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Charmonium spectrum & radiative transitions

most charmonium states below          threshold have measured 
radiative transitions to a lighter charmonium state

transitions are typically E1 or M1
multipoles, although transitions 
involving              also admit M2 & E3, 
whose amplitude is measured through 
angular distributions

these transitions are described 
reasonably well in quark potential 
models
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Simulation details

anisotropic Wilson gauge action

domain wall fermions for charm quark propagators

quenched approximation & no disconnected diagrams

e.g.

two-point
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Smearing & two-point fits

smeared – local

psuedoscalar two-point

simultaneous multi-exponential fit 
to multiple correlators
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Smeared-local two-point functions
Require early-time plateau in two-points for good three-points

smeared – local
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Scale setting & the spectrum

we didn’t tune our charm quark ‘mass’-parameter very accurately – our whole 
charmonium spectrum is too light

Sommer scale and 1P-1S produce compatible lattice spacings

small residual differences 
from discretisation, 
quenching & lack of 
disconnected
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Three-point functions
radiative transitions involve the insertion of a vector current to a quark-line

computation of this correlator is by the sequential-source method:

used local vector current (hence not-conserved) 

gets renormalised multiplicatively

red line is one propagator – new 

calcn for each new 
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are extracted from the two-point function fits

‘Fit’ method for three-point functions

is what we intend to extract

alternative ‘ratio’ method is less simple to implement when we have multiple 
form-factors (multipoles)
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form-factor & setting 
true      has no electromagnetic form-factor by charge conjugation invariance

- at quark level by coupling to             - non-zero if just couple to   

systematic problem

extract            from the plateaux   
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plot as a function of 

form-factor
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transition
transitions between different states are no more difficult

has a polarisation

decomposition in terms of one form-factor
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radiative width:

Note that this is just one Crystal Ball 
measurement

I cooked up an alternative from

transition
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how do we extrapolate back to                ? 

- take advice from the non-rel quark-model:    

this is an M1 transition which proceeds by quark spin-flip

convoluting with Gaussian wavefunctions one obtains

we can fit our lattice points with this form to obtain          and 

transition
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we have a clue about the systematic difference: scaling of      by 1.11

transition
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at                , there are only transverse photons and this transition has only 
one multipole – E1

with non-zero       , longitudinal photons provide access to a second: C1

multipole decomposition: 

transition
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three-point function

do the inversion to obtain the multipole form-factors

several different                      combinations have the same       value

are known functions

transition
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transition
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transition
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we’ll again constrain our                extrapolation using a quark model form

convoluting with Gaussian wavefunctions one obtains

this is an E1 transition which proceeds by the electric-dipole moment

where the photon 3-momentum at virtuality         is given by 

in the rest frame of a decaying 

transition
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transition
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also obtain the physically unobtainable C1 multipole

transition
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Quark model extrapolation

error shrinks as                  !?

property of the extrapolation form:

at                the error on    is irrelevant; only error on  matters 

great benefit of this form – but only if it’s right! 
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two physical multipoles contribute: E1, M2

also one longitudinal multipole: C1

multipole decomposition: 

transition
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transition
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nearer to 
our simulations do have points very near to              :  

very small, negative 

no plateaux !
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how well do we do?
wavefunction extent:

quark model charmonium wavefunctions (from 
Coulomb + Linear potential) have typically 

*using lattice simul. masses

lat*

PDG

CLEO

transition widths & multipole ratios:

lat

PDG

Grotch et al
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extras
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Approximations in the spectrum?
what about the disconnected diagrams

- in the perturbative picture

disconnected diagrams might contribute to the hyperfine splitting

- studies (QCD-TARO, Michael & McNeile) suggest an effect of order 10 MeV in 
the right direction
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we might have some trouble with the three-point functions

- go back to the          at rest two-point function

plateau is borderline – our smearing isn’t ideal for this state

non-zero momentum states are even worse

transition
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we anticipate borderline plateaux:

transition
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we anticipate borderline plateaux:

transition
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we anticipate borderline plateaux:

transition
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Anisotropic Lattices
the gluon (Yang-Mills) piece of the action gains a parameter, 

the quark-gluon piece of the action features both      and a second parameter,    , 
sometimes called the “bare speed-of-light” (ratio of spat. to temp. derivatives) 

this is chosen to get the desired anisotropy

is tuned to ensure physical particles have the correct dispersion relation

i.e.                                  (up to lattice artifacts)
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Dispersion relation tests
display the dispersion relation via the quantity

perfect tuning would be

we’ve not tuned perfectly – a hazard of using anisotropy!
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