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Facilities at Idaho State University
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Idaho Accelerator Center
created by Idaho State Board of Education in 1994
built in 1999

Mission:
- undergraduate and graduate education
- applied nuclear physics research
- new accelerator physics applications
- support economic development of Idaho

5 research facilities,
most numerous and diverse collection of research accelerators in the nation

http://iac.isu.edu

3

http://iac.isu.edu
http://iac.isu.edu


IAC Main Campus

Accelerator Lab #1

Accelerator Lab #2

ISIS Lab
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IAC Main Campus: Accelerator Lab #1

44-MeV Short Pulsed Linac
- 1.3 GHz L-band traveling-wave linac
- 50 ps to 4 μs pulse width
- 120 Hz rep rate
- 5 nC/pulse (50 ps width)
- 2 µC/pulse (4 µs width)
- 4 MeV - 44 MeV energy range
- 0.5% - 4% energy resolution

Lab workhorse:
- neutron time-of-flight spectrometry
- laser Compton scattering
- ...
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25-MeV Linac
- 2.8 GHz S-band standing-wave linac
- 0.5 µs to 4 µs pulse width
- 600 Hz rep rate
- 40 nC/pulse (0.5 µs width)
- 350 nC/pulse (4 µs width)
- 5 MeV - 25 MeV energy range
- 5% energy resolution

Versatile machine:
- delayed neutron and gamma-ray signature for material identification
- irradiation damage testing on PbF2 crystals for JLab Hall-A DVCS calorimeter
- wire detector efficiency measurements for CLAS12

IAC Main Campus: Accelerator Lab #1
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IAC Main Campus: ISIS Lab

7700 sq ft high-bay lab

Idaho State Induction accelerator System 
(ISIS)
- high-intensity, pulsed-power machine
- 3-MeV electron injector
- 10-cell, spiral-shaped induction accelerator
- 9.5-MeV 10-kA 35-ns pulse every 2 min
- 0.1 TW instantaneous power!

- radiation effects in electronic and biological systems
- single-pulse detection of fissionable material
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Physical Sciences Building: HRRL Lab

PSB basement:
- 400 sq ft accelerator hall
- 700 sq ft shielded experimental area

High Repetition Rate Linac (HRRL)
- 2.8 GHz S-band standing-wave 
linac
- 70 ns pulse width
- 1.2 kHz rep rate
- 8.4 nC/pulse
- 3 MeV - 16 MeV energy range
- 8% energy resolution

- role of γ polarization in photofission
- calibration of CLAS12 wire chambers
- tests of positron production for CEBAF?
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Positron annihilation spectroscopy 
at the IAC
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Positron annihilation spectroscopy is a powerful technique 
to detect defects in materials

Annihilation time and shape of Doppler-broadened 511-keV peak 
are sensitive to local structure of materials
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Surface map of defect density obtained for copper samples 
shot-peened at different intensities

Positrons from 22Na source can probe surface effects

Gagliardi and Hunt, CAARI 08, AIP Conf. Proc. 1099, 857 (2009)
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Hunt et al., Nucl. Instr. Meth. B 241, 262 (2005)

Photo-activation with bremsstrahlung beams from ~20 MeV 
electron linacs allows one to map large-area samples and probe 
greater depths (~cm).

Needs material for which (γ,n) reaction yields β+ emitter
Sample remains activated

Technique successfully commercialized (Positron Systems, Inc.)
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data. Fig. 3 shows a two-dimensional color scale
image of the FWHM of the 511 keV annihilation
line. The spatial resolution was !1 cm. In the
highly damaged region of the plate where the posi-
trons predominately trap in defects, the measured
FWHM narrows over 3.5 standard deviations.
The damaged region appears to extend out as far
as 2 cm but with the poor statistics and limited
resolutions it is difficult to draw any definitive
conclusions.

3. Conclusion

These preliminary results demonstrate how posi-
tron annihilation spectroscopy can image dam-
aged regions in large structural components. The
photo-activation technique, however, has some
shortcomings. First, after irradiation any object
will undoubtedly be quite radioactive and is a
potential radiation safety concern. Second, the
constituent nuclei of the object to be imaged must
be suitable for defect imaging by photo-activation.
This includes having a component from which a
positron emitting radioisotope can be created in
(c,n) reactions with suitable activity and half-life.
For example, the only positron emitting radioiso-
tope that can be made in large quantities in iron

(a common structural material) from photo-acti-
vation is 53Fe. Unfortunately, 53Fe only has a
half-life of 8.5 min, making it difficult to image a
large region. Finally, any additional radioisotopes
produced in the material cannot emit c-rays that
interfere with the annihilation line directly or indi-
rectly by producing count rates too high in the
detector.

The positron–electron pair creation technique
overcomes the reliance on photo-nuclear reaction
and the resulting radioisotopes by using pair crea-
tion to generate the positrons in the material.
While this method benefits from using high Z
materials, it has been successfully applied to alumi-
num, which has Z = 13. Imaging capabilities can
be added to this technique in a manner similar to
the photo-activation method. A schematic of an
experimental arrangement is presented in Fig. 4.
An electron accelerator generates a bremsstrah-
lung beam that is hardened by low Z absorbers
and is then directed through a collimator in the
wall. The highly collimated photon beam impinges
on the specimen creating positron–electron pairs.
A well shielded HPGe detector records the annihi-
lation c-rays from a voxel inside the object. By
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Fig. 3. Two-dimensional color scale image of the 511 keV
FWHM from the Cu plate. A total of 33 c-ray spectra were
collected in 1 cm steps. The color scale goes from red
representing the narrowest peak to blue representing the
broadest peak. The FWHM is measured in ADC channels
with 84.7 eV per channel.
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Fig. 4. Schematic drawing of a three-dimensional defect
imaging systems. A DC electron accelerator (not shown) to
the left of the wall produces the !10 MeV bremsstrahlung beam
which is incident on the specimen. The object is on a translation
and rotation stage allowing three-dimensional defect maps to be
created.

A.W. Hunt et al. / Nucl. Instr. and Meth. in Phys. Res. B 241 (2005) 262–266 265

Photon-induced pair production from ~10-MeV bremsstrahlung beam 
also used to probe large-area samples up to ~cm depths
Better for high-Z material, but demonstrated down to Al (Z=13)
No material activation (below neutron emission threshold)

Higher γ background

Makarashvili et al., CAARI 08, AIP Conf. Proc. 1099, 900 (2009)
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- proposed in the past
- potential synergy with
  prototype e+ source for CEBAF

Facilities for material defect analysis
with positron annihilation spectroscopy at the IAC

Photo-activation
- 20-MeV e- beam
- large samples, ~cm depths
- needs β+ emitter from (γ,n)
- sample is activated

✔ Photon-induced pair production
- 10-MeV e- beam
- large samples, ~cm depths
- better for high-Z
- higher γ background

✔

22Na source
- cheap
- low intensity
- low energy (surface maps)
- low backgrounds

✔ eV to MeV positron beam
- ~kW e- linac
- converter + moderator + transport
- sample size limited by
  vacuum chamber volume
- high intensity
- controllable depth
- low backgrounds
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A prototype positron source for CEBAF
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(1) inner structure of the proton

Generalized Parton Distributions 
of the nucleon accessible by 
measuring amplitude of deeply 
virtual Compton scattering in the 
process

e p→ e p γ

Beam charge asymmetry related 
to real part of DVCS amplitude; 
beam helicity asymmetry related 
to imaginary part

(2) role of two-photon amplitudes 
in nucleon form factors

Discrepancy between Rosenbluth 
separation and polarization 
transfer measurements probably 
due to two-photon processes

Deviation from unity of ratio 
between elastic e+ p and e- p 
scattering would be direct 
evidence of multiple photon 
exchange

Three proposed experiments:
- VEPP-3 (arXiv:nucl-ex/0408020)
- JLab/CLAS (PAC31, 12/06)
- DESY/OLYMPUS

Scientific motivation
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Positron sources:

pair production
More common for accelerators:
- higher phase-space density
- controllable time structure

“Conventional” sources (SLAC, KEK, VEPP-5, Frascati, ...) and ILC designs
- exploit multi-GeV primary electron beams
- are pulsed

<=

Positron source for CEBAF?
- useful for JLab physics
- minimal impact on 12-GeV upgrade
- compact, low-cost

β+ radioactive decay
e.g., 22Na, 2.6 y half life
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Concept of “low energy” continuous positron source:
- 10-mA, 5 to 120 MeV CW electron beam
- ~0.5-mm tungsten radiator target
- collection and energy selection with quadrupole triplets

Goal: maximize yield into CEBAF admittance
         1 µm (geometrical) transverse
         ± 2% longitudinal

Advantages :)
- compact, low-cost primary beam, similar to CEBAF or FEL injectors
- below neutron activation threshold
- energy spread of positron limited by primary electron energy
- unique continuous source

Disadvantages :(
- lower pair-production cross section
- large divergence of positron beam
- heat load on target
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Positrons emerging from radiator target
(GEANT4 calculation)

rad

1.5 rad!
20%

backscattered

Dumas, Internship Report, LPSC Grenoble, June 2007

Total forward production:
8E-4 e+/e-

e-: 10 MeV, 0.5 mm rms
W: 0.5 mm

Large divergence
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Paradigm emerging after optimization:
- 10-mA 10-MeV primary electron beam, 0.5 mm rms transverse size
- 0.5 mm tungsten radiator target
- collection and momentum selection with quadrupole triplets

Sarma, J. Phys. D 36, 1896 (2003)

Golge et al., PAC07, p. 3133

Yield after collimator
(G4BEAMLINE calculation)
20 nA e+ (2E-6 e+/e-) at 3 MeV/c

collimator
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Targets that can withstand 100 kW CW beam power 
include rotating metal targets and liquid metal targets

Logachev et al., APAC07, p. 97

(beam energy) × (# electrons in 100 ns)
(beam cross section)

CEBAF positron source?
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Radiation-cooled rotating steel wheels supporting graphite targets 
for radioactive ion beam production have been shown to withstand 
electron beam average power densities of 70 kW/cm2

Alyakrinskiy et al., NIM A 578, 357 (2007)

340-mm diameter, operate at 1200-3000 rpm, 2200 K
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Liquid lead-tin targets for pulsed ILC beams are being developed by 
the same group at BINP Novosibirsk

Belov et al., PAC01, p. 1505 Logachev et al., APAC07, p. 97
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Demonstrated pumping of Pb-Sn alloy at 600 K with cogwheels for 15000 h

Tests of prototype planned at KEKB
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Can the concept of a low-energy (~MeV) positron source for CEBAF 
be tested at the IAC?

Goals:

- measure yields and phase-space distributions

- implement collection optics

- test target designs (max. avg. beam power at IAC is ~10 kW)
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First tests of positron production at IAC
25-MeV linac in Accelerator Lab #1

February and May 2008

10-MeV e-

40 nA peak
4-mm rms spot
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Positron signal observed with HPGe detectors

Need to improve:
- beam control
- beam optics
- diagnostics
- γ background

More permanent setup desirable
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HRRL

HRRL Lab at PSB
to test prototype positron sources?

- maintain or improve electron and photon capability
- need to move HRRL? => dose measurements
- use existing dipoles and quads
- need correctors and diagnostics

19 T/m, 1” quads

45o, “Kiwi” dipoles
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Conclusions

Thank you for your attention!

The Idaho Accelerator Center is a unique research facility.

Positron annihilation spectroscopy successfully used to probe local 
material defects; positrons produced by radioactive sources, photo-
activation, and photon-induced pair production.

Currently investigating possibility to build prototype of a continuous 
positron source for CEBAF.
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