

Xiaochao Zheng

Univ. of Virginia March 27, 2009

- Introduction Standard Model of Electroweak Interaction
- Neutral Weak Coupling Constants
- Test of the Standard Model
- Access to $C_{_{3\alpha}}$ Using Electron vs. Positron Scattering

Summary

Let's start from electromagnetic interaction (QED, 1920's):

Let's start from electromagnetic interaction (QED):

We can calculate many electromagnetic interactions using QED

Charged pion and muon decay:

$$\pi^- \to \mu^- \bar{\nu_{\mu}} \qquad \tau = 2.6 \times 10^{-8} s$$
$$\mu^- \to e^- \bar{\nu_e} \nu_{\mu} \qquad \tau = 2.2 \times 10^{-6} s$$

*Much longer than strong (10^{-23} s) or electromagnetic (10^{-16} s) decays Indicate a 4th interaction: "weak"

1932, based on QED, Fermi proposed:

$$M^{EM} = \left(e\,\overline{u}_{p}\gamma^{\mu}u_{p}\right)\left(\frac{-1}{q^{2}}\right)\left(-e\,\overline{u}_{e}\gamma_{\mu}u_{e}\right)$$
$$M^{weak} = G\left(\overline{u}_{n}\gamma^{\mu}u_{p}\right)\left(\overline{u}_{\nu_{e}}\gamma_{\mu}u_{e}\right)$$

arbitrary strength 🕏 assuming same current as in EM force

* charge lowering (raising) - "weak charged current"

UNIVERSITY of VIRGINIA

Xiaochao Zheng, International Workshop on Positrons at JLab 4/26

I956, when Parity violation was first proposed (and tested in 1957), the only modification needed is:

$$M^{weak} = G\left(\overline{u}_{n} \gamma^{\mu} u_{p}\right) \left(\overline{u}_{\nu_{e}} \gamma_{\mu} u_{e}\right)$$
$$M^{weak} = G\left(\overline{u}_{n} \gamma^{\mu} (1-\gamma^{5}) u_{p}\right) \left(\overline{u}_{\nu_{e}} \gamma_{\mu} (1-\gamma^{5}) u_{e}\right)$$

 $= \frac{4 \, \mathbf{G}}{\sqrt{2}} J^{\mu} J^{\mu}_{\mu}$

- (A mixture of γ^{μ} and $\gamma^{\mu}\gamma^{5}$ automatically violate parity)
- select only left-handed v's
- If further assume that weak interaction occurs by exchanging a (W) particle, similar to the photon in electromagnetic interactions, then

$$M^{CC} = \left(\frac{g}{\sqrt{2}}\bar{u}_{\nu_{\mu}}\gamma^{\mu}\frac{1}{2}(1-\gamma^{5})u_{\mu}\right)\frac{1}{M_{W}^{2}-q^{2}}\left(\frac{g}{\sqrt{2}}\bar{u}_{e}\gamma_{\mu}\frac{1}{2}(1-\gamma^{5})u_{\nu_{e}}\right) \qquad \frac{G}{\sqrt{2}} \xrightarrow{q^{2} \ll M_{W}^{2}} \frac{g^{2}}{8M_{W}^{2}}$$

UNIVERSITY of VIRGINIA

Electroweak Interaction – Neutral Current

• 1973, with developement of v beams, found:

$$\overline{\nu}_{\mu}e^{-} \to \overline{\nu}_{\mu}e^{-} \qquad \nu_{\mu}N \to \nu_{\mu}X \qquad \overline{\nu}_{\mu}N \to \overline{\nu}_{\mu}X$$

*cannot be explained by CC;

☆magnitude of strength indicates a "Neutral Current".

$$M^{CC} = \frac{4G}{\sqrt{2}} J_{\mu}^{CC} J^{CC,\mu} \longrightarrow M^{NC} = \frac{4G}{\sqrt{2}} (2\rho) J_{\mu}^{NC} J^{NC,\mu}$$
$$J_{\mu}^{NC}(\nu) = \frac{1}{2} \left(\bar{u}_{\nu} \gamma_{\mu} \frac{1}{2} (1 - \gamma^{5}) u_{\nu} \right)$$
$$J_{\mu}^{NC}(q) = \left(\bar{u}_{q} \gamma_{\mu} \frac{1}{2} (c_{\nu}^{q} - c_{A}^{q} \gamma^{5}) u_{q} \right)$$

vector and axial-vector coupling constants

MUNIVERSITY of VIRGINIA

- 1961, construct a SU(2), group using charged currents, with weak isospin T.
 - → Provide CC weak interactions carried by W^+ , W^- ;
 - Linear combination of the two is a neutral current, but it couples only to Left-handed fermions, while experimentally observed neutral currents exist for both R- and L-handed fermions;
 - \Rightarrow On the other hand, EM (U(1)) also couple to both R- and L-H fermions.
 - Suggest: Combine Neutral Current from SU(2), and U^{EM}(1),

$$\frac{G}{\sqrt{2}} \rightarrow \frac{g^2}{8(M_w^2 - q^2)} \iff \frac{e^2}{q^2}$$

(weak interaction is much weaker than EM because M_w is large, not because g << e)

- I961, construct a SU(2), group using charged currents, with weak isospin T.
- Combine Neutral Current from SU(2), and QED (U^{EM}(1)) to construct:

- I961, construct a SU(2), group using charged currents, with weak isospin T.
- Combine Neutral Current from SU(2), and QED (U^{EM}(1)) to construct:

UNIVERSITY / VIRGINIA

• Mixing of the SU(2) and $U^{EM}(1)$, is giving by: ... the Weak Mixing angle θ_{W}

• Mixing of the SU(2) and $U^{EM}(1)$ is giving by: ... the Weak Mixing angle θ_{W}

MUNIVERSITY of VIRGINIA

Test of The Standard Model

- Standard Model works well at present energy range (~250GeV?); But, conceptual reasons for "theory of everything", hence new physics up to 10⁽¹⁴⁻¹⁸⁾ GeV.
- Test of the Standard Model:
 - * Direct searches (LHC)
 - * Indirect searches:
 - * New physics modify: $\sin^2 \theta_W$, c_V^e , c_A^e , c_V^q , c_A^q at low energies;
 - -Search for forbidden processes ($\beta\beta$ -decay, EDM).

Testing the EW Standard Model – Running of $\sin^2 \theta_W$ and the NuTeV Anomaly

MIVERSITY / VIRGINIA

Xiaochao Zheng, International Workshop on Positrons at JLab 13/26

Neutral Weak Couplings

Asymmetries (ratios) in charged lepton-N scattering can be used to measure products of $c_{V,A}^{e}$, $c_{V,A}^{q}$

$$L_{NC}^{lepton \, scatt.} = \sum_{q} \left[c_{A}^{l} c_{V}^{q} \overline{l} \gamma^{\mu} \gamma_{5} l \overline{q} \gamma_{\mu} q + c_{V}^{l} c_{A}^{q} \overline{l} \gamma^{\mu} l \overline{q} \gamma_{\mu} \gamma_{5} q + c_{A}^{l} c_{A}^{q} \overline{l} \gamma^{\mu} \gamma_{5} l \overline{q} \gamma_{\mu} \gamma_{5} q \right]$$

 $c_{V,A}^{e,q} \Leftrightarrow g_{V,A}^{e,q}$

Neutral Weak Couplings

Charged lepton-N scattering can be used to measure products of $c^{e}_{V,A}$, $c^{q}_{V,A}$

UNIVERSITY JURGINIA

Current Knowledge on Weak Coupling Coeffecients

$C_{1q} = g_A^e g_V^q$	$C_{2q} = g_V^e g_A^q$		$C_{3q} = g_A^e g_A^q$ J. Erler, M.J. Ramsey-N	r, M.J. Ramsey-Musolf, Prog. Part. Nucl. Phys. 54 , 351 (2		
Facility	Process	Q ²	C _{iq} Combination	Result	SM Value	
SLAC	e ⁻ -D DIS	1.39	$2C_{1u}-C_{1d}$	-0.90± 0.17	-0.7185	
SLAC	e⁻-D DIS	1.39	$2C_{2u}-C_{2d}$	0.62 ± 0.81	-0.0983	
CERN	$\mu^{\pm}\text{-}D \; DIS$	34	$0.66(2C_{2u}-C_{2d})+2C_{3u}-C_{3d}$	1.80± 0.83	1.4351	
CERN	$\mu^{\pm}\text{-}D \; DIS$	66	$0.81(2C_{2u}-C_{2d})+2C_{3u}-C_{3d}$	1.53± 0.45	1.4204	
MAINZ	e-Be QE	0.20	$2.68C_{1u}$ -0.64 C_{1d} +2.16 C_{2u} -2 C_{2d}	-0.94± 0.21	-0.8544	
Bates	e ⁻ -C elastic	0.0225	$C_{1u} + C_{1d}$	0.138 ± 0.034	0.1528	
Bates	e ⁻ -D QE	0.1	C_{2u} - C_{2d}	-0.042± 0.057	-0.0624	
Bates	e-D QE	0.04	C_{2u} - C_{2d}	-0.12± 0.074	-0.0624	
JLab	e ⁻ -p elastic	0.03	$2C_{1u}+C_{1d}$	approved	-0.0357	
	¹³³ Cs APV	0	-376C _{1u} -422C _{1d}	-72.69 ± 0.48	-73.16	
	²⁰⁵ TI APV	0	-572C _{1u} -658C _{1d}	-116.6±3.7	-116.8	
Fit	e⁻-A	low	$C_{1u} + C_{1d}$	0.1358±0.0326	0.1528	
All ne	ew (R. Young, I	R. Carlini, A.V	V. $C_{1u}-C_{1d}$	-0.4659 ± 0.0835	-0.5297	
PVES	Thomas, J.	Roche, PRL 9	$C_{2u} + C_{2d}$	-0.2063 ± 0.5659	-0.0095	
Data	(2007) & pr	iv. comm.)	C _{2u} -C _{2d}	-0.0762 ± 0.0437	-0.0621	

Current Knowledge on C_{1,2q}

Expected: JLab 6 GeV PV-DIS E08-011 (assuming small hadronic effects)

all are 1 σ limit

MIVERSITY / VIRGINIA

Xiaochao Zheng, International Workshop on Positrons at JLab 17/26

Current Knowledge on Weak Coupling Coeffecients

Facility	Process	Q ²	C _{iq} Combination	Result	SM Value			
SLAC	e ⁻ -D DIS	1.39	$2C_{1u}-C_{1d}$	-0.90± 0.17	-0.7185			
SLAC	e⁻-D DIS	1.39	2C _{2u} -C _{2d}	0.62± 0.81	-0.0983			
CERN	μ^{\pm} -D DIS	34	0.66(2C _{2u} -C _{2d})+2C _{3u} -C _{3u} -C	1.80± 0.83	1.4351			
CERN	μ^{\pm} -D DIS	66	$0.81(2C_{2u}-C_{2d})+2C_{3u}-C_{3u}$	1.53± 0.45	1.4204			
MAINZ	e-Be QE	0.20	$2.68C_{1u} - 0.64C_{1d} + 2.16C_{2u} - 2.000$	2C _{2d} -0.94± 0.21	-0.8544			
Bates	e ⁻ -C elastic	0.0225	$C_{1u} + C_{1d}$	0.138 ± 0.034	0.1528			
Bates	e ⁻ -D QE	0.1	C_{2u} - C_{2d}	-0.042± 0.057	-0.0624			
Bates	e ⁻ -D QE	0.04	C_{2u} - C_{2d}	-0.12± 0.074	-0.0624			
JLab	e ⁻ -p elastic	0.03	$2C_{1u}+C_{1d}$	approved	-0.0357			
	¹³³ Cs APV	0	-376C _{1u} -422C _{1d}	-72.69 ± 0.48	-73.16			
		0	-572C _{1u} -658C _{1d}	-116.6±3.7	-116.8			
Fit	e⁻-A	low	$C_{1u} + C_{1d}$	0.1358 ± 0.0326	0.1528			
All	new (R. Young, I	R. Carlini, A.W	/. C _{lu} -C _{ld}	-0.4659 ± 0.0835	-0.5297			
PVES	Thomas, J.	Roche, PRL 9	9, 122003 C _{2u} +C _{2d}	-0.2063±0.5659	-0.0095			
Data	(2007) & pr	IV. COMM.)	C_{2u} - C_{2d}	-0.0762±0.0437	-0.0621			
PDG2002 (best):								
$2C_{2d}-C_{3d}=\pm 0.24$								

J. Erler, M.J. Ramsey-Musolf, Prog. Part. Nucl. Phys. 54, 351 (2005)

MUNIVERSITY / VIRGINIA

Xiaochao Zheng, International Workshop on Positrons at JLab 18/26

Not in the textbook
S.M. Berman, J. R. Primack, Phys. Rev. D 9, 2171 (1974)

Not in the textbook
S.M. Berman, J. R. Primack, Phys. Rev. D 9, 2171 (1974)

$$A(l_L^- - l_R^+)$$
 \blacktriangleleft sensitive to C_{3q}

 $A(l_L^- - l_R^-)$ \checkmark "PV-DIS" asymmetry, SLAC E122 and JLab 6 & 12 GeV

$$A_{d}^{PV-DIS} = \left(\frac{3G_{F}Q^{2}}{\pi \alpha 2\sqrt{2}}\right) \frac{2C_{1u}[1+R_{C}(x)] - C_{1d}[1+R_{S}(x)] + Y(2C_{2u} - C_{2d})R_{V}(x)}{5+R_{S}(x) + 4R_{C}(x)}$$

$$R_{s}(x) = \frac{2[s(x) + \bar{s}(x)]}{u(x) + \bar{u}(x) + d(x) + \bar{d}(x)} \quad R_{c}(x) = \frac{2[c(x) + \bar{c}(x)]}{u(x) + \bar{u}(x) + d(x) + \bar{d}(x)} \quad R_{v}(x) = \frac{u_{v}(x) + d_{v}(x)}{u(x) + \bar{u}(x) + d(x) + \bar{d}(x)}$$
(small) (very small) (~1)

UNIVERSITY of VIRGINIA

Xiaochao Zheng, International Workshop on Positrons at JLab 20/26

proton target:

$$\left[\frac{A(l_{L}^{-} - l_{R}^{+})}{A(l_{L}^{-} - l_{R}^{-})} \right]_{p} = \frac{y(2-y)}{2} \frac{2C_{2u}u_{V} - C_{2d}d_{V} + 2C_{3u}u_{V} - C_{3d}d_{V}}{2C_{1u}u - C_{1d}(d+s) + Y(2C_{2u}u_{V} - C_{2d}d_{V})} \qquad y = \frac{v}{E}$$

$$A_{p}(e_{L}^{-} - e_{R}^{+}) = \left(\frac{3G_{F}Q^{2}}{2\sqrt{2}\pi\alpha} \right) \frac{y(2-y)}{2} \frac{2C_{2u}u_{V} - C_{2d}d_{V} + 2C_{3u}u_{V} - C_{3d}d_{V}}{4u+d+s}$$

proton target:

$$\begin{bmatrix} \frac{A(l_{L}^{-}-l_{R}^{+})}{A(l_{L}^{-}-l_{R}^{-})} \end{bmatrix}_{p} = \frac{y(2-y)}{2} \frac{2C_{2u}u_{v} - C_{2d}d_{v} + 2C_{3u}u_{v} - C_{3d}d_{v}}{2C_{1u}u - C_{1d}(d+s) + Y(2C_{2u}u_{v} - C_{2d}d_{v})} \qquad y = \frac{v}{E}$$

$$A_{p}(e_{L}^{-}-e_{R}^{+}) = \left(\frac{3G_{F}Q^{2}}{2\sqrt{2}\pi\alpha}\right) \frac{y(2-y)}{2} \frac{2C_{2u}u_{v} - C_{2d}d_{v} + 2C_{3u}u_{v} - C_{3d}d_{v}}{4u+d+s}$$

not well known

proton target:

$$\left[\frac{A(l_{L}^{-} - l_{R}^{+})}{A(l_{L}^{-} - l_{R}^{-})} \right]_{p} = \frac{y(2-y)}{2} \frac{2C_{2u}u_{V} - C_{2d}d_{V} + 2C_{3u}u_{V} - C_{3d}d_{V}}{2C_{1u}u - C_{1d}(d+s) + Y(2C_{2u}u_{V} - C_{2d}d_{V})} \qquad y = \frac{v}{E}$$

$$A_{p}(e_{L}^{-} - e_{R}^{+}) = \left(\frac{3G_{F}Q^{2}}{2\sqrt{2}\pi\alpha} \right) \frac{y(2-y)}{2} \frac{2C_{2u}u_{V} - C_{2d}d_{V} + 2C_{3u}u_{V} - C_{3d}d_{V}}{4u+d+s}$$

deuteron target:

$$\begin{bmatrix} A(l_{L}^{-}-l_{R}^{+}) \\ A(l_{L}^{-}-l_{R}^{-}) \end{bmatrix}_{d} = \frac{y(2-y)}{2} \frac{\left(2C_{2u}-C_{2d}+2C_{3u}-C_{3d}\right)R_{v}}{2C_{1u}-C_{1d}+Y(2C_{2u}-C_{2d})R_{v}} \approx -0.1 \quad \text{(dominant)}$$

$$A_{d}(e_{L}^{-}-e_{R}^{+}) = \left(\frac{3G_{F}Q^{2}}{2\sqrt{2}\pi\alpha}\right) \frac{y(2-y)}{2} \frac{\left(2C_{2u}-C_{2d}+2C_{3u}-C_{3d}\right)R_{v}}{5+R_{s}+4R_{c}}$$

UNIVERSITY of VIRGINIA

proton target:

$$\left[\frac{A(l_{L}^{-} - l_{R}^{+})}{A(l_{L}^{-} - l_{R}^{-})} \right]_{p} = \frac{y(2-y)}{2} \frac{2C_{2u}u_{V} - C_{2d}d_{V} + 2C_{3u}u_{V} - C_{3d}d_{V}}{2C_{1u}u - C_{1d}(d+s) + Y(2C_{2u}u_{V} - C_{2d}d_{V})} \qquad y = \frac{v}{E}$$

$$A_{p}(e_{L}^{-} - e_{R}^{+}) = \left(\frac{3G_{F}Q^{2}}{2\sqrt{2}\pi\alpha} \right) \frac{y(2-y)}{2} \frac{2C_{2u}u_{V} - C_{2d}d_{V} + 2C_{3u}u_{V} - C_{3d}d_{V}}{4u+d+s}$$

deuteron target:

$$\begin{bmatrix} A(l_{L}^{-}-l_{R}^{+}) \\ A(l_{L}^{-}-l_{R}^{-}) \end{bmatrix}_{d} = \frac{y(2-y)}{2} \frac{\left(2C_{2u}-C_{2d}+2C_{3u}-C_{3d}\right)R_{v}}{2C_{1u}-C_{1d}+Y(2C_{2u}-C_{2d})R_{v}} \approx -0.1 \quad \text{(dominant)}$$

$$A_{d}(e_{L}^{-}-e_{R}^{+}) = \left(\frac{3G_{F}Q^{2}}{2\sqrt{2}\pi\alpha}\right) \frac{y(2-y)}{2} \frac{\left(2C_{2u}-C_{2d}+2C_{3u}-C_{3d}\right)R_{v}}{5+R_{s}+4R_{c}}$$

$$\approx (108 \ ppm) \frac{y(2-y)}{2} \left(2C_{3u}-C_{3d}\right)Q^{2}R_{v}$$
Xiaochao Zheng, International Workshop on Positrons at JLab 24/26

- Start from: e_{LR}^{-} (PV-DIS) at JLab 12 GeV (two approaches)
 - Hall A large acceptance "solenoid" device: PR09-012
 - Hall C "baseline" SHMS+HMS: PR12-07-102 (P.E. Reimer, X. Z, K. Paschke)

 $\gtrsim E=11.0 \text{ GeV}, E'=6.0 \text{ GeV}, Q^2=3.3 \text{ GeV}^2, W^2=7.3 \text{ GeV}^2, x_{Bi}=0.34$

★ can achieve 1% (0.5% stat) on A_d from 28 PAC days of 85uA 80% ebeam on a 40cm liquid D2 target, extraction of C_{2a}, $sin^2\theta_w$

- Using PR12-07-102 kinematics, $A_d(e_L^- e_R^+) \approx -169$ ppm (~3/4 of A_d^{PVDIS}) assuming e⁺ luminosity is 5 times lower, can determine $2C_{3u} C_{3d}$ to +/-0.05 (factor of 10 improvement) using 28 PAC days.
- Use proton target, can provide a different combination of C_{3a} .
- Problems: luminosity? systematics? two-photon effects? other hadronic effects?

MUNIVERSITY of VIRGINIA

Summary

- Neutral current couplings are fundamental quantities of the Standard Model.
- Comparison of polarized e+, e- DIS cross sections can access C_{3q}.

