ē⁺ @ JLab 000

Jefferson Lab

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Polarized Positron Source at JLab

<u>J. Dumas</u>^{*a,b*}, J. Grames^{*a*}, E. Voutier^{*b*}

^a Jefferson Lab, Newport News, USA ^b LPSC, Grenoble, France

JPOS09, March 25-27, 2009

- 1. Motivations for a \vec{e}^+ source at JLab
- 2. Polarization transfer from \vec{e}^- to \vec{e}^+
- 3. Source considerations
- 4. Demonstration experiment at CEBAF

000		
ē ⁺ @ JLab	Source considerations	Experiment @ CEBAF

Material science

Spin-polarized positron spectroscopy (eV-MeV): $\overrightarrow{e^+}$ annihilation to study the magnetic properties of ferromagnetic materials.

CEBAF

DVCS (6-12 GeV): polarized beam charge asymmetry

$$d^{5}\vec{\sigma}^{-} - d^{5}\vec{\sigma}^{+} \propto \mathcal{T}_{BH} \Re e[\mathcal{T}_{DVCS}] + P_{I} \times \mathcal{T}_{BH} \Im m[\mathcal{T}_{DVCS}]$$

Colliders

ILC/CLIC (TeV): $\overrightarrow{e} - \overrightarrow{e}^+$ affects effective luminosity.

$$L_{eff} = (1 - P_{e^-}P_{e^+}) \times L_0$$

Jefferson Lab

ē ⁺ @ JLab	Source considerations	Experiment @ CEBAF
000		
\vec{e}^+ sources		

 Polarized beta-plus decay: used in material science
Image: I

A. Kawasuso, M. Maekawa, ASS 255 (2008) 108

ē ⁺ @ JLab o●o	Source considerations	Experiment @ CEBAF 000
\vec{e}^+ sources		

 Polarized beta-plus decay: used in material science
**Ne

A. Kawasuso, M. Maekawa, ASS 255 (2008) 108

・ロト ・部ト ・モト ・モト

ē ⁺ @ JLab		Source considerations	Experiment @ CEBAF
000	000	00000	000

A. Kawasuso, M. Maekawa, ASS 255 (2008) 108

G. Alexander et al. PRL 100 (2008) 210801

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

ē ⁺ @ JLab	Source considerations	Experiment @ CEBAF
000		

 Polarized beta-plus decay: used in material science

 ^{#Ne}
 ^{Ne}
 ^{#Ne}
 ^{Ne}

A. Kawasuso, M. Maekawa, ASS 255 (2008) 108

• Helical undulator: colliders

G. Alexander et al. PRL 100 (2008) 210801

• Compton scattering: colliders • beam 1 - 6 GeV y-ray A. Kuriki et al. AIP Conf. Proc. 980(2008) 92

イロト 不得 とうぼう うほう しほう

Jefferson Lab

\vec{e}^+ source based on \vec{e}^- beam

Development of high-P, high-I e- sources over last 2 decades offer capability to be a ~1 MW beam driver for a polarized e+ source at CEBAF injector (10-100MeV)

Jefferson Lab

Polarization	transfers		
	000		
ē ⁺ @ JLab	$\vec{e}^- \rightarrow \vec{e}^+$	Source considerations	Experiment @ CEBAF

Polarized positron production:

Polarization transfers for bremsstrahlung and pair creation were calculated by Olsen & Maximon in 1959.

$$\Delta = \frac{Z^{1/3}}{121} \frac{12\epsilon_1\epsilon_2}{k} \frac{1}{1+k\sin(\theta)} \begin{cases} \Delta < 0.5 & \text{No nucl. screening} \\ 0.5 \leq \Delta < 120 & \text{Intermediate screening} \\ 120 \leq \Delta & \text{Complete screening} \end{cases}$$

H. Olsen, L. Maximon, PR 114 (1959) 887

Jefferson Lab

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

are not valid for fractional energy ~ 0 and ~ 1 (Coulomb corrections ? Screening ? Relativistic approximation ? ...)

Jefferson Lab

3

(日) (四) (三) (三)

 $\Rightarrow \mbox{ Some features of } 0\&\mbox{M calculations} \\ \mbox{are not valid for fractional energy } \sim 0 \mbox{ and } \sim 1 \\ \mbox{ (Coulomb corrections ? Screening ? Relativistic approximation ? ...)} \\ \label{eq:some}$

Jefferson Lab LPSC

3

(日) (四) (三) (三)

 $\Rightarrow {\sf Selecting\ complete\ screening}$

Unphysical results \Rightarrow Correction: $-1 < P_{e^+,long} < 1$

Polarization transfers are currently re-visted

E. Tomasi-Gustafsson, E. Kuraev, in progress

Simulations are performed in the complete screening case.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Positron production and polarization simulations with Geant4

Implementation of Olsen & Maximon's polarization transfers.
+ Cross-sections
+ Depolarization due to other processes
(Moller, Bhabha, Compton scattering, ionization ...)
R. Dollan, K. Laihem, A. Schälicke, NIM A559 (2006) 185

 \Rightarrow Study of the source properties

e⁺ yield e⁺ polarization FoM

e⁺ polarization / yield distribution

CEBAF:

e+ @ JLab

- $E_{e^-} = 60 \text{ MeV}$
- $I_{e^-} = 1 \text{ mA}$
- Polarization= 85%
- Target: W, 100 μm

・ロト ・日下・ ・ 日下

Source considerations

Experiment @ CEBAF

 $\vec{e}^{+} \stackrel{e}{\odot} JL_{ab} \qquad \vec{e}^{-} \rightarrow \vec{e}^{+} \qquad \text{Source considerations} \qquad \text{Experiment @ CEBAF} \\ \vec{ooo} \qquad \vec{oooo} \qquad \vec{ooo} \qquad \vec{oooo} \qquad \vec{oooo} \qquad \vec{oooo} \qquad \vec{oooo} \qquad \vec{oo$

"source" characteristics for E_{e^-} =60 MeV

Simplistic cuts: $\Delta heta_{e^+} = \pm 10^\circ$ and $\Delta E_{e^+} = \pm 0.25$ MeV

 ${\sf FoM} = I_{e^+} \; [{\sf pA}] \times (P_{e^+, long})^2 \; [\%^2]$

Source characteristics vs E_{e^-}

 P_{e^+}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

PSC

ē⁺ @ JLab 000 $\vec{e}^- \rightarrow \vec{e}^+$ 000 Source considerations

Experiment @ CEBAF 000

Target thickness

Target thickness for positron production:

- too small, EM shower is limited
- too large, the positrons are stopped in the target

(日) (四) (三) (三)

 $\vec{e}^- \rightarrow \vec{e}^+$ 000 Source considerations

Experiment @ CEBAF

Target thickness

Target thickness for positron production:

- too small, EM shower is limited
- too large, the positrons are stopped in the target

Depolarization effects: significant for thicknesses above 0.2 X_0 A.P. Potylitsin, NIM A398 (1997) 395

Work in progress

ē ⁺ @ JLab 000	Source considerations	Experiment @ CEBAF ●00

Demonstration experiment

An experiment to test this concept of polarized positron production:

- A polarized electron beam (high-P, high-I)
- CW-SRF accel: $\sim 3-60$ MeV
- A positron beamline with conversion target $+ e^-$ dump
- Diagnostics for e^+/e^- polarization and yield

e⁺ @ JLab Experiment @ CEBAF Source considerations 0.00

Compton transmission polarimetry

- Polarized bremsstrahlung $\vec{e}^{\pm} \rightarrow \vec{\gamma}$
- Magnet removes leptons
- Photon transmission through a magnetized iron target
- Asymmetry $(\sim 1\%)$ due to the polarization sensitivity of Compton scattering
- Calibration against the Mott polarimeter

-

ē ⁺ @ JLab 000	$\vec{e}^- \rightarrow \vec{e}^+$ 000	Source considerations	Experiment @ CEBAF

Experiment layout

G. Alexander et al. PRL 100 (2008) 210801

- e^{\pm} and energy selection: dipoles + collimators
- Compton transmission polarimeter

G4Beamline picture

	000	00000	000
(onclusion			

- The idea of A. Mikhailichenko appears to be an interesting idea, but perhaps not tested because of limited electron sources.
- Development of $\vec{e^{-}}$ sources offers P = 85% and sustainable mA currents possible.

Conclusion			
000	000	00000	000
ē ⁺ @ JLab		Source considerations	Experiment @ CEBAF

- The idea of A. Mikhailichenko appears to be an interesting idea, but perhaps not tested because of limited electron sources.
- Development of \vec{e} sources offers P = 85% and sustainable mA currents possible.
- Calculations of O&M as implemented in GEANT4 provide powerful but limited simulation tool
 → test may be useful for understanding

 \bullet Simulations: e^+ yield ~ 1 nA and $P_{e^+}\sim 60\%$

Conclusion		
ē ⁺ @ JLab	Source considerations	Experiment @ CEBAF

- The idea of A. Mikhailichenko appears to be an interesting idea, but perhaps not tested because of limited electron sources.
- Development of \vec{e} sources offers P = 85% and sustainable mA currents possible.
- Calculations of O&M as implemented in GEANT4 provide powerful but limited simulation tool
 → test may be useful for understanding
- Simulations: e^+ yield ~ 1 nA and $P_{e^+} \sim 60\%$
- Simulations continue for beamline + polarimetry \rightarrow test at CEBAF injector, install e^+ beamline, polarimetry from MIT-Bates.

Jefferson Lab