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• heavyonium MILC super-coarse configs

• heavy-light on MILC super-coarse configs

• what next?

See also Kit Wong’s talk later today on high order pert. renormln of

NRQCD.
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MILC super-coarse ensemble

163
× 48 lattices with a ≈ 0.17 fm. Ensemble size ≈ 600.

Complement the coarse (a = 0.12 fm) and fine (a = 0.09 fm)

ensembles.

sea quark masses: ams = 0.082, amu/d = 0.0082.

Advantage of super-coarse lattices: amc ≈ 1.0 → we can use NRQCD

for the c quark here, and cover both b and c physics.

Disadvantage: lattices are rather coarse so disc. errors could be high.

Need careful analysis of systematic errors.

N.B. current NRQCD action can be improved further to reduce all of

these errors.
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Analysis of systematic errors

For heavyonium states can estimate the systematic error from missing

higher order relativistic and radiative terms in the NRQCD action by

estimating e.g. < p4 > in a potential model.

Our NRQCD action is correct at tree-level (tad-imp) through v4.

First rel. errors are αsp
4/4m3

Q, 4πα2
sΨ(0)2/3m2

Q etc.

First disc errors are αsap
4/8m2

Qn from NRQCD + disc. errors from

gluon action.
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Analysis of systematic errors

Percentage errors in splittings for Υ and ψ on super-coarse are:

error Υ(2S − 1S) Υ(1P − 1S) ψ(2S − 1S) ψ(1P − 1S)

rel/rad 1% 3% 2% 4%

disc 3% 11% 1% 2%

Not bad, except for possible Υ disc. and this is to be expected.

Coarse lattices had max error 4% and fine lattices max error 2% for Υ

- see A. Gray et al (hep-lat/0507013).
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Determination of the lattice spacing
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Determinations of a−1 are

very consistent, → system-

atic errors are not a prob-

lem. Possibly low a−1

from ψ(2S − 1S), especially

compared to ηc(2S − 1S).

Sign of non-gold-platedness

of ψ′?
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Υ spectrum
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Using ψ(1P − 1S) to fix

scale, Υ spectrum looks

good.

Fine structure e.g. hyperfine

splitting has some disc. er-

rors compared to coarse and

fine (see hep-lat/0507013).
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ψ spectrum
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ψ spectrum also looks good

except for ψ′?

ψ′ in real life only 50 MeV

below DD threshold, so not

gold-plated.

Lattice, even with light sea

quarks, does not correctly in-

clude coupling to real/virtual

decay modes.

Study volume dependence of

ψ′ mass?

(Note: consistent picture from FNAL ψ results on coarse MILC)
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Kinetic masses and c2 for Υ
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b mass is well-tuned (mba = 4.0). Note speed-of-light very close to 1.

(compare other actions).
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Kinetic masses and c2 for ψ
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c mass is about 10% low (mca = 1.0) (→ hyperfine high). Note

speed-of-light very close to 1. (compare other actions).
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Mass of the Bc

Calculate mass of the Bc using splitting with ψ and Υ, now using

entirely NRQCD calcs.

mBc
= 0.5(mΥ +mψηc

)expt + ∆

∆ = EBc
− 0.5(EΥ +Eψηc

)

Result: 6.274(1)(25)(10) GeV with errors stat, syst, si + syst sd (not

spin-averaging Υ and Bc.

Agrees with previous lattice prediction 6.304(22) GeV and expt (CDF)

6.287(5) GeV.
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Kinetic mass of the Bc
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Advantage of using NRQCD-

NRQCD is that kinetic mass of

Bc is also correct.

(Note: c mass is low so Bc ki-

netic mass will be ≈ 150 MeV

low. )
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Heavy-light physics

Use asqtad light propagators made by FNAL/MILC. Can now do

B/Bs/D/Ds.
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Good agreement with expt. Expect ≈ 70 MeV syst error in b case

(from disc. in Υ), 50 MeV in c (from rel. errors on ψ ).
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What next?

Amplitudes in progress for HH and HL, for leptonic widths and

fDs
/fD. Watch this space!
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What next?

Use a highly improved relativistic action for c quarks instead. HISQ

staggered quarks are also fast.

PRELIMINARY results for mca=0.5 on MILC fine configs.
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HISQ has much improved

taste-splittings over asqtad.

Find splitting between differ-

ent ηc of 5 MeV. i.e. NOT a

problem.

In fact mc incorrect here, so

need to rerun.
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Conclusions

• Super-coarse MILC configs give good results with understood

systematic errors for b AND c physics using NRQCD. New

determination of Bc mass. ψ′ worth further study as

non-gold-plated but stable particle?

• On fine (and finer ...) MILC lattices HISQ for c will work well.

Disc. errors are smaller than for other actions (αsmca
2) and χal

symmetry means renorm. constants very close to 1 for e.g. fD. In

progress.
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