Finite density simulations via canonical approach

Andrei Alexandru

Manfried Faber, Ivan Horvath, Keh-Fei Liu

Outline

- Motivation
- Canonical partition function
- Algorithm
- Results
- Outlook

Motivation – Phase diagram

Motivation

μ

Overlap problem

Grand canonical partition function

 $Z_{GC}(V,\mu,T) = \int DUD\overline{\psi} D\psi \quad e^{-S_G[U] - S_F[\mu;U,\overline{\psi},\psi]}$

 $S_F[\mu; U, \overline{\psi}, \psi] = \overline{\psi} M[\mu; U] \psi \qquad U_4 \to U_4 e^{-\mu a}$

 $\overline{\psi} M[\mu; U] \psi = \sum_{n} (\overline{\psi}_{n} \psi_{n} + \kappa \overline{\psi}_{n+\hat{t}} (1+\gamma_{4}) U_{4}^{+}(n) e^{\mu a} \psi_{n} + \kappa \overline{\psi}_{n} (1-\gamma_{4}) U_{4}(n) e^{-\mu a} \psi_{n+\hat{t}} + \dots)$

Canonical partition function

Projected determinant

$$\det_n M^2(U) = \frac{1}{2\pi} \int_0^{2\pi} d\varphi \, e^{-in\varphi} \det M^2(U, \mu = i\varphi T)$$

$$\downarrow$$

$$\det'_n M^2(U) = \frac{1}{N} \sum_{j=0}^{N-1} e^{-in\varphi_j} \det M^2(U, \mu = i\varphi_j T), \quad \varphi_j = \frac{2\pi}{N}$$

From the fugacity expansion we see that

$$Z'_{C}(n) = \sum_{k=-\infty}^{+\infty} Z_{C}(n+kN) = \dots + Z_{C}(n-N) + Z_{C}(n) + Z_{C}(n+N) + \dots$$

The most important mixing comes from the n-N sector. This should be suppressed by a factor of exp(-[F(N-n)-F(n)]/T).

Triality

$$Z_{GC}(\mu = \mu_R + i(\mu_I + \frac{2\pi T}{3})) = Z_{GC}(\mu = \mu_R + i\mu_I)$$

 $Z_C(V, n, T) = 0 \text{ if } n \neq 3B$

Algorithm

For HMC we use the phi algorithm for 2 degenerate flavors.

The HMC proposal is accepted/rejected based on the determinant ratio.

Z(3) hopping is performed at the end of each HMC trajectory.

Fluctuations

Using the HMC as a proposal rather than pure gauge update decreases fluctuations and improves the acceptance rate.

Z(3) hopping

- The canonical partition function is Z(3) symmetric
- To preserve this in the discretized version N has to be a multiple of 3
- The proposal mechanism (HMC) breaks this symmetry and can freeze the simulation

$U \to U(\pm 2\pi/3)$

Run parameters

All runs are on a 4⁴ lattice with Wilson fermions at $\kappa = 0.158$.

β	a(fm)	$m_{\pi}({ m MeV})$	$V^{-1}(fm^{-3})$	T(MeV)
5.00	0.343(2)	926(7)	0.387(7)	144(1)
5.10	0.322(4)	945(13)	0.468(17)	153(2)
5.15	0.313(3)	942(11)	0.510(15)	157(2)
5.20	0.300(1)	945(5)	0.579(6)	164(1)
5.25	0.284(5)	945(20)	0.682(36)	173(3)
5.30	0.260(1)	973(9)	0.889(10)	189(1)
5.35	0.233(2)	959(14)	1.235(32)	211(2)

We adjusted the length of the HMC trajectories to keep the acceptance rate at about 15-30%.

Run parameters

Phase diagram

Sector mixing

For N=12 we have Q=0 for n=0 and n=6. The only non-trivial case is n=3.

Below T~170MeV there is almost no mixing.

Sign problem

Polyakov loop

We have to reintroduce the phase factor $\langle |P| \rangle_{\det_n M} = \frac{\langle |P|\alpha\rangle_{|\text{Redet}_n M|}}{\langle \alpha \rangle_{|\text{Redet}_n M|}}, \quad \alpha = \frac{\det_n M}{|\text{Redet}_n M|}$

At T~170MeV we observe a sharp increase in |P|.

This signals deconfinement.

To see a shift in the transition temperature we need more data.

Chiral condensate

Chemical potential

$$\mu_{B} = F(B+1) - F(B) = -\frac{1}{\beta} \ln \frac{Z_{B+1}}{Z_{B}} = -\frac{1}{\beta} \ln \left\langle e^{-i3\theta} \right\rangle_{3B}$$

Below T~170MeV we see that the chemical potential is the same for both densities.

Above T~170MeV we have a repulsive interaction between quarks.

Simple model

Transition line

Conclusions and Outlook

- This is an exploratory study. We are mainly interested in the feasibility of the algorithm and to find ways to improve it.
- We are able to simulate at large densities at least in the vicinity of the critical temperature.
- This method can be used to determine the reliability of the reweighting techniques.
- Implement an estimator to explore larger lattices, smaller densities.