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Ultrafast lasers as ultralow-noise optical and electronic

signal generators
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Motivation for ultra-low timing jitter signal sources
— Clocking large-scale X-ray free-electron lasers (XFELs)

Future X-ray FELs will enable super-fine
temporal (fs) and spatial (A) resolutions
with ultra-high peak brilliance

that could not be achieved before.

Requires drift-free, sub-10-fs timing precision
over the entire FEL facility
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Overview of Pulsed Optical Synchronization System

Principle 1: Ultralow-jitter RF/microwave is encoded in the
repetition rate and the harmonics.
— Can provide ultra-low phase noise RF signals to accelerators
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2.856 GHz (36t harmonic), 5.712 GHz (72" harmonic),

and 11.4 GHz (144t harmonic) simultaneously at any location!
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Overview of Pulsed Optical Synchronization System

Principle 2: Timing pulse trains can be synchronized with
other femtosecond lasers (Ti:sapphire lasers) using optical

cross-correlator
— Can provide attosecond-precision synchronization of lasers
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Overview of Pulsed Optical Synchronization System

Schematic of a pulsed optical timing and synchronization system

Timing transfer over hundreds m —a few km

Phase j\ j\ j\ j\
noise
OoMO ___,
Fiber length
izat] fs m

RMO stabilization
laser
> f
oMo |. |2 A j\ j\ j\ O-E /\ /\ /\
M = -
RMO 5 —"
- fs-laser ® conv
synch Flber length
stabilization
'___1 Use for E- Osamplmg
Fiber length amplifier seeding,

stabilization RF downconversion etc



Large-scale timing synchronization for X-ray FELs
- Solution: Pervasive synchronization of an FEL with an optical master oscillator
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J. Kim et al, Nature Photonics 2, 733 (2008).



Using ultrafast fiber laser-based technology, long-term stable
sub-10 fs remote timing synchronization is possible.
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Through technology transfer, ultrafast fiber laser-based sub-10-fs-
precision timing systems are now being actively installed

FEL< - Optical Master Oscillator (OMO) & ““\":9
6 Stabilized Links = ) .

FERMI (at Trieste, Italy) results show that
robust 10-fs timing and synchronization is
possible in the accelerator environment.

The fibre optic splitter and the six
| cross-correlators for link
M stabilization share the same temp.
controlled box of the OMO

FROAI2 M. Ferianis Shanghai, 22-26 August 2011
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out-of-loop long term (10 days) drift measurement;
local optical reference vs. 150m loop-back stabilized link
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We are in charge of fs-precision
timing system entirely based on
ultrafast fiber lasers and technology
at PAL-XFEL (under construction)

FFFFFF M. Ferianis Shanghai, 22-26 August 2011



0.1-nm Hard X-ray 10-GeV XFEL .
« Project Period: 2011 ~ 2014 PA L_X F E L P rOJ e Ct
+ Total Budget: 400 M$

¢  Wavelength
Soft x-ray: 1 nm ~ 10 nm
Hard X-ray: 0.7 ~ 0.1 nm
+ Extendable to 0.06 nm
Photon beam Length
Nominal : 30 ~100 fs (200 pC)

Short: <5fs (20 pC)
Ultra short: < 0.5 fs by ESASE scheme

Undulator Beamline

: 3 Hard X-ray / 2 Soft X-ray lines




Now using ultrafast fiber lasers, 10-fs level
timing precision can be (rather routinely)
obtained.

Is this the ultimate limit?



Scaling of timing jitter into the attosecond (101%s) regime
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For the optimization of timing jitter of ultrafast lasers,
sub-femtosecond-resolution characterization is first required.

* Conventional direct photodetection: [ Resolution limit: ~10 fs ]
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The use of balanced optical cross-correlation (BOC)
provides both very high timing detection sensitivity
and amplitude-noise-free operation
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The use of BOC enables attosecond-resolution timing jitter
characterization of femtosecond mode-locked lasers
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J. Kim et al, Opt. Lett. 32, 3519 (2007)



Advantages of fiber lasers

Various wavelength
due to rare-earth
doping technology

Simple and reliable Compact and
operation alignment-free

Gain fiber

Pr Tm Nd

Mode-locked
Fiber laser

Er
output Yb

MV\ N

06 08 10 12 14 16 18 20

LD

Saturable absorber wavelength (um)
Enhanced environmental Large gain due to long fiber Diffraction-limited
stability with PM technology propagation beam quality
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With balanced optical cross-correlator (BOC) in hand,
we pursued sub-20 as resolution timing jitter
measurement over the full Nyquist frequency.

e Yb-fiber laser (1030 nm) & Er-fiber laser (1550 nm)

e Impact of pulse formation mechanisms (soliton,
stretched-pulse, and self-similar) and intra-cavity
dispersion on timing jitter

e Demonstration of the lowest-jitter performance from
fiber lasers



Yb-doped fiber laser

/ New physical \

Phenomena at 1 um

Higher energy, shorter
pulses

Excellent source for
frequency comb
generation

Er-doped fiber laser

ﬂ'elecomm wavelength

—> suitable for photonic
signal processing

Reliable and low-cost
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Easy dispersion control
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Intensity a.u.

Mode-locking conditions used for the timing jitter
characterization
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Measured jitter spectral density of Yb-fiber lasers
with different mode-locking regimes
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Optimization of timing jitter at close-to-zero dispersion

Integrated timing jitter (fs)
[10 kHz, 40 MHZ]
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- Higher pulse energy E

- Shorter pulse width t

- Lower chirp parameter 3

- Leading to lower direct jitter

dlrect

Indirectly-coupled jitter from
center frequency fluctuations

At, . o |D BW
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Close-to-zero dispersion (D)
may lead to lower indirect jitter

Stretched-pulse operation at close-to-zero dispersion
may lead to the lowest timing jitter in fiber lasers.

Namiki and Haus, IEEE JQE 33, 649 (1997)



Measured jitter spectral densities of Yb-fiber lasers
at close-to-zero dispersion (-0.005 ps? to +0.002 ps?)
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Integrated timing jitter of Yb fiber lasers [10 kHz — 40 MHz]
vs intra-cavity dispersion and mode-locked regimes
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Measured lowest timing jitter spectral density of ultrafast fiber
lasers = Sub-100-attosecond timing jitter is demonstrated
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Ultralow-jitter microwave signals are encoded in the
repetition-rate and its harmonics of optical pulse trains

— Can generate ultra-low phase noise microwave signals
from ultrafast lasers
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Ultralow-jitter microwave signals are encoded in the
repetition-rate and its harmonics of optical pulse trains
— Can generate ultra-low phase noise microwave signals

from ultrafast lasers
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However, excess phase noise in the optical-to-electronic
conversion process limits the achievable phase noise of

extracted microwave signals

Timing jitter Phase noise
in the optical domain in the electronic domain
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+ Excess phase noise
Tr=1/fr in the O-E conversion t
€D

A

| Lk

time O-E conversion microwave frequency

v




Can we regenerate an ultralow-jitter & drift microwave signal,
the phase of which is locked to the optical pulse train?

<-150 dBc/Hz residual noise floor & <1 fs long-term drift

(2) Lock the zero crossings of microwave signal
to the optical pulse train by feedback control

ﬂ ﬁ ﬂ
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(1) Detect the phase error
between optical pulse train and microwave signal




Operation of the optical phase detector

Phase error converted to optical intensity imbalance based on
fiber Sagnac-loop

A A Poutl
Fiber Sagnac-loop
P interferometer

Poutz

A\ 4

sin2(A®/2) } '

cos’ (AD/2) 0

-TC 0 T AD

A® : Phase difference between counter-propagating pulses




Operation of the optical phase detector
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Operation of the optical phase detector

Microwave signals
frequency =N X Fr

{EVaV,

Be
Optical/pulse trains

repetition rate = Fr

Phase
modulator

Nonreciprocal
quarter-wave bias

Poutz
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cos’ (A®/2)



Synchronization using phase-locked loop
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Residual phase noise of 8.06 GHz microwave synchronized

with 77.5 MHz Er-fiber laser
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Relative timing drift between optical pulse trains and
regenerated 8.06 GHz microwaves
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Summary

e Demonstrated the record-low timing jitter from ultrafast fiber
lasers: 70 attoseconds jitter [10 kHz — 40 MHz offset frequency],

which is comparable with the best microwave signal sources with
much reduced cost and engineering complexity.

e Demonstrated the microwave signal extraction technique with
840-as residual jitter to generate the microwave signals from
ultrafast fiber lasers with the ultra-low phase noise and high
phase stability.

o Ultrafast fiber lasers have great potentials for generating
ultralow-noise optical and electronic sighals and various
applications that need higher timing/phase/frequency precision
in future light sources.



