Estimates of inclusive e+/e- cross sections and structure functions at Jlab

Eric Christy Hampton University

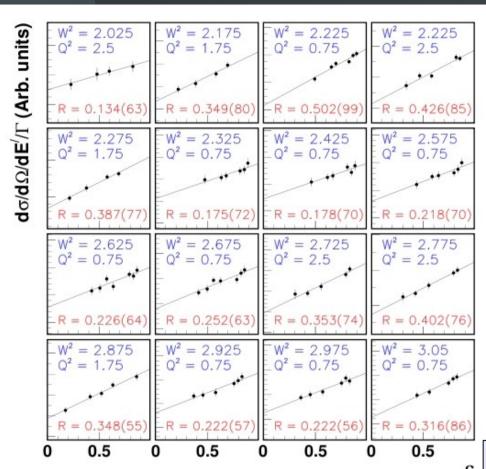
JPos @ JLab

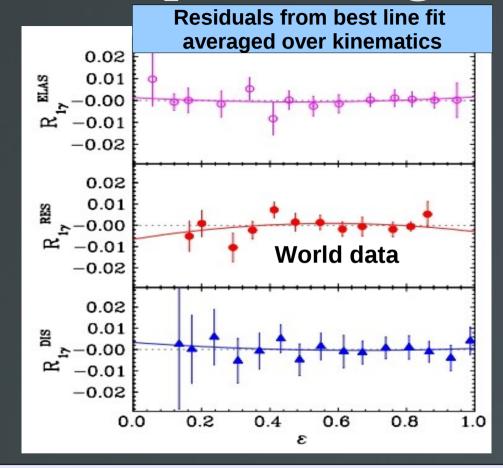
March 25, 2009

Some things we can learn from unpolarized inelastic scattering with e+ beams

1γ exchange diagram doesn't depend on lepton charge

- = 2γ effects in e-p unpolarized SFs Would want some lever arm in ε for e+ / e- ratios.
- Some information could already be in HERA data!
- = 2 γ effects in e-p transverse target asymmetries


For both (1) and (2) the 2- γ contributions flip sign for e+ vs e-


- Charge-asymmetry measurements give real part of DVCS amplitude – access to GPDs. (discussed by M. Burkardt, V. Burkert, and N. d'Hose)
- Definitive measurements of coulomb corrections for nuclear targets (to be discussed by P. Solvingnon)
 - need to check 2γ effects with e-p first

2 photon exchange in inelastic unpolarized scattering.

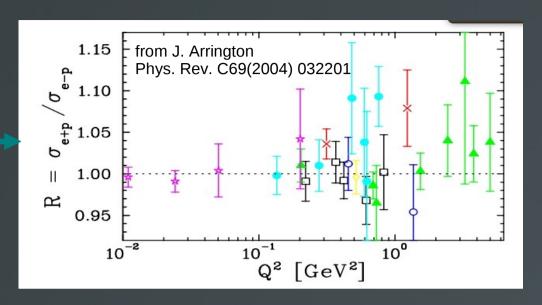
- The impact on the World structure function measurements for charged lepton scattering should be understood as well as possible. Likely to be small correction for F₂.
- If significant, this impacts R, F_L measurements from Rosenbluth separations.
 - \mathbf{F}_{L} DIS measurements can be used in Parton Distribution Fits to constrain the gluon distribution
- Must be understood to examine Coulomb distortion effects from e+/e- differences.

Non-linearities in inelastic ep scattering

Linearity studied for World L/T separations.

V. Tvaskis, et. al, Phys.Rev.C73:025206, 2006

No evidence for non-linearities in Rosenbluth's for inclusive e-p elastic, resonance, and DIS.

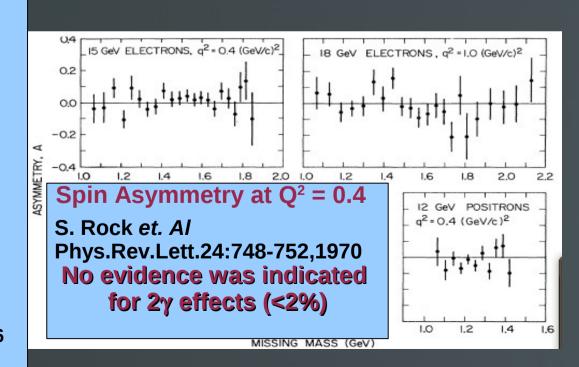

Even if 2- γ contributions are linear in ϵ they will have *opposite* signs for e+ and e-

=> charge ratios will enhance this signal by 2x

e⁺p/e⁻p differences: Previous Measurements

Elastic

Slac data for Q² range shown epsilon dependence hinted at.



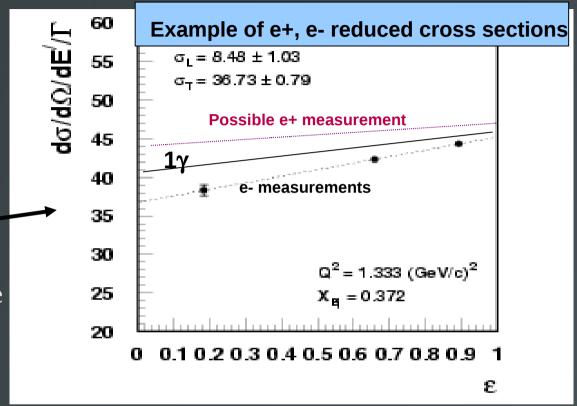
For both elastic and inelastic e-p the sign of 2γ e-p correction factor flips signs for e⁺

Recent theoretical calculation for unpolarized scattering,

V. Pascalutsa, C. Carlson, M. Vanderhaegen, hep-ph/0509055

S. Kondratyuk, P. Blunden, Nucl. Phys. A778, 2006

2-y exchange in transverse target spin asymmetry measurements


- 2-γ exchange give rise to asymmetry for transversely polarized target.
- Asymmetry arises from interference between 1- γ and 2- γ exchange.
- Changes sign for e+ versus e-.
- Recent calculation estimates ~10⁻⁴ (~10⁸ events with 100% polarization and no dilution.)

A. Afanasev, M. Strikman, C. Weiss, Phys.Rev.D77:014028,2008

 This is an asymmetry so that most systematics drop out and statistics dominate.

Experimental requirements for testing 2-γ effects in unpolarized e+p scattering

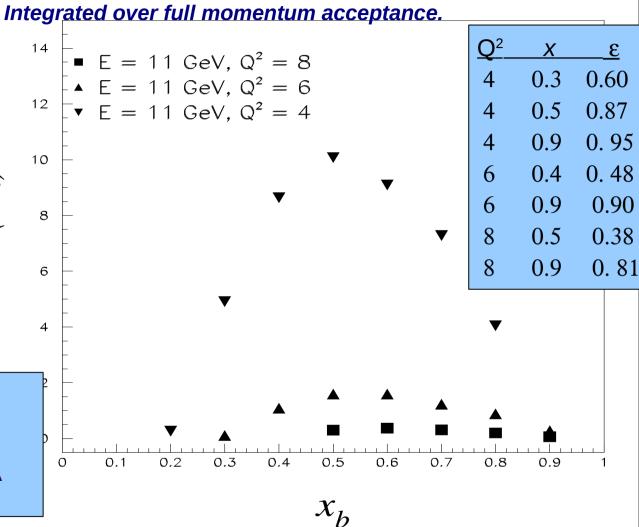
- Would want to measure ratio of e+p / e-p inclusive scattering vs virtual photon polarization ε for range in x (W) and Q^2
- F_L is slope. F_L is sensitive to gluon distribution to be included in future global parton distribution fits.
- Requires the following

- 1) Varing beam energies to reach multiple ε at fixed Q² and x (W).
- 2) Good statistical precision (better than 1% on ratio).
- 3) Small systematic uncertainties

Complete systematic cancellation requires switching of beam polarity on relatively short time scales (minimum of several days?)

Kinematic dependence of rates

At fixed x and Q² the photon flux


 $\sim E'/E*1/(1-\epsilon)$

=> largest rate is when & is largest.

Biggest ε is given by largest beam energy and smallest angle.

- Could possibly double target length for measuring ratios.
- Nuclear target rates scale by ~A

Assume 10cm LH₂ target, SHMS acceptance (4 mSr), and 100 nA.

- → For $Q^2 > 4$ probably need at least 1uA of current.
- \rightarrow Rate limited ε lever arm at lower Q^2

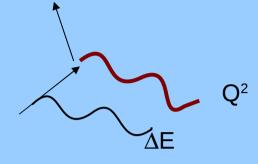
Rate (Hz

More on rates in Hall C

	<u>E</u>	<u>E'</u>	<u>\theta</u>	<u>X</u>	<u>E</u>	Rate (Hz)	
$\underline{\mathbf{Q}^2 = 4}$	11	6.7	13	0.55	0.89	17	
	6.6 4.4	2.6 0.54	28 80	0.55 0.55	0.64 0.13		ong runtime orget it
$Q^2 = 2$	11 4.4 3	8.6 2.0 0.6	8.3 27 61	0.45 0.45 0.45	0.96 0.67 0.27	200 5 0.25	ong runtime

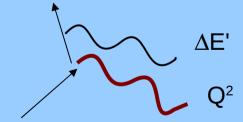
- Rates above Integrated over entire momentum acceptance
- Need at least 1 uA beam current for ε < 0.5

Can measure large kinematic range in CLAS at same time, but ϵ pt-pt systematics are typically too large for Rosenbluth separations. However, in e+/e- ratios versus ϵ most systematics drop out similar to Hall B elastic e-p E07-005 (L. Weinstein talk), except that e+/e- are not produced simultanously.

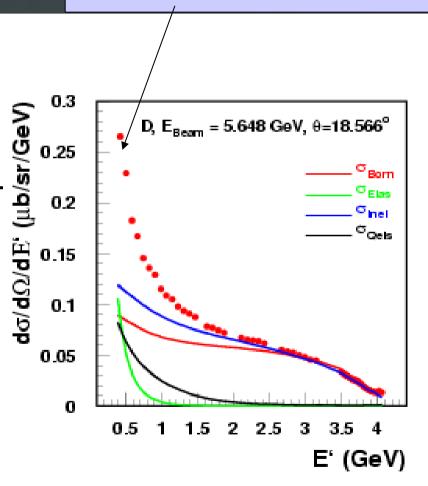

Uncertainties for e+/e- Structure Function Ratios

- In Hall C/A need at least 1 uA to measure SF ratios at ε < 0.5 for $Q^2 > 2$
- Could measure only positrons with a very short e- run to cross check absolute normalization with existing data.
- Time dependent systematics are typically small in Hall C and should mostly cancel out. (Luminosity monitor could further help)
- Systematics due to reproducebility of HMS spectrometer settings are typically 0.04% and 0.2 mrad for p and theta and well understood.
- Can measure in CLAS but would want to do both e+/e- during the same run period to adequately cancel time dependent systematics => reasonably good measurement of e+/e- versus ε possible, but not as good a handle on systematics compared to brems. produced e+/e-.

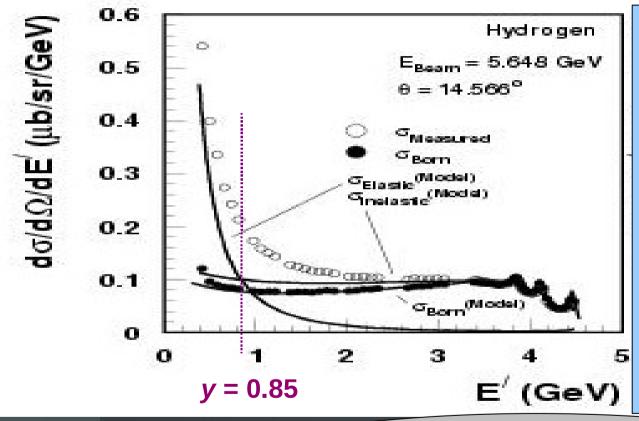
Radiative corrections at large y


Radiative corrections at large y

Bremsstrahlung from beam electron


- lacksquare E_{vertex} is smaller than E_{beam}
- $lackbox{Q}^2_{\text{vertex}}$ is smaller than calculated
- W^2_{vertex} typically smaller than calculated.

Bremsstrahlung from scattered electron


- lacksquare E'_{vertex} is *larger* than E'_{HMS}
- lacktriangle Q²_{vertex} is *larger* than calculated
- W^2_{vertex} is smaller than calculated.

Elastic events at lower Q² radiate to higher Q², W².

Radiative Corrections for inelastic processes

Examples from Jlab E99-118 – aka 'Measurement of elastic cross sections from DIS' (from Dissertation of V. Tvaskis)

- Flastic tails become large as $y=v/E \rightarrow 1$
- > Typically can't use data for y > 0.85 due to large RCs
- \succ Kinematically Limits range for L/T separations at small x.

This tail should be the **same for both** e+ and e- for single photon exhange at the elastic scattering vertex.

At large y this tail becomes a **measure** of the elastic cross section at very low Q²!

=> Can measure ratio at much larger y than SF measurements

Summary of inclusive unpolarized rates

- Would want to measure e+/e- 2γ over significant range in Q², x to determine impact on unpolarized structure functions F_L (F_2).
- This will likely require at least $1\mu A$ positron currents for Hall C/A.
 - more is better, don't set sights too low
- Except at limited kinematics, only CLAS has large enough acceptance for required statistics at $Q^2 > 2$ for $\epsilon < 0.5...$ but ..
 - 1. can not use Rosenbluth separations to check time dependent systematics.
 - 2. can not cancel time dependent systematics as well as bremsstrahlung beam.

This would need to be looked at in detail by CLAs expert.