

The RHMC Algorithm ILFTN, Jefferson Laboratory Michael Clark Boston Univeristy (Work done as part of the RBC/UKQCD collaboration)

- Motivation
- Rational Hybrid Monte Carlo
- 2+1 Domain Wall Fermions
- Improvements
- Conclusion

Introduction and Motivation

• Lattice QCD path integral

$$\begin{split} \langle \Omega \rangle &= \frac{1}{Z} \int [dU] e^{-S(U)} [\det \mathcal{M}(U)]^{\alpha} \Omega(U) \\ \text{where } \alpha &= \frac{N_f}{4} \; (\frac{N_f}{2}) \text{ for staggered (Wilson) fermions,} \\ \mathcal{M} &= M^{\dagger} M. \end{split}$$

- \Rightarrow arbitrary N_f with non-integer α
- Conventional HMC fails
- Everyone wants to do 2+1 physics
- Need other algorithms

The R Algorithm (Gottlieb et al)

Rewrite fermionic determinant:

$$\det \mathcal{M}^{\alpha} = \exp\left(\alpha \operatorname{tr} \ln \mathcal{M}\right)$$

- Approximate trace by noisy estimator \equiv pseudo-fermions
- Use integrator $(O(\delta \tau^2))$
 - Non-reversible
 - Jacobian \neq 1
 - \Rightarrow Cannot include Monte Carlo acceptance test
- R: HMD algorithm which is inexact \Rightarrow naïvely cheap, but extrapolation to zero stepsize (strictly) required

Polynomial Hybrid Monte Carlo

Write in pseudo-fermion notation

$$\det \mathcal{M}^{\alpha} = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-\bar{\psi}\mathcal{M}^{-\alpha}\psi}$$
$$\approx \int \mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-\bar{\psi}P(\mathcal{M})\psi},$$

where $P(\mathcal{M})$ is MiniMax polynomial approximation over spectral range.

- Pseudo-fermion heatbath easily realised since $P(\mathcal{M}) = p^{\dagger}(\mathcal{M})p(\mathcal{M})$
- Use standard MD leapfrog \Rightarrow exact
- Significant Error $|P(\mathcal{M}) \mathcal{M}^{-\alpha}| > CG$ residual
 - Reweight acceptance test or observable
- High degree polynomial
 - costly in memory (for non-analytic force)
 - potential for rounding errors

Optimal rational approximations

- Very accurate
- Generated using Remez algorithm
- Real non-degenerate roots (poles are always +ve)

- Partial fractions $r(x) = \sum_{k=1}^{n} \frac{\alpha_k}{x + \beta_k}$
- Evaluate using multi-shift solver

Rational Hybrid Monte Carlo

• Rewrite determinant

$$\det \mathcal{M}^{\alpha} = \int \mathcal{D}\bar{\phi}\mathcal{D}\phi e^{-\bar{\phi}\mathcal{M}^{-\alpha}\phi}$$
$$\approx \int \mathcal{D}\bar{\phi}\mathcal{D}\phi e^{-\bar{\phi}r^{2}(\mathcal{M})\phi},$$

with $r(x) = x^{-\alpha/2}$

- $\Delta = |1 x^{\alpha/2}r(x)| < \epsilon \Rightarrow$ conventional Metropolis
- RHMC:
 - Hybrid Molecular Dynamics Trajectory
 - * Momentum refreshment heatbath $(P(\pi) \propto e^{-\pi^* \pi/2})$.
 - * Pseudo-fermion heatbath ($\phi \propto r(\mathcal{M})^{-1}\xi$, where $P(\xi) \propto e^{-\xi^*\xi/2}$).
 - * MD trajectory with $au/\delta au$ steps.
 - Metropolis Acceptance Test $P_{acc} = min(1, e^{-\delta H})$

Rational Hybrid Monte Carlo

- MD trajectory
 - Double inversion from $r^2(\mathcal{M})$
 - Use low degree approx $\bar{r}\approx \mathcal{M}^{-\alpha}\approx r^2$
 - Pseudo-fermion force

$$S'_{\text{pf}} = -\sum_{i=1}^{\bar{n}} \bar{\alpha}_i \phi^{\dagger} (\mathcal{M} + \bar{\beta}_i)^{-1} \mathcal{M}' (\mathcal{M} + \bar{\beta}_i)^{-1} \phi.$$

- CG cost per trajectory \approx R alg, $(2 + \tau/\delta \tau) \approx (\tau/\delta \tau)$
- Alternative multiple pseudo-fermions Nroots (hep-lat/0409134)

$$\det \mathcal{M}^{\alpha} = (\det \mathcal{M}^{\alpha/n})^n \\ = \prod_{k=1}^n \int \mathcal{D}\bar{\phi}_k \mathcal{D}\phi_k \exp(-\bar{\phi}_k \mathcal{M}^{-\alpha/n}\phi_k)$$

• Use multiple timescales

2+1 Domain Wall Fermions

• One flavour determinant $\frac{\det \sqrt{M_{\rm f}^{\dagger}M_{\rm f}}}{\det \sqrt{M_{\rm pv}^{\dagger}M_{\rm pv}}} = \det \left(\sqrt{\mathcal{M}^{DW}}\right)$ with

$$\mathcal{M}^{DW} = (M_{\rm pv}^{\dagger})^{-1} M_{\rm f}^{\dagger} M_{\rm f} (M_{\rm pv})^{-1}$$

- BUT cannot write $r(\mathcal{M}^{DW})$ else nested inversion
- Therefore write action as

$$S_{f}=\bar{\phi}\left(M_{\rm pv}^{\dagger}M_{\rm pv}\right)^{1/2}\phi+\bar{\chi}\left(M_{\rm f}^{\dagger}M_{\rm f}\right)^{-1/2}\chi$$

 \Rightarrow 2 fermion fields to simulate 1 flavour contribution

- Naive additional cost small, but more noisy (Dawson)
- Monitor eigenvalues
- R algorithm include bosonic contribution through negative flavour number

2+1 Domain Wall Fermions

- Lattices generated on QCDOC
- RHMC: use nroots for light pair (1+1+1)
- $V = 16^3.32.8$, DBW2 $\beta = 0.72$
- $(n_{\rm I}^{\rm md} = 10, n_{\rm I}^{\rm mc} = 15)$, $(n_{\rm s}^{\rm md} = 9, n_{\rm s}^{\rm mc} = 14)$

Alg	m_{I}	$m_{\sf S}$	δau	N _{mv}	A
R	0.04	0.04	0.01	13449(4)	-
R	0.02	0.04	0.01	32782(12)	-
R	0.02	0.04	0.005	65345(15)	-
RHMC	0.04	0.04	0.02	20300(3)	65.5(6)%
RHMC	0.02	0.04	0.0185	36265(8)	69.3(4)%
RHMC	0.01	0.04	0.02	45343(24)	64.5(6)%

• No mass dependance on acceptance rate

Lowest Eigen-value Behaviour

-11- ILFTN, Jlab

Plaquette $\delta \tau$ dependance $m_{\rm l} = 0.02$

$m_{\rm res}, m_{\rm I} = 0.02$

 $m_{\rho}, m_{\rm I} = 0.02$

Plaquette τ_{int} , $m_{\rm I} = 0.02$

-15- ILFTN, Jlab

Pseudo-Scalar Correlator τ_{int} , t = 13, $m_l = 0.02$

-16- ILFTN, Jlab

Finished/Current RHMC Runs

• $V = 16^3.32.8$

Action	β	$rac{m_{ud}}{m_s}$	am_{ud}	N_{traj}	am_{res}
DBW2	0.72	1.0	0.04	3395	
DBW2	0.72	0.5	0.02	6000	0.0106(1)
DBW2	0.72	0.25	0.01	6000	
DBW2	0.764	1.0	0.04	1615	0.00546(7)
DBW2	0.764	0.5	0.02	1800	0.00010(1)
DBW2	0.78	1.0	0.04	1620	0.00437(6)
DBW2	0.78	0.5	0.02	1505	0.00101(0)
Iwasaki	2.13	1.0	0.04	2380	0.0104(2)
Iwasaki	2.13	0.5	0.02	2450	0.0101(2)
Iwasaki	2.2	1.0	0.04	4565	0.0065(1)
Iwasaki	2.2	0.5	0.02	3175	

Future RHMC Runs

• $V = 24^3.64.16$

Action	β	$rac{m_{ud}}{m_s}$	am_{ud}	N _{traj}
Iwasaki	2.13	0.75	0.04	5000+
Iwasaki	2.13	0.5	0.02	5000+
Iwasaki	2.13	0.25	0.02	5000+

- 12+ month run using standard RHMC!
- Need to go faster.....

Omelyan Integrator

• Omelyan integrator given by

$$\hat{U}_{\mathsf{QPQPQ}}(\delta\tau) = e^{\lambda\delta\tau Q} e^{\frac{\delta\tau}{2}P} e^{(1-2\lambda)\delta\tau Q} e^{\frac{\delta\tau}{2}P} e^{\lambda\delta\tau Q}$$

 $(\lambda pprox 0.1932)$

- \bullet $\approx 50\%$ improvement in efficiency (de Forcrand and Takaishi)
- Use multiple timescales

$$\begin{split} \widehat{U}_{1}(\delta\tau) &= e^{\lambda_{1}\delta\tau Q} e^{\frac{\delta\tau}{2}P_{1}} e^{(1-2\lambda_{1})\delta\tau Q} e^{\frac{\delta\tau}{2}P_{1}} e^{\lambda_{1}\delta\tau Q} \\ \widehat{U}_{2}(\delta\tau) &= \left[\widehat{U}_{1}(\lambda_{2}\frac{\delta\tau}{m})\right]^{m} e^{\frac{\delta\tau}{2}P_{2}} \left[\widehat{U}_{1}\left((1-2\lambda_{2})\frac{\delta\tau}{m}\right)\right]^{m} e^{\frac{\delta\tau}{2}P_{2}} \left[\widehat{U}_{1}(\lambda_{2}\frac{\delta\tau}{m})\right]^{m} \\ \bullet V &= 16^{3}32 \times 8, \ \beta = 2.13, \ m = \frac{m_{s}}{2} \\ - \text{ Leapfrog: } \delta\tau = 0.02 \ \langle A \rangle = 63.6\% \\ - \text{ Omelyan: } \delta\tau = 0.04 \ \langle A \rangle = 88.8\% \\ \bullet \lambda_{1}, \ \lambda_{2} \text{ independently tunable} \end{split}$$

DWF Forces ($N_f = 1, \beta = 2.13, m = 0.01, V = 24^3.64.16$)

-20- ILFTN, Jlab

DWF Forces ($N_{\rm f} = 1, \beta = 2.13, m = 0.01, V = 24^3.64.16$)

-21- ILFTN, Jlab

Multiple fermion timescales

- Split partial fractions into multiple timescales
- Tune parameters.....

Integ'or	poles	Steps/	Light	Heavy	Gauge	Accept	Cost	Time/	Auth	hdw
		traj						10traj	(evol)	
		6	1/6 (0.167)	$1/(6 \times 5) 0.033$	$1/(6 \times 5 \times 5) 0.0067$	71%	5.0	3.58	cmm	n
		6	1/6 (0.167)	$1/(6 \times 5) 0.033$	$1/(6 \times 5 \times 10) 0.0033$	67%	10.4	7	$\operatorname{cmm}(4)$	n
		6	1/6 (0.167)	$1/(6 \times 10) 0.017$	$1/(6 \times 10 \times 5) 0.0033$	76%	15.1	11.5	$\operatorname{cmm}(5)$	n
	ud(3L7H) s(2L7H)	6	1/6 (0.167)	$1/(6 \times 3) 0.055$	$1/(6 \times 3 \times 8) 0.0069$	67%	6.7	4.5	dja (1)	n
		6	1/6 (0.167)	$1/(6 \times 5) 0.033$	$1/(6 \times 5 \times 3) 0.011$	69%	8.7	6	dja (3)	n
		6	1/6 (0.167)	$1/(6 \times 2) 0.083$	$1/(6 \times 2 \times 8) 0.010$	62%	5.3	3.3	dja (11)	n
Omo'n		6	1/6 (0.167)	$1/(6 \times 3) 0.056$	$1/(6 \times 3 \times 3) 0.019$	68%	5.9	4	dja (10)	n
Omen	ud(2L8H) s(2L7H)	6	1/6 (0.167)	$1/(6 \times 5) 0.033$	$1/(6 \times 5 \times 5) 0.0067$	78%	10.0	7.8	bjp (6)	n
	ud(4L6H) s(2L7H)	6	1/6 (0.167)	$1/(6 \times 5) 0.033$	$1/(6 \times 5 \times 5) 0.0067$	64%	7.9	5.1	bjp (7)	n
	ud(3L7H) s(3L7H)	6	1/6 (0.167)	$1/(6 \times 3) 0.056$	$1/(6 \times 3 \times 3) 0.019$	57%	7.0	4	dja (15)	n
	ud(4L6H) s(4L6H)	6	1/6 (0.167)	$1/(6 \times 3) 0.056$	$1/(6 \times 3 \times 3) 0.019$	46%	6.9	3.17	dja (16)	n
	ud(4L6H) s(3L7H)	6	1/6 (0.167)	$1/(6 \times 3) 0.056$	$1/(6 \times 3 \times 3) 0.019$	59%	4.3	2.64	dja (18)	у
	ud(4L6H) s(4L6H)	6	1/6 (0.167)	$1/(6 \times 3) 0.056$	$1/(6 \times 3 \times 3) 0.019$	43%	6.0	2.6	dja (30)	У
	ud(4L6H) s(3L7H)	5	1/5(0.2)	$1/(5 \times 5) 0.04$	$1/(5 \times 5 \times 5) 0.008$				dja (32)	У
	ud(3L7H) s(2L7H)	50	1/50(0.02)	1/50 (0.02)	1/200 (0.005)	77%	5.6	4.3	bjp (8)	У
		12	2/25(0.08)	$2/(25 \times 4) 0.02$	$2/(25 \times 4 \times 4) 0.005$	66%	3.6	2.4	bjp (9)	У
		12	2/25(0.08)	$2/(25 \times 2) 0.04$	$2/(25 \times 2 \times 8) 0.005$	6%	29	1.73	bjp (12)	У
Leap		12	2/25(0.08)	$2/(25 \times 4) 0.02$	$2/(25 \times 4 \times 2) 0.01$	54%	4.5	2.43	bjp (13)	У
		12	2/25(0.08)	$2/(25 \times 3) 0.027$	$2/(25 \times 3 \times 5) 0.0053$	32%	6.4	2.05	bjp (17)	у
		10	1/10 (0.10)	$1/(10 \times 5) 0.02$	$1/(10 \times 5 \times 4) 0.005$	33%	8.2	2.45	bjp (20)	у
		11	9/100 (0.09)	9/(100×4) 0.0225	$9/(100 \times 4 \times 4) 0.0056$	27%	8.5	2.3	bjp (21)	у
	ud(4L6H) s(3L7H)	12	2/25(0.08)	$2/(25 \times 4) 0.02$	$2/(25 \times 4 \times 4) 0.005$	28%	7.2	2.01	bjp (22)	У
	ud(4L6H) s(3L7H)	16	(0.06)	$0.06/(3) \ 0.02$	$0.06/(3 \times 4) \ 0.005$	52%	4.12	2.13	bjp (23)	У
	ud(4L6H) s(3L7H)	14	(0.07)	$0.07/(4) \ 0.0175$	$0.07/(4 \times 4) \ 0.0044$	42%	5.28	2.22	bjp (24)	У
	ud(4L6H) s(3L7H)	18	(0.055)	$0.055/(3) \ 0.0183$	$0.055/(3 \times 4) \ 0.0046$	62%	3.86	2.39	bjp (27)	у
L-O-L	ud(3L7H) s(2L7H)	12	2/25 (0.08)	$2/(25 \times 2)$ (0.04)	$2/(25 \times 2 \times 8) 0.005$	69%	3.5	2.4	pab (14)	у
		11	9/100 (0.09)	9/(100×2) 0.045	$9/(100 \times 2 \times 9) 0.005$	58%	4.1	2.4	bjp (19)	у
	ud(4L6H) s(3L7H)	12	8/100 (0.08)	$12/(25 \times 2) 0.04$	$12/(15 \times 2 \times 8) 0.005$	43%	4.7	2.03	bjp (25)	у
	ud(4L6H) s(3L7H)	14	7/100 (0.07)	$0.07/(2) \ 0.035$	$0.07/(2 \times 8) \ 0.0044$	67%	3.45	2.31	bjp (26)	у
	ud(4L6H) s(3L7H)	14	7/100 (0.07)	$0.07/(1) \ 0.07$	0.07/(1×16) 0.0044	50%	3.58	1.79	bjp (28)	У
	ud(4L6H) s(3L7H)	16	6/100 (0.06)	0.06/(1) 0.06	$0.06/(1 \times 16) \ 0.0038$	67%	3.145	2.12	bjp (29)	у

• Factor 3-4 speedup

Heavy Mode Cancellation

• Rewrite one flavour dwf determinant as

$$\left(\frac{\det M_{\rm f}^{\dagger}M_{\rm f}}{\det M_{\rm pv}^{\dagger}M_{\rm pv}}\right)^{1/2} = \det\left[(M_{\rm pv}^{\dagger}M_{\rm pv})^{-1/4}(M_{\rm f}^{\dagger}M_{\rm f})^{1/2}(M_{\rm pv}^{\dagger}M_{\rm pv})^{-1/4}\right]$$

• Pseudofermion action is

$$S_{\rm f} = \bar{\phi} (M_{\rm pv}^{\dagger} M_{\rm pv})^{1/4} (M_{\rm f}^{\dagger} M_{\rm f})^{-1/2} (M_{\rm pv}^{\dagger} M_{\rm pv})^{1/4} \phi$$

= $\bar{\phi} r_1 r_2^2 r_1 \phi$

• Extra $M_{pv}^{\dagger}M_{pv}$ inversion required \Rightarrow negligible cost

Heavy Mode Cancellation ($N_{\rm f} = 1$, $\beta = 2.13$, m = 0.02, $V = 4^5$)

-24- ILFTN, Jlab

Heavy Mode Cancellation

- Large decrease in force magnitude
- $3-4 \times$ fermion stepsize increase
- Can't combine with multi-timescale partial fractions
- Sliding CG solver tolerance, $r = 10^{-4} 10^{-6}$
- Should gain more than timescale splitting

Conclusions and outlook

- RHMC is a fast and exact algorithm
- Many recent improvements made
- Benchmark dwf calculation $V = 24^3.64.16$, $\beta = 2.13$, $m_s = 0.04$, $m_l = 0.01, 0.02, 0.03$, 12 months \rightarrow 3 months
- Multiple timescale RHMC applicable to all fermion formulations
- Compare against "Domain Decomposition" (Lüscher) and "Multiple timescale mass preconditioning" (Urbach et al)

