Two photon exchange: theoretical issues

Peter Blunden University of Manitoba

International Workshop on Positrons at JLAB March 25-27, 2009

Proton G_E/G_M Ratio

 $\underline{\text{LT}} \text{ method}$ $\sigma_R = G_M^2(Q^2) + \frac{\varepsilon}{\tau} G_E^2(Q^2)$

- $\rightarrow G_E$ from slope in ε plot
- \rightarrow suppressed at large Q^2

 $\frac{PT}{G_E} = -\sqrt{\frac{\tau(1+\varepsilon)}{2\varepsilon}} \frac{P_T}{P_L}$

 $\rightarrow P_{T,L}$ recoil proton polarization in $\vec{e} \ p \rightarrow e \ \vec{p}$

Two-photon exchange

interference between Born and two-photon exchange amplitudes

contribution to cross section:

$$\delta^{(2\gamma)} = \frac{2\mathcal{R}e\left\{\mathcal{M}_{0}^{\dagger} \mathcal{M}_{\gamma\gamma}\right\}}{\left|\mathcal{M}_{0}\right|^{2}}$$

standard "soft photon approximation" (used in most data analyses)

- \longrightarrow approximate integrand in $\mathcal{M}_{\gamma\gamma}$ by values at γ^* poles
- \rightarrow neglect nucleon structure (no form factors) *Mo*, *Tsai* (1969)

Partonic (GPD) calculation of two-photon exchange contribution (Chen et al.)

"handbag"

valid at large Q^2 : δ^{hard}

handbag diagrams (one active quark)

to reproduce the IR divergent contribution at nucleon correctly (Low Energy Theorem): $\delta^{\rm soft}$

need cat's ears diagrams (two active quarks)

Corrections to unpolarized cross sections for Q²=1 to 6 GeV²

Effect on SLAC reduced cross sections at different Q^2

(normalized to dipole G_{D}^{2})

SuperRosenbluth (JLAB) data

Effect on ratio of e⁺p to e⁻p cross sections (SLAC, Q² from 0.01 to 5 GeV²) M_{Born} opposite sign for e⁺p

proton correction at low Q^2

proton correction at Q²=0.01 GeV²

•Essentially independent of mass (same for muon, free quarks) •At high Q^2 , G_M dominates the loop integral

•At low Q^2 , G_E dominates

neutron correction vanishes at low Q² (pointlike neutron)

Neutron

- No infrared divergences
- Positive and about 2-3 times smaller than proton (dominance of magnetic form factor?)
- Some model dependence due to choice of form factors (blue 0.03 curve) $= 6 \, \text{GeV}^2$ 0.02 $\delta^{\text{full}}(\varepsilon, Q^2)$ 0 0.2 0.4 0.6 0.8 0

ε

Effect on ratio R

Global Analysis:

(Arrington, Melnitchouk & Tjon, PRC, 2007)

Resonance (Δ) contribution: $\gamma(q^{\alpha}) + \Delta(p^{\mu}) \rightarrow N$

- Spin $\frac{1}{2}$ decoupled
- Obeys gauge symmetries

$$p_{\mu}\Gamma^{\alpha\mu}(p,q) = 0$$
$$q_{\alpha}\Gamma^{\alpha\mu}(p,q) = 0$$

$$\Gamma^{\alpha\mu}_{\gamma\Delta\to N}(p,q) = \frac{ieF_{\Delta}(q^2)}{2M_{\Delta}^2} \{ g_1(g^{\alpha\mu} \not\!\!/ q - p^{\alpha} \gamma^{\mu} q - \gamma^{\alpha} \gamma^{\mu} p \cdot q + \gamma^{\alpha} \not\!\!/ q^{\mu}) + g_2(p^{\alpha} q^{\mu} - g^{\alpha\mu} p \cdot q) + g_2(p^{\alpha} q^{\mu} - g^{\alpha\mu} p \cdot q) + (g_3/M_{\Delta}) \left(q^2(p^{\alpha} \gamma^{\mu} - g^{\alpha\mu} \not\!\!/ p) + q^{\alpha} (q^{\mu} \not\!\!/ - \gamma^{\mu} p \cdot q) \right) \gamma_5 T_3$$

3 coupling constants g_1 , g_2 , and g_3 At Δ pole: g_1 magnetic (g_2-g_1) electric g_3 Coulomb

Take dipole FF $F_{\Delta}(q^2) = 1/(1-q^2/\Lambda_{\Delta}^2)^2$ with $\Lambda_{\Delta} = 0.84 \text{ GeV}$

Other resonances

N (P11), ∆ (P33) + D13, D33, P11, S11, S31

Parameters from dressed K-matrix model

Results

Phenomenology: Generalized form factors

In limit $m_e \to 0$ (helicity conservation) general amplitude can be put in form $T = (\gamma_\mu)^{(e)} \otimes \left(\tilde{F}_1 \gamma^\mu + i \frac{\tilde{F}_2}{2M} \sigma^{\mu\nu} q_\nu + \frac{F_3}{M^2} \gamma \cdot K P^\mu \right)^{(p)}$

In general, 16 independent amplitudes:

parity 16 \rightarrow 8; time reversal 8 \rightarrow 6; helicity conservation (m_e=0) 6 \rightarrow 3

$$\tilde{G}_M = \tilde{F}_1 + \tilde{F}_2$$
$$\tilde{G}_E = \tilde{F}_1 - \tau \tilde{F}_2$$
$$Y_2 = \frac{\nu}{M^2} \frac{F_3}{G_M}$$

Observables including two-photon exchange

$$\frac{\delta\sigma}{\sigma_0} = 2 \frac{\left\{\epsilon \left(\frac{\delta G_E}{G_E}\right) G_E^2 + \tau \left(\frac{\delta G_M}{G_M}\right) G_M^2 + \epsilon Y_2 (\tau G_M^2 + G_M G_E)\right\}}{\epsilon G_E^2 + \tau G_M^2}$$

$$\frac{\delta P_L}{P_L} = 2\left(\frac{\delta G_M}{G_M}\right) + 2\frac{\epsilon}{1+\epsilon}Y_2 - \frac{\delta\sigma}{\sigma_0}$$
$$\frac{\delta P_T}{P_T} = \left(\frac{\delta G_M}{G_M}\right) + \left(\frac{\delta G_E}{G_E}\right) + \frac{G_M}{G_E}Y_2 - \frac{\delta\sigma}{\sigma_0}$$

Caution needed about assumptions (generalized FF's are not observables)

Parametrization of amplitude NOT unique Axial parametrization: $G_A' (\gamma_{\mu}\gamma_5)^{(e)} (\gamma^{\mu}\gamma_5)^{(p)}$ instead of F_3 (or Y_2) term shifts some F_3 into δF_1 (and hence into δG_E and δG_M)

$$\vec{e} + p \rightarrow e + \vec{p}$$

Corrections to P_L and P_T at $Q^2=1$, 3, and 6 GeV²

 P_T/P_L will show some variation with ε , esp. at low ε JLab data taken at ε ~0.7 JLAB expt (Gilman) measures P_T/P_L at low ε GPD calculation predicts suppression of P_T/P_L

SSA in elastic eN scattering

spin of beam OR target

OR recoil proton

NORMAL to scattering

plane

on-shell intermediate state ($M_X = W$)

involves the imaginary part of two-photon exchange amplitudes

Target: general formula of order e²

- GPD model allows connection of real and imaginary amplitudes
- Hadronic models sensitive to intermediate state contributions, no reliable theoretical calculations at present

Beam: general formula of order $m_e e^2$ (few ppm)

- Measured in PV experiments (longitudinally polarized electrons) at SAMPLE and A4 (Mainz)
- Only non-zero result so far for TPEX

TPEX using dispersion relations (Borisyuk & Kobushkin, PRC **78**, 2008)

Recent pQCD calculation: Borisyuk & Kobushkin, PRD 79, 2009

(a) one-photon exchange: need 2 hard gluons to turn momentum of all 3 quarks

$$lpha lpha_s^2/Q^6$$

(b) two-photon exchange: leading order needs 1 hard gluon

$$lpha^2 lpha_s/Q^6$$
 trejope ~ $lpha/lpha^s$

subleading order (both photons on one quark) requires 2 hard gluons

Comparison of hadronic and pQCD results

Connect smoothly around $Q^2 = 3 \text{ GeV}^2$

Parity-violating *e* scattering

Left-right polarization asymmetry in $\vec{e} \ p \rightarrow e \ p$ scattering

$$A_{\rm PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = -\left(\frac{G_F Q^2}{4\sqrt{2}\alpha}\right) \left(A_V + A_A + A_s\right)$$

measure interference between e.m. and weak currents

$$\begin{split} \mathcal{A}_{PV} &= \frac{2\Re\left\{M_{\gamma}^{\dagger}\bar{M}_{Z}\right\} - \frac{1}{|M_{\gamma}|^{2}} - \frac{1}{4\kappa} \underbrace{\operatorname{Sing}^{2}r \partial_{W}}_{\text{interfere with } \mathcal{M}_{Z}} (\mathcal{M}_{\gamma} \xrightarrow{E} \mathcal{M}_{\gamma} + \mathcal{M}_{\gamma\gamma}) / c}_{\text{interfere with } \mathcal{M}_{Z}} (\mathcal{M}_{\gamma} \xrightarrow{E} \mathcal{M}_{\gamma} + \mathcal{M}_{\gamma\gamma}) \\ \end{split}$$

Afanasev and Carlson (PRL 2005) used generalized form factors to analyze effect of $\gamma\gamma$ on A (GPD model)

 $\frac{G_{E,M}^{Zp} = (1 - 4\sin^2\theta_W)G_{E,M}^{\gamma p} - G_{E,M}^{\gamma n} - G_{E,M}^s}{\frac{G_{E,M}^{Zp} - G_{E,M}^{\gamma n} - G_{E,M}^s}{1 - G_{E,M}^s}}$

Two-boson exchange corrections

Current PDG estimates (of " $\gamma(Z\gamma)$ ") computed at $Q^2 = 0$ Marciano, Sirlin (1980)

Erler, Ramsey-Musolf (2003)

Zhou, Kao & Yang, PRL 2007; Tjon & Melnitchouk, PRL 2008

 A_{PV} vs. ε for Q² = 0.1, 0.5, 1.0, 3.0 GeV² (TPE only)

Tjon, Blunden & Melnitchouk, nucl-th/0903.2759

Nucleon and Delta contribution

$\delta_{\gamma(\gamma Z)}$ Δ contribution enhanced at forward angles and low Q²

enhancement $(1+Q_{\rm weak})/Q_{\rm weak} \approx 14$

YZ contribution to Qweak using dispersion relations (Gorchtein & Horowitz, PRL 2009)

FIG. 3: Results for $\operatorname{Re}\delta_{\gamma Z_A}$ as function of energy. The contributions of nucleon resonances (dashed line), Regge (dash-dotted line) and the sum of the two (solid line) are shown.

TPE contribution to proton FF's in time-like region: $e^+ + e^- \rightarrow p + \bar{p}$

Chen, Zhou & Dong, PRC 78 (2008)

TWO-PHOTON EFFECTS IN LEPTON-ANTILEPTON ...

FIG. 6. Typical diagrams for lepton pair production from a 3-quark proton.

FIG. 7. Lepton pair asymmetry from a proton target.

Outlook

- Use phenomenological form factors in analyzing data, extracting strange form factors, etc.
- Merge hadronic models with GPD or pQCD calculations for $\gamma\gamma$ and $\gamma Z?$
- Recent work on TPE seems to indicate insensitivity to off-shell form factors

Collaborators: Melnitchouk, Tjon + Kondratyuk