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Outline

probing GPDs in DVCS

Ji-relation

GPDs: probabilistic interpretation as Fourier transforms of impact
parameter dependent PDFs

H(x, 0,−∆2
⊥

) −→ q(x,b⊥)

H̃(x, 0,−∆2
⊥

) −→ ∆q(x,b⊥)

E(x, 0,−∆2
⊥

)

→֒⊥ deformation of unpol. PDFs in ⊥ pol. target

more on DVCS −→ GPDs

Summary

GPDs and DVCS with Positrons – p.2/21



Generalized Parton Distributions (GPDs)

GPDs: decomposition of form factors at a given value of t, w.r.t. the
average momentum fraction x = 1

2 (xi + xf ) of the active quark

∫

dxHq(x, ξ, t) = F
q
1 (t)

∫

dxH̃q(x, ξ, t) = G
q
A(t)

∫

dxEq(x, ξ, t) = F
q
2 (t)

∫

dxẼq(x, ξ, t) = G
q
P (t),

xi and xf are the momentum fractions of the quark before and
after the momentum transfer
2ξ = xf − xi

GPDs can be probed in deeply virtual Compton scattering (DVCS)
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Phase of DVCS Amplitude
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σ = |ABH +ADV CS |
2

= |ABH |
2

+ |ADV CS |
2

+ 2ℜ{ABHA
∗

DV CS}

→֒ clean separation of real part with beam charge asymmetry (e+ v.
e−)

ℜADV CS(ξ, t) ∼

∫ 1

−1

dx
GPD(x, ξ, t)

x− ξ

ℑADV CS(ξ, t) ∼ GPD(ξ, ξ, t) from beam spin asymmetry
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Generalized Parton Distributions (GPDs)

formal definition (unpol. quarks):

∫

dx−

2π
eix−p̄+x

〈

p′
∣

∣

∣

∣

q̄

(

−
x−

2

)

γ+q

(

x−

2

)
∣

∣

∣

∣

p

〉

= H(x, ξ, ∆2)ū(p′)γ+u(p)

+E(x, ξ, ∆2)ū(p′)
iσ+ν∆ν

2M
u(p)

in the limit of vanishing t and ξ, the nucleon non-helicity-flip GPDs
must reduce to the ordinary PDFs:

Hq(x, 0, 0) = q(x) H̃q(x, 0, 0) = ∆q(x).

DVCS amplitude

A(ξ, t) ∼

∫ 1

−1

dx

x− ξ + iε
GPD(x, ξ, t)
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Ji Relation

Interesting observation: X.Ji, PRL78,610(1997)

〈Jq〉 =
1

2

∫ 1

0

dxx [Hq(x, 0, 0) + Eq(x, 0, 0)]

DVCS ⇔ GPDs ⇔ ~Jq

lattice QCD (LHPC,QCDSF)

Lu + Ld ≈ 0
(disconnected diagrams?)

Lu − Ld < 0!

But: what other “physical
information” about the nucleon
can we obtain by measuring/
calculating GPDs?
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Form Factors vs. GPDs

operator

q̄γ+q

∫

dx−eixp+x−

4π q̄
(

−x−

2

)

γ+q
(

x−

2

)

forward
matrix elem.

Q

q(x)

off-forward
matrix elem.

F (t)

H(x, ξ, t)

position space

ρ(~r)

?
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Form Factors vs. GPDs

operator

q̄γ+q

∫

dx−eixp+x−

4π q̄
(

−x−

2

)

γ+q
(

x−

2

)

forward
matrix elem.

Q

q(x)

off-forward
matrix elem.

F (t)

H(x, 0, t)

position space

ρ(~r)

q(x,b⊥)

q(x,b⊥) = impact parameter dependent PDF
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Impact parameter dependent PDFs

define ⊥ localized state [D.Soper,PRD15, 1141 (1977)]

∣

∣p+,R⊥ = 0⊥, λ
〉

≡ N

∫

d2p⊥

∣

∣p+,p⊥, λ
〉

Note: ⊥ boosts in IMF form Galilean subgroup⇒ this state has
R⊥ ≡

1
P+

∫

dx−d2x⊥ x⊥T++(x) =
∑

i xiri,⊥ = 0⊥

(cf.: working in CM frame in nonrel. physics)

define impact parameter dependent PDF

q(x,b⊥) ≡

∫

dx−

4π

〈

p+,R⊥ = 0⊥

∣

∣ q̄(−
x−

2
,b⊥)γ+q(

x−

2
,b⊥)

∣

∣p+,R⊥ = 0⊥

〉

eixp+x−

→֒
q(x,b⊥) =

∫

d2
∆⊥

(2π)2 ei∆⊥·b⊥H(x, 0,−∆2
⊥

),

∆q(x,b⊥) =
∫

d2
∆⊥

(2π)2 ei∆⊥·b⊥H̃(x, 0,−∆2
⊥

),
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Impact parameter dependent PDFs

No relativistic corrections (Galilean subgroup!)

→֒ corrolary: interpretation of 2d-FT of F1(Q
2) as charge density in

transverse plane also free from relativistic corrections

q(x,b⊥) has probabilistic interpretation as number density
(∆q(x,b⊥) as difference of number densities)

Reference point for IPDs is transverse center of (longitudinal)
momentum R⊥ ≡

∑

i xiri,⊥

→֒ for x→ 1, active quark ‘becomes’ COM, and q(x,b⊥) must
become very narrow (δ-function like)

→֒ H(x, 0,−∆2
⊥

) must become ∆⊥ indep. as x→ 1 (MB, 2000)

→֒ consistent with lattice results for first few moments

Note that this does not necessarily imply that ‘hadron size’ goes to
zero as x→ 1, as separation r⊥ between active quark and COM
of spectators is related to impact parameter b⊥ via r⊥ = 1

1−xb⊥.
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Transversely Deformed Distributions andE(x, 0,−∆2
⊥)

M.B., Int.J.Mod.Phys.A18, 173 (2003)

So far: only unpolarized (or long. pol.) nucleon! In general (ξ = 0):

∫

dx−

4π eip+x−x 〈P+∆,↑|q̄(0) γ+q(x−)|P,↑〉 = H(x,0,−∆2
⊥

)
∫

dx−

4π eip+x−x 〈P+∆,↑|q̄(0) γ+q(x−)|P,↓〉 = −∆x−i∆y

2M E(x,0,−∆2
⊥

).

Consider nucleon polarized in x direction (in IMF)
|X〉 ≡ |p+,R⊥ = 0⊥, ↑〉+ |p+,R⊥ = 0⊥, ↓〉.

→֒ unpolarized quark distribution for this state:

q(x,b⊥) = H(x,b⊥)−
1

2M

∂

∂by

∫

d2∆⊥

(2π)2
E(x, 0,−∆2

⊥
)e−ib⊥·∆⊥

Physics: j+ = j0 + j3, and left-right asymmetry from j3 !
[X.Ji, PRL 91, 062001 (2003)]
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Intuitive connection with ~Jq

DIS probes quark momentum density in the infinite momentum
frame (IMF). Quark density in IMF corresponds to j+ = j0 + j3

component in rest frame (~pγ∗ in −ẑ direction)

→֒ j+ larger than j0 when quark current towards the γ∗;
suppressed when away from γ∗

→֒ For quarks with positive orbital angular momentum in x̂-direction,
jz is positive on the +ŷ side, and negative on the −ŷ side

~pγ
ẑ

ŷ
jz > 0

jz < 0
Details of ⊥ deformation described by Eq(x, 0,−∆2

⊥
)

→֒ not surprising that Eq(x, 0,−∆2
⊥

) enters Ji relation!

〈

J i
q

〉

= Si

∫

dx [Hq(x, 0, 0) + Eq(x, 0, 0)] x.
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Transversely Deformed PDFs andE(x, 0,−∆2
⊥)

q(x,b⊥) in ⊥ polarized nucleon is deformed compared to
longitudinally polarized nucleons !

mean ⊥ deformation of flavor q (⊥ flavor dipole moment)

dq
y ≡

∫

dx

∫

d2b⊥qX(x,b⊥)by =
1

2M

∫

dxEq(x, 0, 0) =
κp

q

2M

with κ
p
u/d ≡ F

u/d
2 (0) = O(1− 2) ⇒ dq

y = O(0.2fm)

simple model: for simplicity, make ansatz where Eq ∝ Hq

Eu(x, 0,−∆2
⊥

) =
κp

u

2
Hu(x, 0,−∆2

⊥
)

Ed(x, 0,−∆2
⊥

) = κ
p
dHd(x, 0,−∆2

⊥
)

with κp
u = 2κp + κn = 1.673 κ

p
d = 2κn + κp = −2.033.

Model too simple but illustrates that anticipated deformation is
very significant since κu and κd known to be large!
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IPDs on the lattice (Hägler et al.)

lowest moment of distribution of unpol. quarks in ⊥ pol. proton
(left) and of ⊥ pol. quarks in unpol. proton (right):
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GPD←→ SSA (Sivers)

example: γp→ πX

~pγ ~pN d

u

π+

u, d distributions in ⊥ polarized proton have left-right asymmetry in
⊥ position space (T-even!); sign “determined” by κu & κd

attractive FSI deflects active quark towards the center of momentum

→֒ FSI translates position space distortion (before the quark is
knocked out) in +ŷ-direction into momentum asymmetry that
favors −ŷ direction

→֒ correlation between sign of κp
q and sign of SSA: f

⊥q
1T ∼ −κp

q

f
⊥q
1T ∼ −κp

q confirmed by HERMES data (also consistent with

COMPASS deuteron data f⊥u
1T + f⊥d

1T ≈ 0)
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GPD←→ ḡ2 (twist-3 polarized DIS)

σLT in polarized DIS −→ g1 + g2

g1 −→ spin fraction carried by quark spin

g2 (after subtracting ‘Wandzura-Wilzcek piece’) sensitive to quark
gluon correlations d2 ∼

∫

dxx2ḡ2(x)

→֒ (MB, arXiv 0810.3589) ⊥ color Lorentz force acting on quark in
DIS from ⊥ polarized target

⊥ deformation of q(x,b⊥) provides intuitive explanation for sign of
d2
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DVCS GPD(x, ξ, t)

ℑADV CS(ξ, t) ∼ GPD(ξ, ξ, t)

ℜADV CS ∼
∫

dx
GPD(x,ξ,t)

x−ξ

dispersion relation⇒ ℜADV CS ∼
∫

dx
GPD(x,x,t)

x−ξ + ∆(t)

→֒ In addition to information along diagonal x = ξ that is also
available from ℑADV CS(ξ, t) ℜADV CS provides access to

GPDs along diagonal that is not kinematically accessible
through ℑADV CS(ξ, t)

‘D-form factor’ ∆ (Polyakov Weiss)

Ji relation requires GPDs(x, ξ, t) for −1 < x < 1 at fixed ξ

q(x,b⊥) requires GPDs(x, 0, t)
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DVCS GPD(x, ξ, t)

Information away from diagonal (x = ξ):
ℜADV CS (positrons!) ⇒ D−form factor
polynomiality condition: n-th Mellin moment of GPD(x, ξ)
must be even polynomial in ξ of order n

→֒ GPD(x, ξ) cannot depend on variables x and ξ completely
independently

Q2 evolution: changes x distribution in a known way for fixed ξ

Double Deeply Virtual Compton Scattering D2V CS (lepton
pair instead of real photon in final state)
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DVCS GPD(x, ξ, t)

example: dispersion relations/polynomiality⇒

∫ 1

−1

dx
H(+)(x, 0, t)

x
=

∫ 1

−1

dx
H(+)(x, x, t)

x
+ ∆(t)

→֒ DVCS allows access to same generalized form factor
∫ 1

−1
dx

H(+)(x,0,t)
x also available in WACS (wide angle Compton

scattering), but t does not have to be of order Q2

→֒ after flavor separation, comparing 1
F1(t)

∫ 1

−1
dx

H(+)(x,0,t)
x at large t

provides information about the ‘typical x’ that dominates large t

form factor
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Summary

Deeply Virtual Compton Scattering⇒ GPDs

beam charge asymmetry⇒ clean separation of ℜADV CS

GPDs FT
←→ IPDs (impact parameter dependent PDFs)

H(x, 0,−∆2
⊥

)
FT
−→ q(x,b⊥) for unpolarized target

∆⊥E(x, 0,−∆2
⊥

)
FT
−→⊥ deformation of PDFs for ⊥ polarized target

→֒ κq/p ⇒ sign of deformation

→֒ attractive FSI⇒ f⊥u
1T < 0 & f⊥d

1T > 0

→֒ Interpretation of sign of M2d2 ≡ 3M2
∫

dxx2ḡ2(x) as sign of⊥
force on active quark in DIS on ⊥ polarized target

ℑADV CS only sensitive to GPDs(ξ, ξ, t)

use ℜADV CS /polynomiality/dispersion relations/
Q2-evolution/DDVCS to get information on GPDs(x, ξ, t) for x 6= ξ
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