5 = 16$$

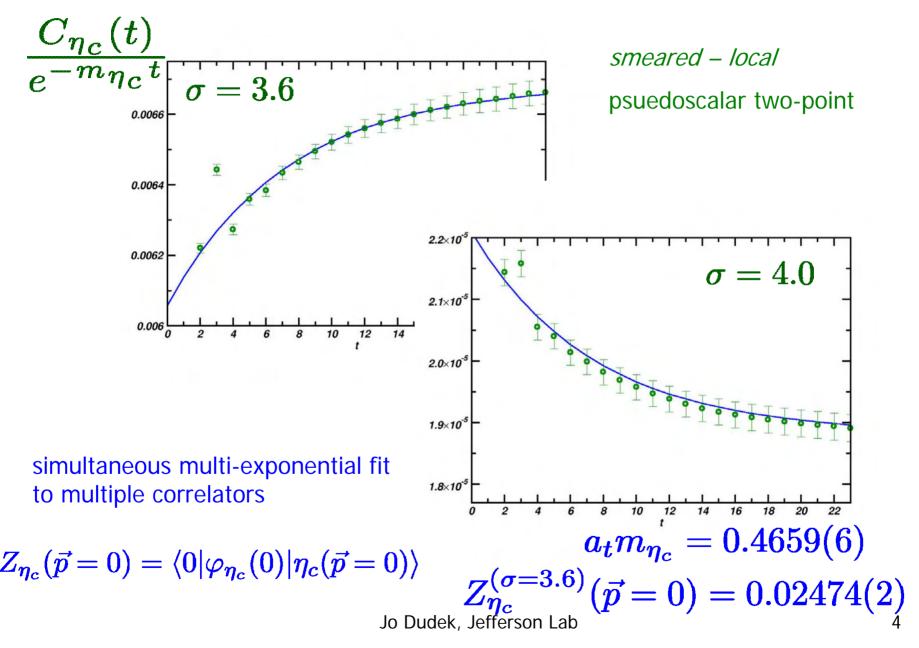
quenched approximation & no disconnected diagrams

e.g. two-point



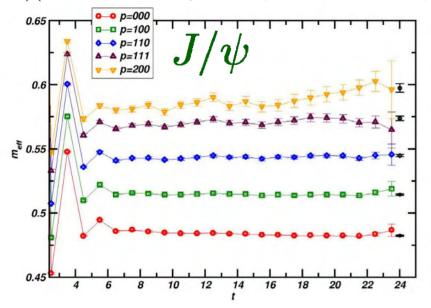
Jo Dudek, Jefferson Lab

Smearing & two-point fits

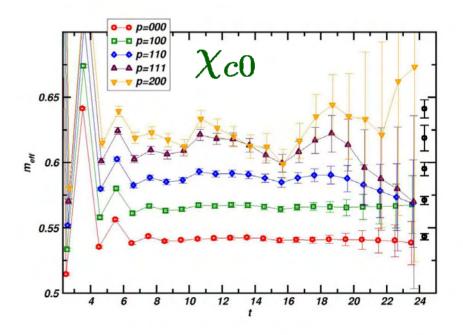


Smeared-local two-point functions

Require early-time plateau in two-points for good three-points



 $\sigma = 3.6$ smeared – local



Scale setting & the spectrum

Sommer scale and 1P-1S produce compatible lattice spacings $\implies a_t^{-1} = 6.05(1) \text{GeV}$ $m_{n_c} = 2819(7) \text{MeV}$

 $m_{\eta_c}(\text{PDG}) = 2980(1) \text{MeV}$

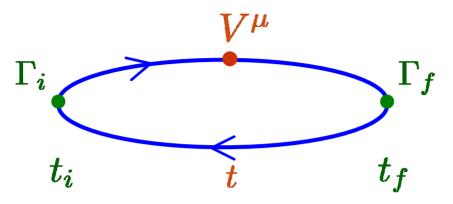
we didn't tune our charm quark 'mass'-parameter very accurately – our whole charmonium spectrum is too light

	lat.	PDG	diff.				
η_c	2819(7)	2980(1)	161(7)				
J/ψ	2917(7)	3097	180(7)				
χ_{c0}	3288(15)	3415	127(15)	small residual differences			
χ_{c1}	3401(29)	3511	110(29)	from discretisation, quenching & lack of			
h_c	3351(19)	3526	175(19)	disconnected			
$\overline{\delta m} = \overline{151}$							

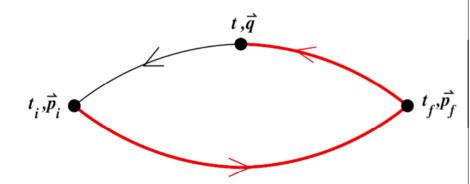
Jo Dudek, Jefferson Lab

Three-point functions

radiative transitions involve the insertion of a vector current to a quark-line



computation of this correlator is by the sequential-source method:



red line is one propagator – new calcⁿ for each new $\Gamma_{f}, ec{p}_{f}$

used local vector current (hence not-conserved) $ar{\psi}_x \gamma^\mu \psi_x$ gets renormalised multiplicatively $\langle f | V^\mu | i
angle_{
m cont.} = Z_V(a) \langle f | V^\mu | i
angle_{
m lat.(a)}$

'Fit' method for three-point functions

 $\langle \varphi_{\eta_c}^{\dagger}(t_f) V^{\mu}(t) \varphi_{\eta_c}(t_i) \rangle$ $= \sum_{N,M} \frac{1}{4E_N E_M} \langle 0 | \varphi_{\eta_c}^{\dagger}(t_f) | N \rangle \langle N | V^{\mu}(t) | M \rangle \langle M | \varphi_{\eta_c}(t_i) | 0 \rangle$ $\rightarrow \frac{e^{-(t_f - t)E_f} e^{-(t - t_i)E_i}}{4E_i E_f} Z_{\eta_c}^{*}(p_f) Z_{\eta_c}(p_i) \langle \eta_c(p_f) | V^{\mu}(0) | \eta_c(p_i) \rangle$ $\bigstar Z(p), E(p) \text{ are extracted from the two-point function fits}$

 $\star \langle \eta_c(p_f) | V^\mu(0) | \eta_c(p_i) \rangle$ is what we intend to extract

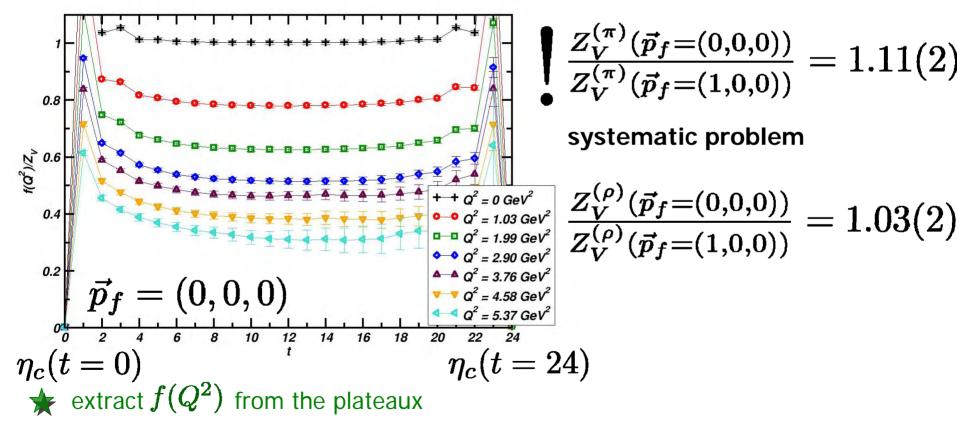
*

alternative 'ratio' method is less simple to implement when we have multiple form-factors (multipoles)

η_c form-factor & setting Z_V

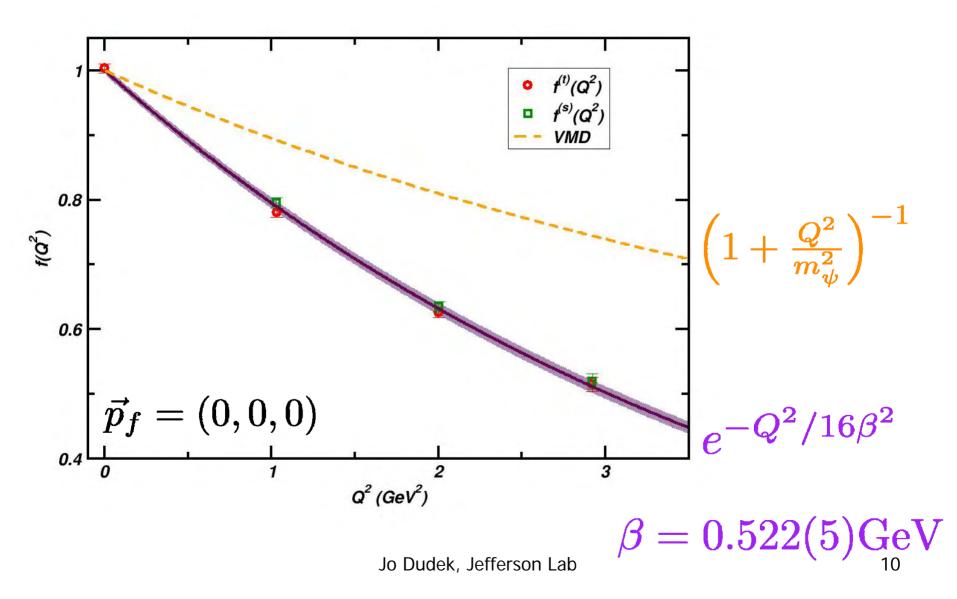
true η_c has no electromagnetic form-factor by charge conjugation invariance - at quark level by coupling to $c \& \bar{c}$ - non-zero if just couple to c

 $\langle \eta_c(\vec{p}_f) \mid V^{\mu}(0) \mid \eta_c(\vec{p}_i) \rangle = f(Q^2)(p_f^{\mu} + p_i^{\mu})$



η_c form-factor

ϵ plot as a function of Q^2



$$J/\psi
ightarrow \gamma \eta_c$$
 transition

transitions between different states are no more difficult

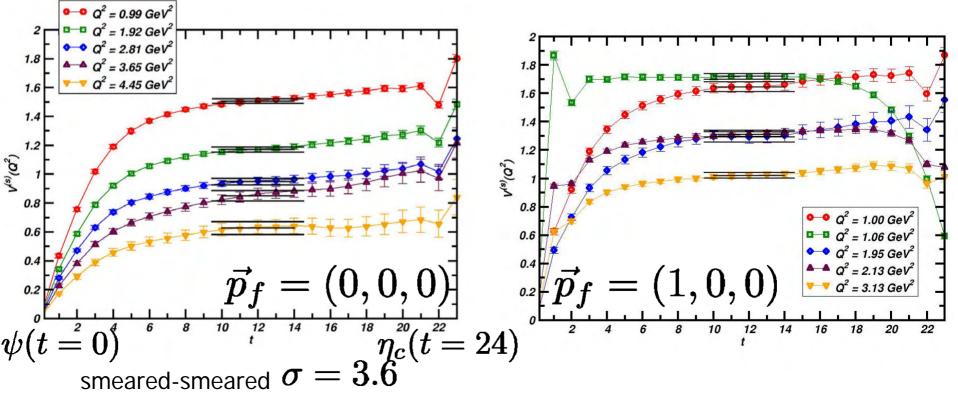
 $\langle arphi_{\eta_c}^\dagger(t_f) \, V^\mu(t) \, \Omega^
u_\psi(t_i)
angle$

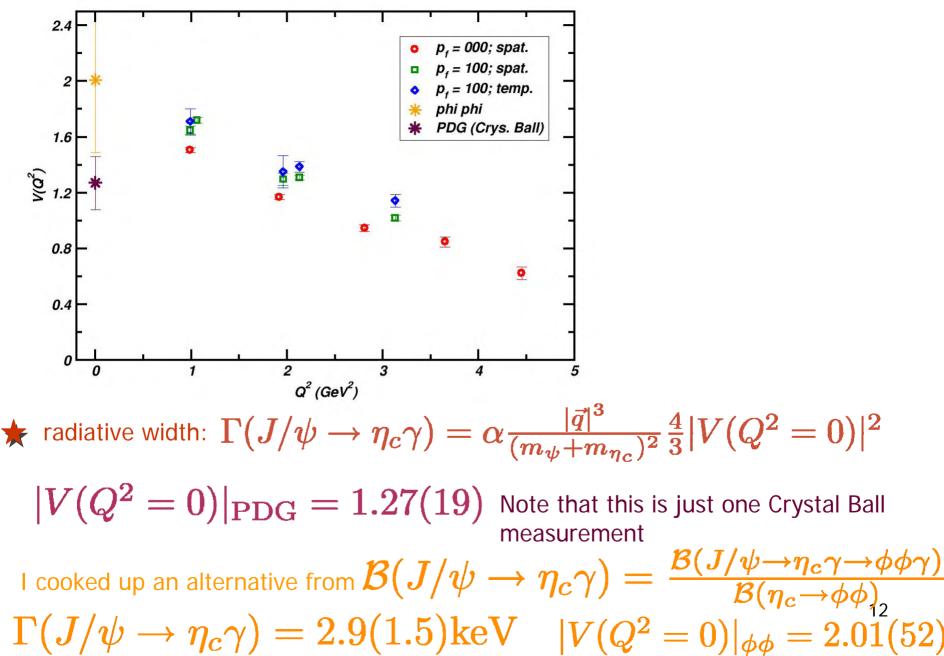
 J/ψ has a polarisation

decomposition in terms of one form-factor

 $\langle \eta_c(ec{p_f}) \mid V^{\mu}(0) \mid \psi(ec{p_i},r)
angle =$

$$+ rac{2V(Q^2)}{m_{\eta_c} + m_\psi} \epsilon^{\mulphaeta\gamma} p^{lpha}_f p^{eta}_i \epsilon^{\gamma}(ec{p_i},r)$$





 $J/\psi
ightarrow \gamma \eta_c$ transition

F how do we extrapolate back to $Q^2=0$?

- take advice from the non-rel quark-model:

this is an *M1* transition which proceeds by quark spin-flip

$$ec{V}\sim rac{ec{q}ec{q}}{m_c}ec{\sigma}~j_0(ec{q}ec{r})$$

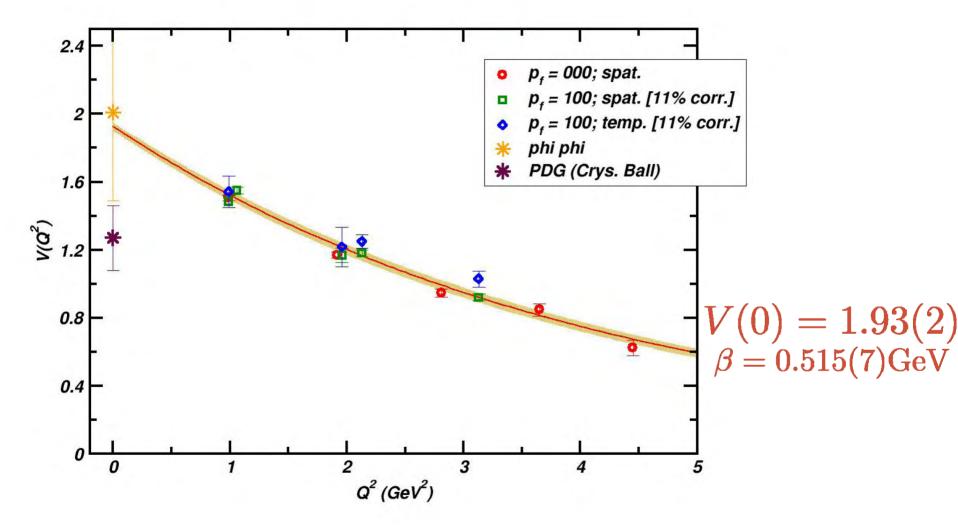
convoluting with Gaussian wavefunctions one obtains

$$V(Q^2) = V(0)e^{-Q^2/16\beta^2}$$

igstarrow we can fit our lattice points with this form to obtain V(0) and eta

$J/\psi ightarrow \gamma \eta_c$ transition

we have a clue about the systematic difference: scaling of $ec{p}_f = (1,0,0)$ by 1.11



 \bigstar at $Q^2=0$, there are only transverse photons and this transition has only one multipole – $\it E1$

with non-zero Q^2 , longitudinal photons provide access to a second: ${\it C1}$

multipole decomposition:

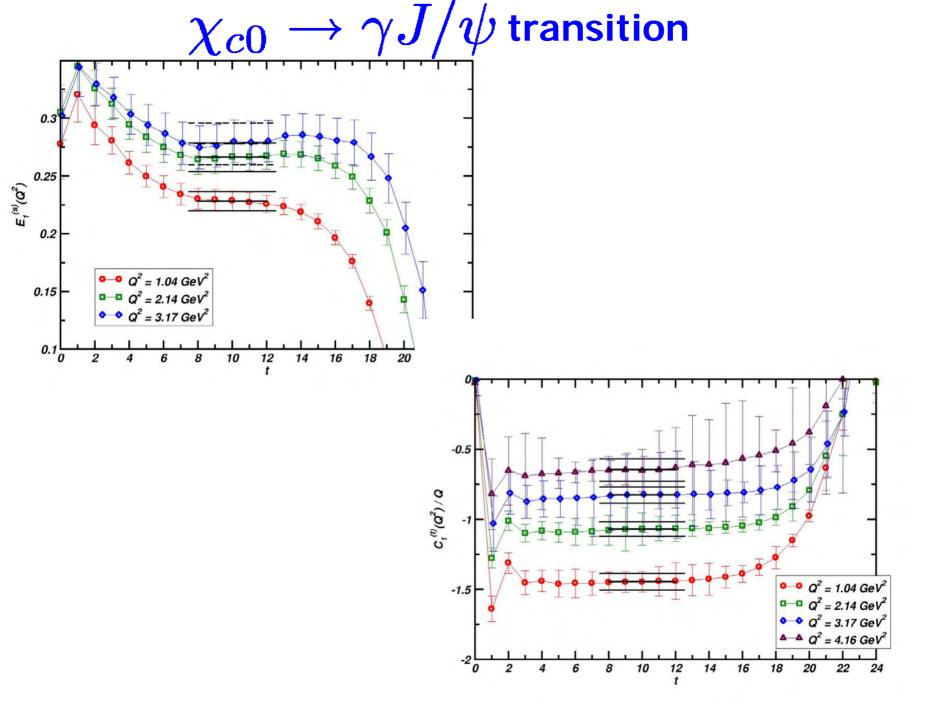
$$egin{aligned} &\langle \chi_{c0}(ec{p}_S)|V^\mu(0)|\psi(ec{p}_V,\lambda)
angle = \ &E_1(Q^2)\left[\epsilon^\mu(ec{p}_V,\lambda)-rac{\epsilon.p_S}{(p_V.p_S)^2-m_V^2m_S^2}m_V^2p_{Slpha}\mathcal{P}^{\mulpha}(p_V)
ight]+ \ &rac{C_1(Q^2)}{\sqrt{Q^2}}rac{m_V\epsilon.p_S}{(p_V.p_S)^2-m_V^2m_S^2}\left[m_V^2p_{Slpha}\mathcal{P}^{\mulpha}(p_V)+m_S^2p_{Vlpha}\mathcal{P}^{\mulpha}(p_S)
ight] \end{aligned}$$

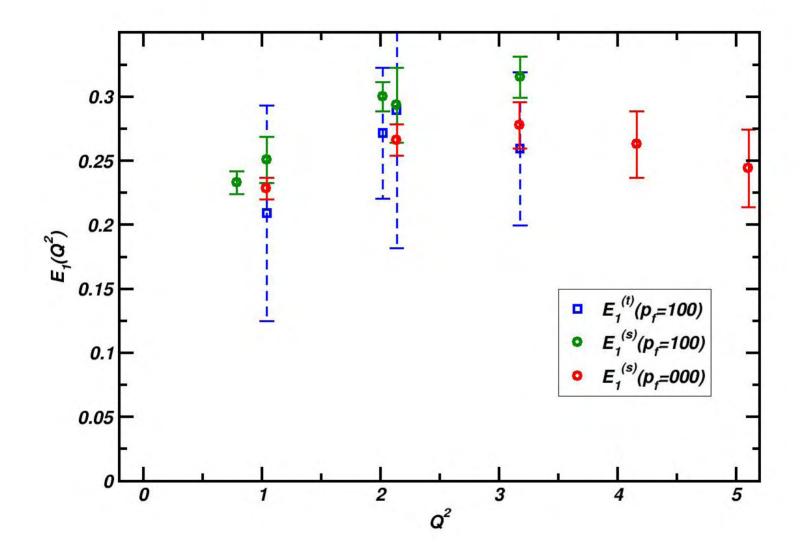
★ three-point function $\Gamma^{\mu\nu}(t_f, t, t_i; \vec{p}_f, \vec{p}_i) = \langle \phi^{\dagger}_{\chi_{c0}}(t_f, \vec{p}_f) V^{\mu}(t) \Omega^{\nu}_{\psi}(t_i, \vec{p}_i) \rangle$ ★ several different $\vec{p}_f, \vec{p}_i, \mu, \nu$ combinations have the same Q^2 value

$$\begin{bmatrix} \Gamma^{11} \\ \Gamma^{12} \\ \Gamma^{13} \\ \vdots \end{bmatrix} = \begin{pmatrix} K_E^{11} & K_C^{11} \\ K_E^{12} & K_C^{12} \\ K_E^{13} & K_C^{13} \\ \vdots & \vdots \end{pmatrix} \begin{bmatrix} E_1(Q^2) \\ C_1(Q^2) \\ C_1(Q^2) \end{bmatrix}$$

 $K_{E,C}^{\mu\nu}$ are known functions

do the inversion to obtain the multipole form-factors





 \star we'll again constrain our $Q^2
ightarrow 0$ extrapolation using a quark model form

this is an *E1* transition which proceeds by the electric-dipole moment

 $ec{V}\simec{r}\,j_1(ec{q}ec{r})$

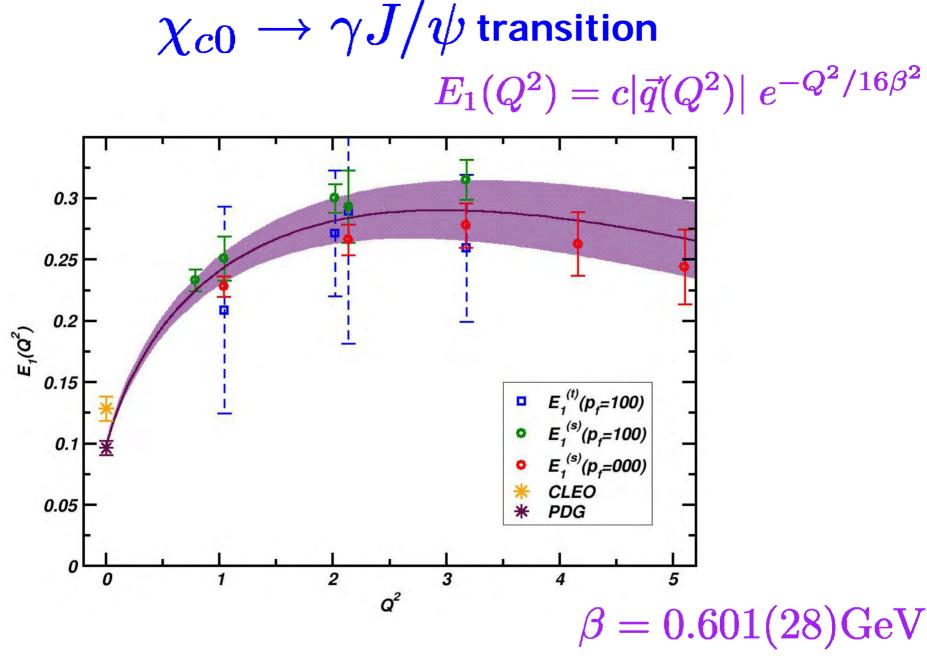
convoluting with Gaussian wavefunctions one obtains

$$E_1(Q^2) = c |\vec{q}(Q^2)| e^{-Q^2/16\beta^2}$$

where the photon 3-momentum at virtuality Q^2 is given by

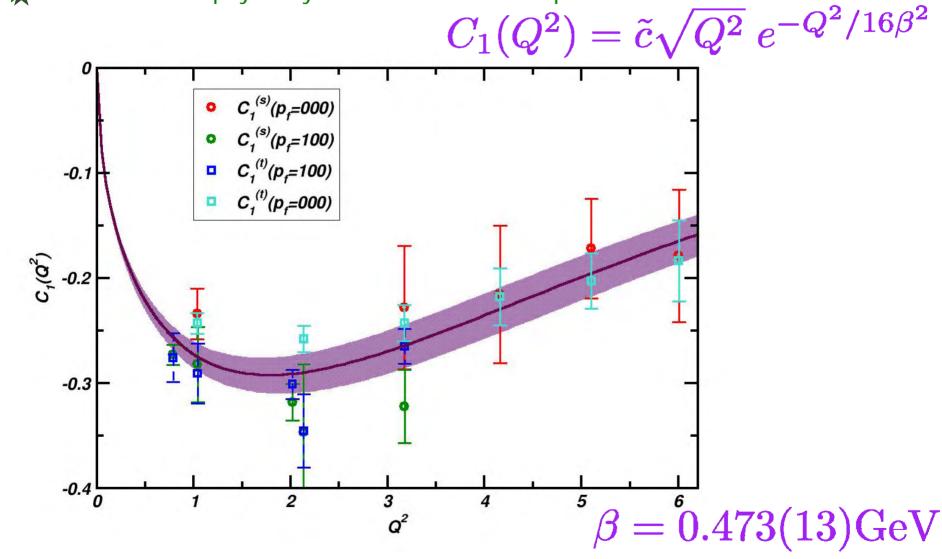
$$|\vec{q}(Q^2)|^2 = \frac{(m_{\psi}^2 - m_{\chi}^2)^2 + 2Q^2(m_{\psi}^2 + m_{\chi}^2) + Q^4}{4m_{\chi}^2}$$

in the rest frame of a decaying χ

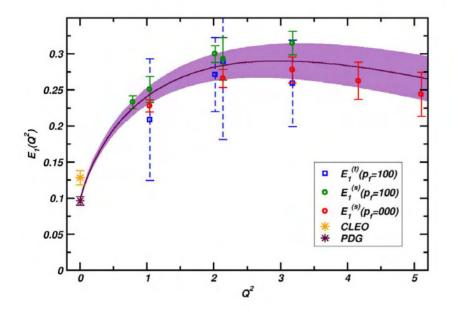


Jo Dudek, Jefferson Lab

also obtain the physically unobtainable C1 multipole



Quark model extrapolation



 \bigstar error shrinks as $Q^2
ightarrow 0$!?

property of the extrapolation form: $cert ec q(Q^2)ert \ e^{-Q^2/16eta^2}$

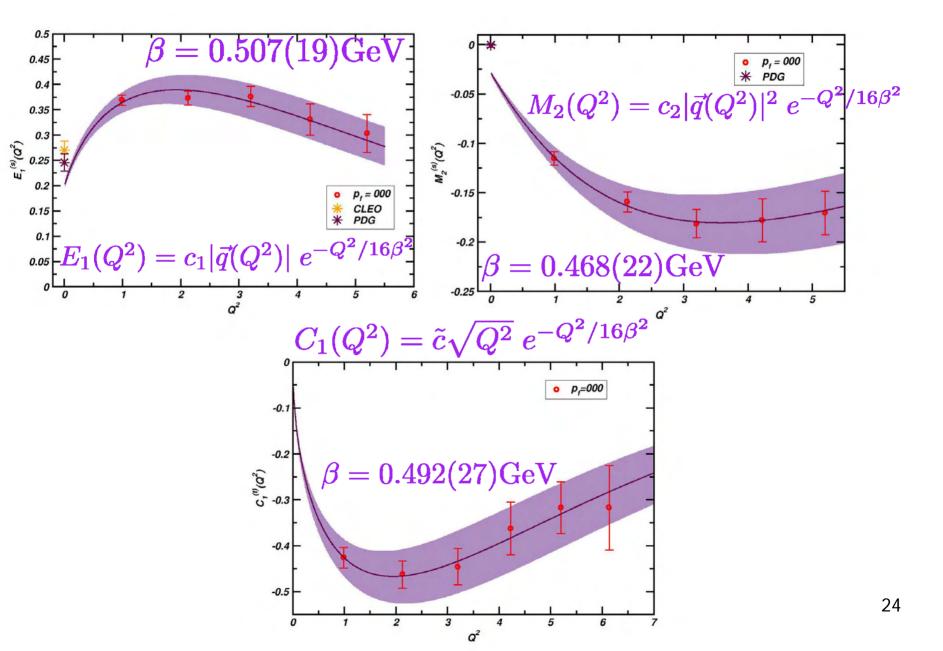
at $Q^2=0$ the error on eta is irrelevant; only error on $^{m{c}}$ matters

great benefit of this form – but only if it's right!

two physical multipoles contribute: *E1, M2* also one longitudinal multipole: *C1*

multipole decomposition:

 $\langle \chi_{c1}(ec{p}_A,r_A)|V^{\mu}(0)|\psi(ec{p}_V,r_V)
angle = rac{i}{4\sqrt{2}\Omega(a^2)}\epsilon^{\mu
u
ho\sigma}(p_A-p_V)_{\sigma} imes$ $\times \left[E_1(Q^2)(p_A + p_V)_{\rho} \Big(2m_A[\epsilon^*(\vec{p_A}, r_A).p_V] \epsilon_{\nu}(\vec{p_V}, r_V) + 2m_V[\epsilon(\vec{p_V}, r_V).p_A] \epsilon^*_{\nu}(\vec{p_V}, r_V) \Big) \right]$ $+M_{2}(Q^{2})(p_{A}+p_{V})_{\rho}\left(2m_{A}[\epsilon^{*}(\vec{p_{A}},r_{A}).p_{V}]\epsilon_{\nu}(\vec{p_{V}},r_{V})-2m_{V}[\epsilon(\vec{p_{V}},r_{V}).p_{A}]\epsilon_{\nu}^{*}(\vec{p_{V}},r_{V})\right)$ $+\frac{C_1(Q^2)}{\sqrt{q^2}}\Big(-4\Omega(q^2)\epsilon^*_{\nu}(\vec{p}_A,r_A)\epsilon_{\rho}(\vec{p}_V,r_V)$ $+ (p_A + p_V)_{
ho} \Big[(m_A^2 - m_V^2 + q^2) [\epsilon^*(ec{p}_A, r_A).p_V] \epsilon_{
u}(ec{p}_V, r_V)$ $+ (m_A^2 - m_V^2 - q^2) [\epsilon(\vec{p}_V, r_V).p_A] \epsilon^*_{
u}(\vec{p_A}, r_A) \Big] \Big) \Bigg|$

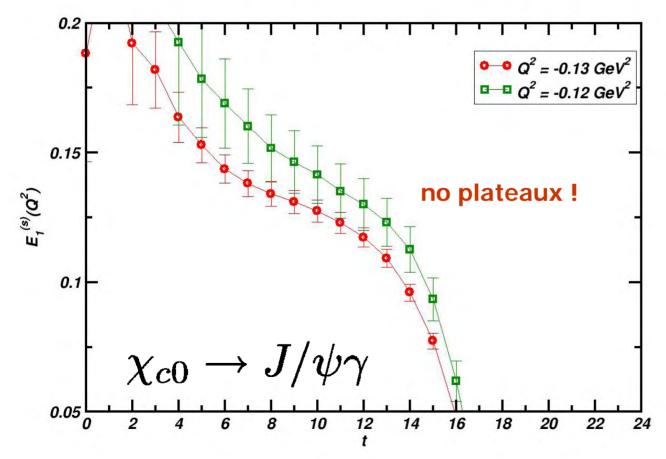


nearer to $Q^2=0$

our simulations do have points very near to $Q^2=0$:

$$\vec{p}_f = \vec{p}_i \qquad Q^2 = -(E_f - E_i)^2$$

igsty very small, negative Q^2



how well do we do?

wavefunction extent:

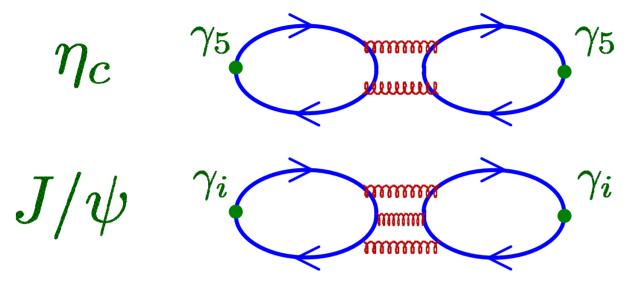
 β /MeV 522(5) 510(20) 601(28) 473(13) 507(19) 468(22) 492(27) quark model charmonium wavefunctions (from $~eta/{
m MeV}\sim 500-600$ Coulomb + Linear potential) have typically transition widths & multipole ratios: $\Gamma(J/\psi \to \eta_c \gamma) \qquad \Gamma(\chi_{c0} \to J/\psi \gamma)$ $\Gamma(\chi_{c1} \to J/\psi\gamma)$ lat* 1.11(16)keV 135(13)keV 252(20)keV 303(44)keV 115(14) keVPDG 1.14(33)keV 204(31)keV 364(51)keV **CLEO** $\frac{M_2}{E_1}(\chi_{c1} \to J/\psi\gamma)$ -0.14(1)lat $-0.002^{+0.008}_{-0.017}$ *using lattice simul. masses PDG 26 Jo Dudek, Jefferson Lab -0.07Grotch et al

extras

Jo Dudek, Jefferson Lab

Approximations in the spectrum?

- what about the disconnected diagrams
 - in the perturbative picture

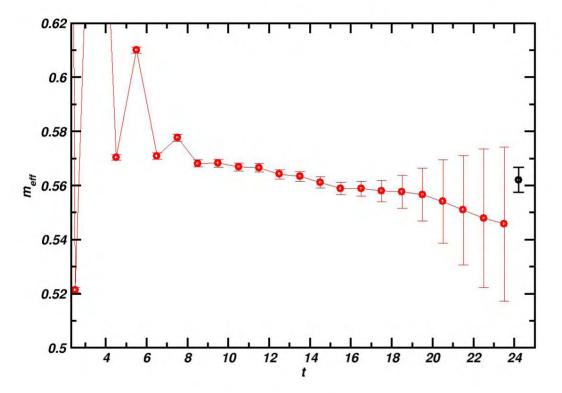


disconnected diagrams might contribute to the hyperfine splitting

- studies (QCD-TARO, Michael & McNeile) suggest an effect of order 10 MeV in the right direction

we might have some trouble with the three-point functions

- go back to the χ_{c1} at rest two-point function

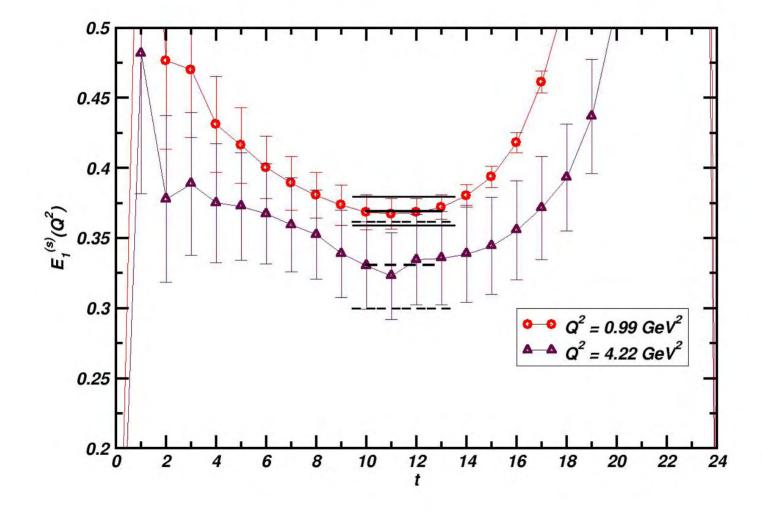


plateau is borderline – our smearing isn't ideal for this state

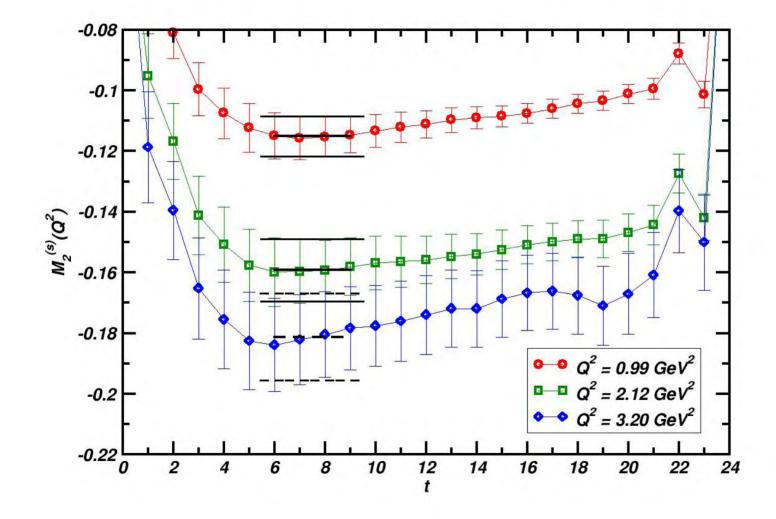
non-zero momentum states are even worse

 $\chi_{c1}
ightarrow \gamma J/\psi$ transition

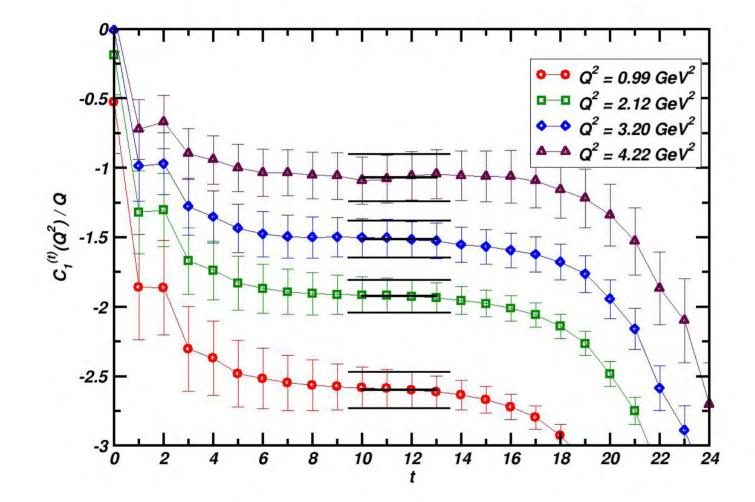
we anticipate borderline plateaux:



we anticipate borderline plateaux:



★ we anticipate borderline plateaux:



Anisotropic Lattices

the gluon (Yang-Mills) piece of the action gains a parameter, ξ_0

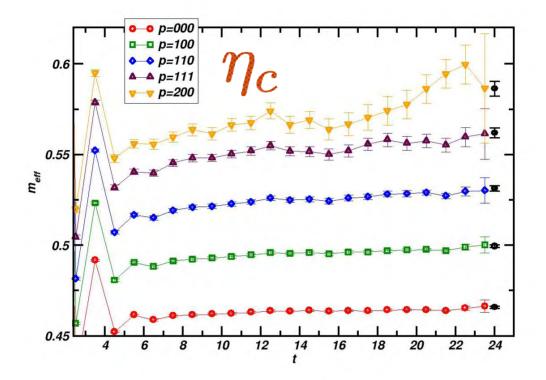
this is chosen to get the desired anisotropy $\xi = rac{a_s}{a_t}$

the quark-gluon piece of the action features both ξ_0 and a second parameter, u, sometimes called the "bare speed-of-light" (ratio of spat. to temp. derivatives)

 $S_G^{\xi} = \frac{\beta}{N_c} \left[\frac{1}{\xi_o} \sum_{x, s > s'} \operatorname{Re} \operatorname{Tr} \left[1 - P_{ss'}(x) \right] + \xi_o \sum_{x, s} \operatorname{Re} \operatorname{Tr} \left[1 - P_{st}(x) \right] \right]$

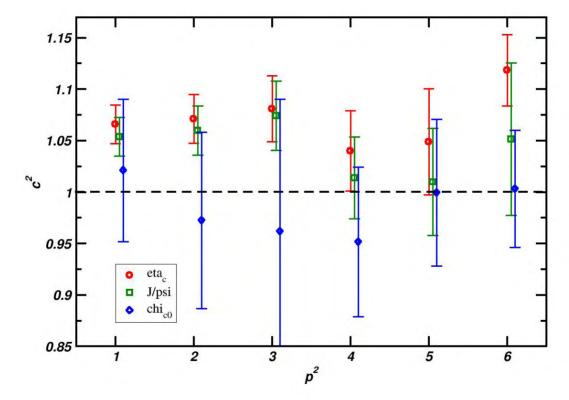
 ${m
u}$ is tuned to ensure physical particles have the correct dispersion relation

i.e. $E^2 = p^2 + m^2$ (up to lattice artifacts)



Dispersion relation tests

display the dispersion relation via the quantity $c^2(p^2)\equiv rac{E^2-m^2}{p^2}$ perfect tuning would be $c^2(p^2)=1$



we've not tuned perfectly – a hazard of using anisotropy!

Jo Dudek, Jefferson Lab