Estimates of inclusive e+/e- cross sections and structure functions at Jlab Eric Christy Hampton University JPos @ JLab March 25, 2009 # Some things we can learn from unpolarized inelastic scattering with e+ beams 1γ exchange diagram doesn't depend on lepton charge - = 2γ effects in e-p unpolarized SFs Would want some lever arm in ε for e+ / e- ratios. - Some information could already be in HERA data! - = 2 γ effects in e-p transverse target asymmetries For both (1) and (2) the 2- γ contributions flip sign for e+ vs e- - Charge-asymmetry measurements give real part of DVCS amplitude – access to GPDs. (discussed by M. Burkardt, V. Burkert, and N. d'Hose) - Definitive measurements of coulomb corrections for nuclear targets (to be discussed by P. Solvingnon) - need to check 2γ effects with e-p first # 2 photon exchange in inelastic unpolarized scattering. - The impact on the World structure function measurements for charged lepton scattering should be understood as well as possible. Likely to be small correction for F₂. - If significant, this impacts R, F_L measurements from Rosenbluth separations. - \mathbf{F}_{L} DIS measurements can be used in Parton Distribution Fits to constrain the gluon distribution - Must be understood to examine Coulomb distortion effects from e+/e- differences. ### Non-linearities in inelastic ep scattering Linearity studied for World L/T separations. V. Tvaskis, et. al, Phys.Rev.C73:025206, 2006 No evidence for non-linearities in Rosenbluth's for inclusive e-p elastic, resonance, and DIS. Even if 2- γ contributions are linear in ϵ they will have *opposite* signs for e+ and e- => charge ratios will enhance this signal by 2x ### e⁺p/e⁻p differences: Previous Measurements #### **Elastic** Slac data for Q² range shown epsilon dependence hinted at. For both elastic and inelastic e-p the sign of 2γ e-p correction factor flips signs for e⁺ Recent theoretical calculation for unpolarized scattering, V. Pascalutsa, C. Carlson, M. Vanderhaegen, hep-ph/0509055 S. Kondratyuk, P. Blunden, Nucl. Phys. A778, 2006 # 2-y exchange in transverse target spin asymmetry measurements - 2-γ exchange give rise to asymmetry for transversely polarized target. - Asymmetry arises from interference between 1- γ and 2- γ exchange. - Changes sign for e+ versus e-. - Recent calculation estimates ~10⁻⁴ (~10⁸ events with 100% polarization and no dilution.) A. Afanasev, M. Strikman, C. Weiss, Phys.Rev.D77:014028,2008 This is an asymmetry so that most systematics drop out and statistics dominate. # Experimental requirements for testing 2-γ effects in unpolarized e+p scattering - Would want to measure ratio of e+p / e-p inclusive scattering vs virtual photon polarization ε for range in x (W) and Q^2 - F_L is slope. F_L is sensitive to gluon distribution to be included in future global parton distribution fits. - Requires the following - 1) Varing beam energies to reach multiple ε at fixed Q² and x (W). - 2) Good statistical precision (better than 1% on ratio). - 3) Small systematic uncertainties Complete systematic cancellation requires switching of beam polarity on relatively short time scales (minimum of several days?) #### Kinematic dependence of rates At fixed x and Q² the photon flux $\sim E'/E*1/(1-\epsilon)$ => largest rate is when & is largest. Biggest ε is given by largest beam energy and smallest angle. - Could possibly double target length for measuring ratios. - Nuclear target rates scale by ~A Assume 10cm LH₂ target, SHMS acceptance (4 mSr), and 100 nA. - → For $Q^2 > 4$ probably need at least 1uA of current. - \rightarrow Rate limited ε lever arm at lower Q^2 Rate (Hz #### More on rates in Hall C | | <u>E</u> | <u>E'</u> | <u>\theta</u> | <u>X</u> | <u>E</u> | Rate (Hz) | | |--------------------------------|----------------|-------------------|-----------------|----------------------|----------------------|------------------|-------------------------| | $\underline{\mathbf{Q}^2 = 4}$ | 11 | 6.7 | 13 | 0.55 | 0.89 | 17 | | | | 6.6
4.4 | 2.6
0.54 | 28
80 | 0.55
0.55 | 0.64
0.13 | | ong runtime
orget it | | $Q^2 = 2$ | 11
4.4
3 | 8.6
2.0
0.6 | 8.3
27
61 | 0.45
0.45
0.45 | 0.96
0.67
0.27 | 200
5
0.25 | ong runtime | - Rates above Integrated over entire momentum acceptance - Need at least 1 uA beam current for ε < 0.5 Can measure large kinematic range in CLAS at same time, but ϵ pt-pt systematics are typically too large for Rosenbluth separations. However, in e+/e- ratios versus ϵ most systematics drop out similar to Hall B elastic e-p E07-005 (L. Weinstein talk), except that e+/e- are not produced simultanously. #### Uncertainties for e+/e- Structure Function Ratios - In Hall C/A need at least 1 uA to measure SF ratios at ε < 0.5 for $Q^2 > 2$ - Could measure only positrons with a very short e- run to cross check absolute normalization with existing data. - Time dependent systematics are typically small in Hall C and should mostly cancel out. (Luminosity monitor could further help) - Systematics due to reproducebility of HMS spectrometer settings are typically 0.04% and 0.2 mrad for p and theta and well understood. - Can measure in CLAS but would want to do both e+/e- during the same run period to adequately cancel time dependent systematics => reasonably good measurement of e+/e- versus ε possible, but not as good a handle on systematics compared to brems. produced e+/e-. ## Radiative corrections at large y ## Radiative corrections at large y #### Bremsstrahlung from beam electron - lacksquare E_{vertex} is smaller than E_{beam} - $lackbox{Q}^2_{\text{vertex}}$ is smaller than calculated - W^2_{vertex} typically smaller than calculated. #### Bremsstrahlung from scattered electron - lacksquare E'_{vertex} is *larger* than E'_{HMS} - lacktriangle Q²_{vertex} is *larger* than calculated - W^2_{vertex} is smaller than calculated. Elastic events at lower Q² radiate to higher Q², W². #### Radiative Corrections for inelastic processes Examples from Jlab E99-118 – aka 'Measurement of elastic cross sections from DIS' (from Dissertation of V. Tvaskis) - Flastic tails become large as $y=v/E \rightarrow 1$ - > Typically can't use data for y > 0.85 due to large RCs - \succ Kinematically Limits range for L/T separations at small x. This tail should be the **same for both** e+ and e- for single photon exhange at the elastic scattering vertex. At large y this tail becomes a **measure** of the elastic cross section at very low Q²! => Can measure ratio at much larger y than SF measurements ## Summary of inclusive unpolarized rates - Would want to measure e+/e- 2γ over significant range in Q², x to determine impact on unpolarized structure functions F_L (F_2). - This will likely require at least $1\mu A$ positron currents for Hall C/A. - more is better, don't set sights too low - Except at limited kinematics, only CLAS has large enough acceptance for required statistics at $Q^2 > 2$ for $\epsilon < 0.5...$ but .. - 1. can not use Rosenbluth separations to check time dependent systematics. - 2. can not cancel time dependent systematics as well as bremsstrahlung beam. This would need to be looked at in detail by CLAs expert.