Two photon exchange: theoretical issues

Peter Blunden

University of Manitoba

International Workshop on Positrons at JLAB March 25-27, 2009

Proton G_{E} / G_{M} Ratio

Rosenbluth (Longitudinal-Transverse) Separation

Polarization Transfer

LT method

$$
\sigma_{R}=G_{M}^{2}\left(Q^{2}\right)+\frac{\varepsilon}{\tau} G_{E}^{2}\left(Q^{2}\right)
$$

$\rightarrow G_{E}$ from slope in ε plot
\rightarrow suppressed at large Q^{2}

PT method

$$
\frac{G_{E}}{G_{M}}=-\sqrt{\frac{\tau(1+\varepsilon)}{2 \varepsilon}} \frac{P_{T}}{P_{L}}
$$

$\rightarrow P_{T, L}$ recoil proton polarization in $\vec{e} p \rightarrow e \vec{p}$

Radiative corrections

$$
d \sigma_{0} \rightarrow d \sigma=d \sigma_{0}\left(1+\delta_{R C}\right)
$$

Missing effect is

- approximately linear in ε
- not strongly Q^{2} dependent

Two-photon exchange

box and crossed-
box diagrams

Bremsstrahlung

- SuperRosenbluth (detect proton)

inelastic amplitudes

Two-photon exchange

\square interference between Born and two-photon exchange amplitudes

- contribution to cross section:

$$
\delta^{(2 \gamma)}=\frac{2 \mathcal{R} e\left\{\mathcal{M}_{0}^{\dagger} \mathcal{M}_{\gamma \gamma}\right\}}{\left|\mathcal{M}_{0}\right|^{2}}
$$

\square standard "soft photon approximation" (used in most data analyses)
\longrightarrow approximate integrand in $\mathcal{M}_{\gamma \gamma}$ by values at γ^{*} poles
\longrightarrow neglect nucleon structure (no form factors) Mo, Tsai (1969)

Partonic (GPD) calculation of two-photon exchange contribution

 (Chen et al.)
"handbag"

"cat's ears"
valid at large Q^{2} : $\delta^{\text {hard }}$
handbag diagrams (one active quark)
to reproduce the IR divergent contribution at nucleon correctly (Low Energy Theorem): δ soft
need cat's ears diagrams (two active quarks)

Corrections to unpolarized cross sections for $Q^{2}=1$ to $6 \mathrm{GeV}^{2}$

Effect on SLAC reduced cross sections at different Q^{2}
(normalized to dipole $G_{D}{ }^{2}$)

Nonlinearity in ε is displayed here

JLAB proposals to measure nonlinearity

SuperRosenbluth (JLAB) data

Effect on ratio of $e^{+} p$ to $e^{-} p$ cross sections (SLAC, Q^{2} from 0.01 to $5 \mathrm{GeV}^{2}$)

$M_{\text {Born }}$ opposite sign for $e^{+} p$ vs. e^{-p}, so enhancement instead of suppression as $\varepsilon \rightarrow 0$

$$
\begin{aligned}
R\left(e^{+} p / e^{-} p\right) & =(1-\Delta) /(1+\Delta) \\
& =1-2 \Delta
\end{aligned}
$$

Curves are elastic results for $Q^{2}=1,3,6 \mathrm{GeV}^{2}$

Expts.
E04-116 $Q^{2}<2 \mathrm{GeV}^{2}$
VEPP-3 $Q^{2}=1.6 \mathrm{GeV}^{2}, \varepsilon=0.4$
proton correction at low Q^{2}

proton correction at $Q^{2}=0.01 \mathrm{GeV}^{2}$

- Essentially independent of mass (same for muon, free quarks)
- At high Q^{2}, G_{M} dominates the loop integral
- At low Q^{2}, G_{E} dominates
-neutron correction vanishes at low Q^{2} (pointlike neutron)

Neutron

No infrared divergences
Positive and about 2-3 times smaller than proton (dominance of magnetic form factor?)
Some model dependence due to choice of form factors (blue

Effect on ratio R

Global Analysis:

(Arrington, Melnitchouk \& Tjon, PRC, 2007)

Resonance (Δ) contribution:

$$
\gamma\left(q^{\alpha}\right)+\Delta\left(p^{\mu}\right) \rightarrow \mathrm{N}
$$

p ${ }^{4}$!

- Lorentz covariant form
- Spin $\frac{1}{2}$ decoupled
- Obeys gauge symmetries

$$
\begin{aligned}
p_{\mu} \Gamma^{\alpha \mu}(p, q) & =0 \\
q_{\alpha} \Gamma^{\alpha \mu}(p, q) & =0
\end{aligned}
$$

$$
\Gamma_{\gamma \Delta \rightarrow N}^{\alpha \mu}(p, q)=\frac{i e F_{\Delta}\left(q^{2}\right)}{2 M_{\Delta}^{2}}\left\{g_{1}\left(g^{\alpha \mu} \not p p q-p^{\alpha} \gamma^{\mu} q d-\gamma^{\alpha} \gamma^{\mu} p \cdot q+\gamma^{\alpha} \not p q^{\mu}\right)\right.
$$

$$
+g_{2}\left(p^{\alpha} q^{\mu}-g^{\alpha \mu} p \cdot q\right)
$$

$$
+\left(g_{3} / M_{\Delta}\right)\left(q^{2}\left(p^{\alpha} \gamma^{\mu}-g^{\alpha \mu} \not p\right)+q^{\alpha}\left(q^{\mu} \not p-\gamma^{\mu} p \cdot q\right)\right\} \gamma_{5} T_{3}
$$

3 coupling constants g_{1}, g_{2}, and g_{3}
At Δ pole: $\quad g_{1} \quad$ magnetic
($g_{2}-g_{1}$) electric
$g_{3} \quad$ Coulomb
Take dipole FF $F_{\Delta}\left(q^{2}\right)=1 /\left(1-q^{2} / \Lambda_{\Delta}{ }^{2}\right)^{2}$ with $\Lambda_{\Delta}=0.84 \mathrm{GeV}$

Other resonances

- $N(P 11), \Delta(P 33)+D 13, D 33, P 11$, S11, S31
- Parameters from dressed K-matrix model

Results

- contribution of heavier resonances much smaller than N and Δ
- D13 next most important (consistent with second resonance shape of Compton scattering cross section) - partial cancellation between spin 1/2 and spin 3/2
- leads to better agreement, especially at high Q^{2}

Phenomenology: Generalized form factors

$$
P \equiv \frac{p+p^{\prime}}{2}, \quad K \equiv \frac{k+k^{\prime}}{2}
$$

Kinematical invariants:

$$
\begin{aligned}
q^{2} & =\left(p^{\prime}-p\right)^{2} \equiv-Q^{2} \\
\nu & =K \cdot P=p \cdot k+q^{2} / 4
\end{aligned}
$$

In limit $m_{e} \rightarrow 0$ (helicity conservation) general amplitude can be put in form

$$
T=\left(\gamma_{\mu}\right)^{(e)} \otimes\left(\widetilde{F}_{1} \gamma^{\mu}+i \frac{\tilde{F}_{2}}{2 M} \sigma^{\mu \nu} q_{\nu}+\frac{F_{3}}{M^{2}} \gamma \cdot K P^{\mu}\right)(p)
$$

In general, 16 independent amplitudes:
parity $16 \rightarrow 8$; time reversal $8 \rightarrow 6$; helicity conservation $\left(m_{e}=0\right) 6 \rightarrow 3$
Generalized (complex) form factors

$$
\tilde{F}_{1}\left(\nu, Q^{2}\right)=F_{1}\left(Q^{2}\right)+\delta F_{1}
$$

$$
\tilde{F}_{2}\left(\nu, Q^{2}\right)=F_{2}\left(Q^{2}\right)+\delta F_{2}
$$

$$
\begin{aligned}
\tilde{G}_{M} & =\tilde{F}_{1}+\tilde{F}_{2} \\
\tilde{G}_{E} & =\tilde{F}_{1}-\tau \tilde{F}_{2} \\
Y_{2} & =\frac{\nu}{M^{2}} \frac{F_{3}}{G_{M}}
\end{aligned}
$$

Observables including two-photon exchange

$$
\begin{aligned}
\frac{\delta \sigma}{\sigma_{0}} & =2 \frac{\left\{\epsilon\left(\frac{\delta G_{E}}{G_{E}}\right) G_{E}^{2}+\tau\left(\frac{\delta G_{M}}{G_{M}}\right) G_{M}^{2}+\epsilon Y_{2}\left(\tau G_{M}^{2}+G_{M} G_{E}\right)\right\}}{\epsilon G_{E}^{2}+\tau G_{M}^{2}} \\
\frac{\delta P_{L}}{P_{L}} & =2\left(\frac{\delta G_{M}}{G_{M}}\right)+2 \frac{\epsilon}{1+\epsilon} Y_{2}-\frac{\delta \sigma}{\sigma_{0}} \\
\frac{\delta P_{T}}{P_{T}} & =\left(\frac{\delta G_{M}}{G_{M}}\right)+\left(\frac{\delta G_{E}}{G_{E}}\right)+\frac{G_{M}}{G_{E}} Y_{2}-\frac{\delta \sigma}{\sigma_{0}}
\end{aligned}
$$

Caution needed about assumptions (generalized FF's are not observables)

- Parametrization of amplitude NOT unique

Axial parametrization: $G_{A}{ }^{\prime}\left(\gamma_{\mu} \gamma_{5}\right)^{(e)}\left(\gamma^{\mu} \gamma_{5}\right)^{(p)}$ instead of $F_{3}\left(\right.$ or $\left.\gamma_{2}\right)$ term shifts some F_{3} into δF_{1} (and hence into δG_{E} and δG_{M})

$$
\vec{e}+p \rightarrow e+\vec{p}
$$

Corrections to P_{L} and P_{T} at $Q^{2}=1,3$, and $6 \mathrm{GeV}^{2}$

P_{T} / P_{L} will show some variation with ε, esp. at low ε
JLab data taken at $\varepsilon \sim 0.7$
JLAB expt (Gilman) measures P_{T} / P_{L} at low ε GPD calculation predicts suppression of P_{T} / P_{L}

SSA in elastic eN scattering

 spin of beam OR targetOR recoil proton
NORMAL to scattering

$$
s=(k+p)^{2}
$$

plane
on-shell intermediate state $\left(M_{X}=W\right)$ involves the imaginary part of two-photon exchange amplitudes

Target: general formula of order e^{2}

- GPD model allows connection of real and imaginary amplitudes
- Hadronic models sensitive to intermediate state contributions, no reliable theoretical calculations at present
Beam: general formula of order $m_{e} e^{2}$ (few ppm)
- Measured in PV experiments (longitudinally polarized electrons) at SAMPLE and A4 (Mainz)
- Only non-zero result so far for TPEX

TPEX using dispersion relations

(Borisyuk \& Kobushkin, PRC 78, 2008)

- Imaginary part determined by unitarity
- Only on-shell form factors
- Real part determined from dispersion relations
- Numerical differences between naive (solid) and dispersion (dashed) analyses are small
- Similar insensitivity seen for Δ (Tjon, Blunden, Melnitchouk)

Recent pQCD calculation: Borisyuk \& Kobushkin, PRD 79, 2009
(a) one-photon exchange: need 2 hard gluons to turn momentum of all 3 quarks

$$
\alpha \alpha_{s}^{2} / Q^{6}
$$

(b) two-photon exchange:
leading order needs 1 hard gluon

$$
\alpha^{2} \alpha_{s} / Q^{6} \quad \text { TPE/OPE } \sim \alpha / \alpha^{s}
$$

subleading order (both photons on one quark) requires 2 hard gluons

Comparison of hadronic and pQCD results
Connect smoothly around $\mathrm{Q}^{2}=3 \mathrm{GeV}^{2}$

Parity-violating e scattering

- Left-right polarization asymmetry in $\vec{e} p \rightarrow e p$ scattering

$$
A_{\mathrm{PV}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \alpha}\right)\left(A_{V}+A_{A}+A_{s}\right)
$$

\rightarrow measure interference between e.m. and weak currents

$$
\mathcal{A}_{P V}=\frac{2 \Re\left\{M_{\gamma}^{\dagger} M_{Z}\right\}}{\left|M_{\gamma}\right|^{2}} \quad \begin{gathered}
\text { Electromagnetic radiative corrections } \\
\text { interfere with } M_{Z}\left(M_{\gamma} \rightarrow M_{\gamma}+M_{\psi v}\right)
\end{gathered}
$$

plus weak radiative corrections interfere with $M_{\gamma}\left(M_{z} \rightarrow M_{z}+M_{\gamma}\right)$

Afanasev and Carlson (PRL 2005) used generalized form factors to analyze effect of $\gamma \gamma$ on A (GPD model)

Two-boson exchange corrections

■ current PDG estimates (of " $\gamma(Z \gamma)$ ") computed at $Q^{2}=0$
Marciano, Sirlin (1980)
Erler, Ramsey-Musolf (2003)

Zhou, Kao \& Yang, PRL 2007; Tjon \& Melnitchouk, PRL 2008

$A_{P V}$ vs. ε for $Q^{2}=0.1,0.5,1.0,3.0 \mathrm{GeV}^{2}$ (TPE only)

Tjon, Blunden \& Melnitchouk, nucl-th/0903.2759

Nucleon and Delta contribution

$\delta_{\gamma(\gamma Z)} \quad \Delta$ contribution enhanced at forward angles and low Q^{2}
enhancement $\left(1+Q_{\text {weak }}\right) / Q_{\text {weak }} \approx 14$

$y Z$ contribution to $Q_{\text {weak }} u s i n g$ dispersion relations

 (Gorchtein \& Horowitz, PRL 2009)

FIG. 3: Results for $\operatorname{Re} \delta_{\gamma Z_{A}}$ as function of energy. The contributions of nucleon resonances (dashed line), Regge (dashdotted line) and the sum of the two (solid line) are shown.

TPE contribution to proton FF's in time-like region:
$e^{+}+e^{-} \rightarrow p+\bar{p}$
Chen, Zhou \& Dong, PRC 78 (2008)

Lepton-antilepton photoproduction using real photons

(Pervez Hoodbhoy, PRD 2006)

TWO-PHOTON EFFECTS IN LEPTON-ANTILEPTON ...

FIG. 6. Typical diagrams for lepton pair production from a 3quark proton.

PHYSICAL REVIEW D 73, 054027 (2006)

FIG. 7. Lepton pair asymmetry from a proton target.

Outlook

- Use phenomenological form factors in analyzing data, extracting strange form factors, etc.
- Merge hadronic models with GPD or pQCD calculations for $\gamma \gamma$ and $\gamma \mathrm{Z}$?
- Recent work on TPE seems to indicate insensitivity to off-shell form factors

Collaborators: Melnitchouk, Tjon + Kondratyuk

