# GPDs and DVCS with Positrons 

Matthias Burkardt

burkardt@nmsu.edu

New Mexico State University \& Jefferson Lab

## Outline

- probing GPDs in DVCS
- Ji-relation
- GPDs: probabilistic interpretation as Fourier transforms of impact parameter dependent PDFs
- $H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \longrightarrow q\left(x, \mathbf{b}_{\perp}\right)$
- $\tilde{H}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \longrightarrow \Delta q\left(x, \mathbf{b}_{\perp}\right)$
- $E\left(x, 0,-\Delta_{\perp}^{2}\right)$
$\hookrightarrow \perp$ deformation of unpol. PDFs in $\perp$ pol. target
- more on DVCS $\longrightarrow$ GPDs
- Summary


## Generalized Parton Distributions (GPDs)

- GPDs: decomposition of form factors at a given value of $t$, w.r.t. the average momentum fraction $x=\frac{1}{2}\left(x_{i}+x_{f}\right)$ of the active quark

$$
\begin{array}{rlr}
\int d x H_{q}(x, \xi, t) & =F_{1}^{q}(t) \quad \int d x \tilde{H}_{q}(x, \xi, t)=G_{A}^{q}(t) \\
\int d x E_{q}(x, \xi, t) & =F_{2}^{q}(t) \quad \int d x \tilde{E}_{q}(x, \xi, t)=G_{P}^{q}(t)
\end{array}
$$

- $x_{i}$ and $x_{f}$ are the momentum fractions of the quark before and after the momentum transfer
- $2 \xi=x_{f}-x_{i}$
- GPDs can be probed in deeply virtual Compton scattering (DVCS)



## Phase of DVCS Amplitude





- $\sigma=\left|\mathcal{A}_{B H}+\mathcal{A}_{D V C S}\right|^{2}=\left|\mathcal{A}_{B H}\right|^{2}+\left|\mathcal{A}_{D V C S}\right|^{2}+2 \Re\left\{\mathcal{A}_{B H} \mathcal{A}_{D V C S}^{*}\right\}$
$\hookrightarrow$ clean separation of real part with beam charge asymmetry ( $e^{+} \mathrm{v}$. $e^{-}$)

$$
\Re \mathcal{A}_{D V C S}(\xi, t) \sim \int_{-1}^{1} d x \frac{G P D(x, \xi, t)}{x-\xi}
$$

- $\Im \mathcal{A}_{D V C S}(\xi, t) \sim G P D(\xi, \xi, t)$ from beam spin asymmetry


## Generalized Parton Distributions (GPDs)

- formal definition (unpol. quarks):

$$
\begin{aligned}
\int \frac{d x^{-}}{2 \pi} e^{i x^{-} \bar{p}^{+} x}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)|p\rangle & =H\left(x, \xi, \Delta^{2}\right) \bar{u}\left(p^{\prime}\right) \gamma^{+} u(p) \\
+ & E\left(x, \xi, \Delta^{2}\right) \bar{u}\left(p^{\prime}\right) \frac{i \sigma^{+\nu} \Delta_{\nu}}{2 M} u(p)
\end{aligned}
$$

- in the limit of vanishing $t$ and $\xi$, the nucleon non-helicity-flip GPDs must reduce to the ordinary PDFs:

$$
H_{q}(x, 0,0)=q(x) \quad \tilde{H}_{q}(x, 0,0)=\Delta q(x)
$$

- DVCS amplitude

$$
\mathcal{A}(\xi, t) \sim \int_{-1}^{1} \frac{d x}{x-\xi+i \varepsilon} G P D(x, \xi, t)
$$

## Ji Relation

- Interesting observation: X.Ji, PRL78,610(1997)

$$
\begin{gathered}
\left\langle J_{q}\right\rangle=\frac{1}{2} \int_{0}^{1} d x x\left[H_{q}(x, 0,0)+E_{q}(x, 0,0)\right] \\
\text { DVCS } \Leftrightarrow \text { GPDs } \Leftrightarrow \vec{J}_{q}
\end{gathered}
$$

- lattice QCD (LHPC,QCDSF)
- $L^{u}+L^{d} \approx 0$
(disconnected diagrams?)
- $L^{u}-L^{d}<0$ !
- But: what other "physical information" about the nucleon can we obtain by measuring/ calculating GPDs?



## Form Factors vs. GPDs

| operator | forward <br> matrix elem. | off-forward <br> matrix elem. | position space |
| :---: | :--- | :---: | :---: |
| $\bar{q} \gamma^{+} q$ | $Q$ | $F(t)$ | $\rho(\vec{r})$ |
| $\int \frac{d x^{-} e^{i x p^{+}} x^{-}}{4 \pi} \bar{q}\left(\frac{-x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)$ | $q(x)$ | $H(x, \xi, t)$ | $?$ |

## Form Factors vs. GPDs

| operator | forward <br> matrix elem. | off-forward <br> matrix elem. | position space |
| :---: | :--- | :---: | :---: |
| $\bar{q} \gamma^{+} q$ | $Q$ | $F(t)$ | $\rho(\vec{r})$ |
| $\int \frac{d x^{-} e^{i x p^{+}} x^{-}}{4 \pi} \bar{q}\left(\frac{-x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)$ | $q(x)$ | $H(x, 0, t)$ | $q\left(x, \mathbf{b}_{\perp}\right)$ |

$q\left(x, \mathbf{b}_{\perp}\right)=$ impact parameter dependent PDF

## Impact parameter dependent PDFs

- define $\perp$ localized state [D.Soper,PRD15, 1141 (1977)]

$$
\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \lambda\right\rangle \equiv \mathcal{N} \int d^{2} \mathbf{p}_{\perp}\left|p^{+}, \mathbf{p}_{\perp}, \lambda\right\rangle
$$

Note: $\perp$ boosts in IMF form Galilean subgroup $\Rightarrow$ this state has
$\mathbf{R}_{\perp} \equiv \frac{1}{P^{+}} \int d x^{-} d^{2} \mathbf{x}_{\perp} \mathbf{x}_{\perp} T^{++}(x)=\sum_{i} x_{i} \mathbf{r}_{i, \perp}=\mathbf{0}_{\perp}$ (cf.: working in CM frame in nonrel. physics)

- define impact parameter dependent PDF

$$
q\left(x, \mathbf{b}_{\perp}\right) \equiv \int \frac{d x^{-}}{4 \pi}\left\langle p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right| \bar{q}\left(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right) \gamma^{+} q\left(\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right)\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right\rangle e^{i x p^{+} x^{-}}
$$

$$
\begin{aligned}
q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right), \\
\Delta q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \boldsymbol{D}_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} \tilde{H}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right),
\end{aligned}
$$

## Impact parameter dependent PDFs

- No relativistic corrections (Galilean subgroup!)
$\hookrightarrow$ corrolary: interpretation of 2d-FT of $F_{1}\left(Q^{2}\right)$ as charge density in transverse plane also free from relativistic corrections
- $q\left(x, \mathbf{b}_{\perp}\right)$ has probabilistic interpretation as number density ( $\Delta q\left(x, \mathbf{b}_{\perp}\right)$ as difference of number densities)
- Reference point for IPDs is transverse center of (longitudinal) momentum $\mathbf{R}_{\perp} \equiv \sum_{i} x_{i} \mathbf{r}_{i, \perp}$
$\hookrightarrow$ for $x \rightarrow 1$, active quark 'becomes' COM, and $q\left(x, \mathbf{b}_{\perp}\right)$ must become very narrow ( $\delta$-function like)
$\hookrightarrow H\left(x, 0,-\Delta_{\perp}^{2}\right)$ must become $\boldsymbol{\Delta}_{\perp}$ indep. as $x \rightarrow 1$ (MB, 2000)
$\hookrightarrow$ consistent with lattice results for first few moments
- Note that this does not necessarily imply that 'hadron size' goes to zero as $x \rightarrow 1$, as separation $\mathbf{r}_{\perp}$ between active quark and COM of spectators is related to impact parameter $\mathbf{b}_{\perp}$ via $\mathbf{r}_{\perp}=\frac{1}{1-x} \mathbf{b}_{\perp}$.


## Transversely Deformed Distributions and $E\left(x, 0,-\Delta_{\perp}^{2}\right.$

M.B., Int.J.Mod.Phys.A18, 173 (2003)

- So far: only unpolarized (or long. pol.) nucleon! In general $(\xi=0)$ :

$$
\begin{aligned}
\int \frac{d x^{-}}{4 \pi} e^{i p^{+} x^{-} x}\langle P+\Delta, \uparrow| \bar{q}(0) \gamma^{+} q\left(x^{-}\right)|P, \uparrow\rangle & =H\left(x, 0,-\Delta_{\perp}^{2}\right) \\
\int \frac{d x^{-}}{4 \pi} e^{i p^{+} x^{-} x}\langle P+\Delta, \uparrow| \bar{q}(0) \gamma^{+} q\left(x^{-}\right)|P, \downarrow\rangle & =-\frac{\Delta_{x^{-} i \Delta_{y}}^{2 M}}{2 M}\left(x, 0,-\Delta_{\perp}^{2}\right)
\end{aligned}
$$

- Consider nucleon polarized in $x$ direction (in IMF)

$$
|X\rangle \equiv\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \uparrow\right\rangle+\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \downarrow\right\rangle
$$

$\hookrightarrow$ unpolarized quark distribution for this state:

$$
q\left(x, \mathbf{b}_{\perp}\right)=\mathcal{H}\left(x, \mathbf{b}_{\perp}\right)-\frac{1}{2 M} \frac{\partial}{\partial b_{y}} \int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} E\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}
$$

- Physics: $j^{+}=j^{0}+j^{3}$, and left-right asymmetry from $j^{3}$ ! [X.Ji, PRL 91, 062001 (2003)]


## Intuitive connection with $\vec{J}_{q}$

- DIS probes quark momentum density in the infinite momentum frame (IMF). Quark density in IMF corresponds to $j^{+}=j^{0}+j^{3}$ component in rest frame ( $\vec{p}_{\gamma^{*}}$ in $-\hat{z}$ direction)
$\hookrightarrow j^{+}$larger than $j^{0}$ when quark current towards the $\gamma^{*}$; suppressed when away from $\gamma^{*}$
$\hookrightarrow$ For quarks with positive orbital angular momentum in $\hat{x}$-direction, $j^{z}$ is positive on the $+\hat{y}$ side, and negative on the $-\hat{y}$ side

$\hookrightarrow$ not surprising that $E_{q}\left(x, 0,-\Delta_{\perp}^{2}\right)$ enters Ji relation!

$$
\left\langle J_{q}^{i}\right\rangle=S^{i} \int d x\left[H_{q}(x, 0,0)+E_{q}(x, 0,0)\right] x
$$

## Transversely Deformed PDFs and $E\left(x, 0,-\Delta_{\perp}^{2}\right)$

- $q\left(x, \mathbf{b}_{\perp}\right)$ in $\perp$ polarized nucleon is deformed compared to longitudinally polarized nucleons !
- mean $\perp$ deformation of flavor $q$ ( $\perp$ flavor dipole moment)

$$
d_{y}^{q} \equiv \int d x \int d^{2} \mathbf{b}_{\perp} q_{X}\left(x, \mathbf{b}_{\perp}\right) b_{y}=\frac{1}{2 M} \int d x E_{q}(x, 0,0)=\frac{\kappa_{q}^{p}}{2 M}
$$

with $\kappa_{u / d}^{p} \equiv F_{2}^{u / d}(0)=\mathcal{O}(1-2) \quad \Rightarrow \quad d_{y}^{q}=\mathcal{O}(0.2 f m)$

- simple model: for simplicity, make ansatz where $E_{q} \propto H_{q}$

$$
\begin{aligned}
& E_{u}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)=\frac{\kappa_{u}^{p}}{2} H_{u}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \\
& E_{d}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)=\kappa_{d}^{p} H_{d}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)
\end{aligned}
$$

with $\kappa_{u}^{p}=2 \kappa_{p}+\kappa_{n}=1.673 \quad \kappa_{d}^{p}=2 \kappa_{n}+\kappa_{p}=-2.033$.

- Model too simple but illustrates that anticipated deformation is very significant since $\kappa_{u}$ and $\kappa_{d}$ known to be large!



## IPDs on the lattice (Hägler et al.)

- lowest moment of distribution of unpol. quarks in $\perp$ pol. proton (left) and of $\perp$ pol. quarks in unpol. proton (right):



## GPD $\longleftrightarrow$ SSA (Sivers)

- example: $\gamma p \rightarrow \pi X$

- $u, d$ distributions in $\perp$ polarized proton have left-right asymmetry in $\perp$ position space (T-even!); sign "determined" by $\kappa_{u} \& \kappa_{d}$
attractive FSI deflects active quark towards the center of momentum
$\hookrightarrow$ FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$-direction into momentum asymmetry that favors $-\hat{y}$ direction
$\hookrightarrow$ correlation between sign of $\kappa_{q}^{p}$ and sign of SSA: $f_{1 T}^{\perp q} \sim-\kappa_{q}^{p}$
- $f_{1 T}^{\perp q} \sim-\kappa_{q}^{p}$ confirmed by Hermes data (also consistent with Compass deuteron data $f_{1 T}^{\perp u}+f_{1 T}^{\perp d} \approx 0$ )


## GPD $\longleftrightarrow \bar{g}_{2}$ (twist-3 polarized DIS)

- $\sigma_{L T}$ in polarized DIS $\longrightarrow g_{1}+g_{2}$
- $g_{1} \longrightarrow$ spin fraction carried by quark spin
- $g_{2}$ (after subtracting 'Wandzura-Wilzcek piece') sensitive to quark gluon correlations $d_{2} \sim \int d x x^{2} \bar{g}_{2}(x)$
$\hookrightarrow$ (MB, arXiv 0810.3589) $\perp$ color Lorentz force acting on quark in DIS from $\perp$ polarized target
- $\perp$ deformation of $q\left(x, \mathbf{b}_{\perp}\right)$ provides intuitive explanation for sign of $d_{2}$
- $\Im \mathcal{A}_{D V C S}(\xi, t) \sim G P D(\xi, \xi, t)$
- $\Re \mathcal{A}_{D V C S} \sim \int d x \frac{G P D(x, \xi, t)}{x-\xi}$
- dispersion relation $\Rightarrow \Re \mathcal{A}_{D V C S} \sim \int d x \frac{G P D(x, x, t)}{x-\xi}+\Delta(t)$
$\hookrightarrow$ In addition to information along diagonal $x=\xi$ that is also available from $\Im \mathcal{A}_{D V C S}(\xi, t) \Re \mathcal{A}_{D V C S}$ provides access to
- GPDs along diagonal that is not kinematically accessible through $\Im \mathcal{A}_{D V C S}(\xi, t)$
- 'D-form factor' $\Delta$ (Polyakov Weiss)
- Ji relation requires $\operatorname{GPDs}(x, \xi, t)$ for $-1<x<1$ at fixed $\xi$
- $q\left(x, \mathbf{b}_{\perp}\right)$ requires $G P D s(x, 0, t)$


## DVCS $\rightsquigarrow G P D(x, \xi, t)$

- Information away from diagonal $(x=\xi)$ :
- $\Re \mathcal{A}_{D V C S}$ (positrons!) $\Rightarrow D$-form factor
- polynomiality condition: $n$-th Mellin moment of $\operatorname{GPD}(x, \xi)$ must be even polynomial in $\xi$ of order $n$
$\hookrightarrow G P D(x, \xi)$ cannot depend on variables $x$ and $\xi$ completely independently
- $Q^{2}$ evolution: changes $x$ distribution in a known way for fixed $\xi$
- Double Deeply Virtual Compton Scattering $D^{2} V C S$ (lepton pair instead of real photon in final state)


## DVCS $\rightsquigarrow G P D(x, \xi, t)$

- example: dispersion relations/polynomiality $\Rightarrow$

$$
\int_{-1}^{1} d x \frac{H^{(+)}(x, 0, t)}{x}=\int_{-1}^{1} d x \frac{H^{(+)}(x, x, t)}{x}+\Delta(t)
$$

$\hookrightarrow$ DVCS allows access to same generalized form factor $\int_{-1}^{1} d x \frac{H^{(+)}(x, 0, t)}{x}$ also available in WACS (wide angle Compton scattering), but $t$ does not have to be of order $Q^{2}$
$\hookrightarrow$ after flavor separation, comparing $\frac{1}{F_{1}(t)} \int_{-1}^{1} d x \frac{H^{(+)}(x, 0, t)}{x}$ at large $t$ provides information about the 'typical $x$ ' that dominates large $t$ form factor

## Summary

- Deeply Virtual Compton Scattering $\Rightarrow$ GPDs
- beam charge asymmetry $\Rightarrow$ clean separation of $\Re \mathcal{A}_{D V C S}$
- GPDs $\stackrel{F T}{\longleftrightarrow}$ IPDs (impact parameter dependent PDFs)
- $H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \xrightarrow{F T} q\left(x, \mathbf{b}_{\perp}\right)$ for unpolarized target
- $\Delta_{\perp} E\left(x, 0,-\Delta_{\perp}^{2}\right) \xrightarrow{F T} \perp$ deformation of PDFs for $\perp$ polarized target
$\hookrightarrow \kappa^{q / p} \Rightarrow$ sign of deformation
$\hookrightarrow$ attractive $\mathrm{FSI} \Rightarrow f_{1 T}^{\perp u}<0 \& f_{1 T}^{\perp d}>0$
$\hookrightarrow$ Interpretation of sign of $M^{2} d_{2} \equiv 3 M^{2} \int d x x^{2} \bar{g}_{2}(x)$ as sign of $\perp$ force on active quark in DIS on $\perp$ polarized target
- $\Im \mathcal{A}_{D V C S}$ only sensitive to $G P D s(\xi, \xi, t)$
- use $\Re \mathcal{A}_{D V C S} /$ polynomiality/dispersion relations/ $Q^{2}$-evolution/DDVCS to get information on $\operatorname{GPDs}(x, \xi, t)$ for $x \neq \xi$

