X-band RF driven hard X-ray FELs

Yipeng Sun

ICFA Workshop on Future Light Sources March 5-9, 2012

Motivations & Contents

Motivations

- Develop more compact (hopefully cheaper) FEL drivers,
- L→S→C→X-band (successful LCLS run 20-250pC)
- X-band more efficient in manipulating longitudinal phase space due to shorter wavelength and stronger L-wake
- ➤ An X-band RF driven Hard X-ray FEL Design with Optics based longitudinal phase space linearization
- ➤ A low charge X-band RF driven Hard X-ray FEL
- ➤ An LCLS injector + X-band RF Hard X-ray FEL
- ➤ Tolerance studies
- **≻**Summary

X-band RF and photoinjector

H60 or T56 structure 11.4 GHz, 80-100MV/m

Tor Raubenheimer

- 1. Special applications, i.e. deflectors, linearizers, etc where wavelength is important
- 2. Energy efficiency is better at short wavelength offering possibility of high repetition rate operation
- 3. Stronger wakefields and larger dE/dt due to gradient and frequency allow better control of longitudinal phase space
- 4. High gradient rf linacs are shorter (and hopefully cheaper)

Suppressed dipole mode and T-wakes

C. Limborg-Deprey et al., An X-Band gun Test Area at SLAC, PAC 11, MOP015 (2011).

Longitudinal electric field 1.6 cell S-Band gun [red] and the 5.6 cell X-Band gun

Table 1: Results From Optimizations of the XTA beamline.

Cammin.			
Q [pC]	Q [pC] $\epsilon_{x,100\%}$, $\epsilon_{x,95\%}$		$Q/\sigma_l/\epsilon/1e3$
	[mm-mrad]		
250	0.38/0.25	0.228	4.39
250	0.42/0.28	0.184	4.85
100	0.362/0.265	0.116	3.25
20	0.1/0.075	0.109	2.44
10	0.070/0.052	0.105	1.83
10	0.092/0.076	0.055	2.39
10	0.140/0.118	0.042	2.01
1	0.022/0.016	0.080	0.78
1	0.042/0.036	0.025	1.11

> 2 times brightness of S-band

Peak current for reduced

General bunch compressor design for longitudinal phase space linearization

Motivation: Develop alternative for harmonic RF based longitudinal phase space linearization \rightarrow optics linearization

THE
$$R_{56} = \int_0^{s0} \frac{R_{16}}{\rho_0} ds$$

$$T_{566} = \int_0^{s0} \left[\frac{T_{166}}{\rho_0} + \frac{1}{2} R_{26}^2 + \frac{1}{2} (\frac{R_{16}}{\rho_0})^2 \right] ds$$

4-Dip. Dogleg*2, R_{56} tunable, T_{566} tunable $R_{56} = 45 \text{ mm}$ 4-Dip. Dogleg*2, R_{56} tunable $R_{56} = 45 \text{ mm}$ A-Dip. Dogleg*2, R_{56} tunable $R_{56} = 45 \text{ mm}$ A-Dip. Dogleg*2, R_{56} tunable $R_{56} = 45 \text{ mm}$ A-Dip. Dogleg*2, R_{56} tunable $R_{56} = 45 \text{ mm}$ A-Dip. Dogleg*2, R_{56} tunable $R_{56} = 430 \text{ mm}$ A-Dip. Dogleg*2, R_{56} tunable $R_{56} = 430 \text{ mm}$ A-Dip. Dogleg*2, R_{56} tunable $R_{56} = 430 \text{ mm}$ A-Dip. Dogleg*2, R_{56} tunable $R_{56} = 430 \text{ mm}$ A-Dip. Dogleg*2, R_{56} tunable $R_{56} = 430 \text{ mm}$ A-Dip. Dogleg*2, R_{56} tunable $R_{56} = 430 \text{ mm}$ A-Dip. Dogleg*2, R_{56} tunable $R_{56} = 430 \text{ mm}$ A-Dip. Dogleg*2, R_{56} tunable $R_{56} = 430 \text{ mm}$ A-Dip. Dogleg*2, R_{56} tunable $R_{56} = 430 \text{ mm}$ A-Dip. Dogleg*2, R_{56} tunable $R_{56} = 430 \text{ mm}$ A-Dip. Dogleg*2, R_{56} tunable $R_{56} = 430 \text{ mm}$ A-Dip. Dogleg*2, R_{56} tunable $R_{56} = 430 \text{ mm}$ A-Dip. Dogleg*2, R_{56} tunable $R_{56} = 430 \text{ mm}$ A-Dip. Dogleg*2, $R_{56} = 430 \text{ mm}$ A-Dip. Dogleg*2, $R_{56} = 430 \text{ mm}$ A-Dip. Dogleg*2, $R_{56} = 430 \text{ mm}$ A-Dip. Dogleg*3, $R_{56} = 430 \text{ mm}$ A-Dip

25.0 20.0 15.0

Bunc

T166 T266

An X-band RF Based Hard X-ray FEL Design with Optics Linearization (1) XFEL-GB

An X-band RF Based Hard X-ray FEL Design with Optics Linearization (2)

FEL performance (w/o tapering)

NATIONAL ACCELERATOR LABORATORY

FEL at photon energy 9 keV, wavelength1.5 Å LCLS Undulator with period λ_w = 1.5 cm beta-function ~ 20 m

Power over 10 GW in 50 fs

Narrow bandwidth at 0.15 nm, 1E-3

Figure 20: FEL power spectrum at undulator 40 m.

Elegant simulation conditions

Ideal machine:

- ✓ In Elegant, transverse and longitudinal wake of (S)X-band cavities
- √1D coherent synchrotron radiation (CSR) and ISR in all bends
- ✓ longitudinal space charge (LSC) in drifts
- ✓ CSRDRIFT between all bends with the "USE_STUPAKOV" option
- ✓ CSR induced steering removed by 'center' element in Elegant
- ✓ CSR induced dispersion no corrected
- ✓NO misalignment
- √1 million macro-particles
- ✓ Initial bunch from ASTRA simulation, or generated using ASTRA simulated parameters

Tolerances:

- ✓ Quad and Sextupole: 200 µm + 200 µrad RMS
- ✓RF & BPM-Quad: 200 µm RMS
- √1-to-1 or DFS steering
- √ Timing jitter, correlated for all RF between gun laser

Another two X-band RF Based Hard X-ray FELs (1-1)

Another two X-band RF Based Hard X-ray FELs (1-2)

FEL performance (w/o tapering)

FEL at photon energy 8 keV, wavelength1.5 Å LCLS Undulator with period $\lambda_w = 1.5$ cm beta-function ~ 15 m

Another two X-band RF Based Hard X-ray FELs (2-1)

Another two X-band RF Based Hard X-ray FELs (2-2)

FEL performance (w/o tapering)

FEL at photon energy 8 keV, wavelength1.5 Å LCLS Undulator with period $\lambda_w = 1.5$ cm beta-function ~ 15 m

Narrow bandwidth at 0.15 nm, 2E-3

CSR minimization in general

- ➤ Short CSR interaction time, shorter dipole length → fast turn over full compression
- Large transverse beam size, transverse suppression of CSR impacts (in the direction of radiation, the effective projected bunch length is longer)
- ➤ Horizontal phase space matching
- Long range CSR cancellation between bending systems (phase advance and TWISS in bending system) (horizontal phase space matching for two double-horns)

LCLSII BC2 and LTU arc Final horizontal projected emittance decreased from 1.63 micron to 1.16 micron

Tolerances: timing jitter and charge jitter

Random error→ sum small Correlated: all RF and gun laser

Estimated from FEL 1-D theory

 $L_G \approx \frac{\lambda_u}{4\pi\sqrt{3}\rho}$

Table 2: Peak current and FEL performance with timing jitter

 $L_{sat} \approx \lambda_u/\rho \approx 18L_G$

XFEL-GB

timing jitter	ΔI_{pk}	$\Delta L_G (L_{sat})$	$\Delta P_{FEL,sat}$
25 fs	0.6%	0.3%	99.7%
50fs	2%	1%	99%

 $P_{FEL,sat} \approx \rho \times P_e$

 $K = B[T] \cdot \lambda_u[cm]$

XFEL-LowC

	lpk	LG	PFEL,sat
50fs timing	18%	7%	-7%
4% charge	4%	2.5%	-6%

$$\rho \approx \frac{1}{4} \left(\frac{1}{2\pi^2} \frac{I_{pk}}{I_A} \frac{\lambda_u^2}{\beta \epsilon_N} \left(\frac{K}{\gamma} \right)^2 \right)^{1/3}$$

$$\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

$$\frac{\Delta \sigma_{zf}}{\sigma_{zf}} = -\frac{\Delta C}{C_0} = (C_0 \mp 1) \Delta \phi_{rf} \cot \phi_{rf} \approx C_0 \frac{\Delta \phi_{rf}}{\phi_{rf}}$$

$$\sigma_{z2} = \left[1 - k_2(\phi_2 + \Delta\phi_2 - D(\sigma_{z1}, k_2) \cdot L_{Linac2})R_{56(2)}\right] \cdot \left[1 - k_1(\phi_1 + \Delta\phi_1)R_{56(1)}\right] \cdot \sigma_{z0}$$

Tuning Linac2 length/gradient

stronger longitudinal wakefield in Linac2 to cancel the timing jitter effect, a longer total accelerator length and a higher total cost employing more RF cavities. tradeoff between the tolerated timing jitter.

Tolerances: BC1 alignment

- ▶200 µm (RMS) random offsets are generated on all the quadrupoles and sextupoles in BC1
- >200 µm for the offset between BPM electrical center and quadrupole magnetic center
- >An RMS roll angle error of **200 μrad** is also applied on all the quadrupoles and sextupoles in bunch compressor one

Table IV: Bunch compressor magnets parameters (3cm radius).

Table II: Bunch compressor TWISS parameters.

Name	Bend [kGauss]	Quad $[kG]$	Sextupole $[kG]$	Name	$K_Q \ 0.2 \mathrm{m} \ [m^{-2}]$	$K_S \ 0.1 \mathrm{m} \ [m^{-3}]$	Q'_x	Q_y'	$\beta_{x,max}$	$D_{x,max}$
250pC BC1 (250MeV)	1.7-4	1.7	0.18	$250 \mathrm{pC}$ BC1	7.4	50	-1.72	-0.9	45	0.4

- ➤One to one steering, 200 random seeds
- ➤ An average growth of 0.15 µm and 0.06 µm are found in horizontal and vertical projected normalised emittance, respectively

Tolerances: linac alignment

 $\gamma \epsilon_{v}$, perfect $-\Theta$

Stronger X-band T-wake than S-band, easier with low charge and shorter bunch

γε_x, perfect — —

- >200 µm (RMS) random offsets are generated on all the quadrupoles and RF in linac
- >200 µm for the offset between BPM electrical center and quadrupole magnetic center
- ➤ An RMS roll angle error of 200 µrad also applied on all the quadrupoles

XFEL-LowC

10 pC

Average of 200 seeds
1-to-1 or DFS

negligible

XFEL-GB
250 pC
200 seeds
1-to-1
0.12 um growth

Summary

- ➤ General bunch compressor design for longitudinal phase space linearization (tolerance acceptable) → alternative for harmonic RF
- ➤ Three X-band RF driven Hard X-ray FELs, achieve/exceed LCLS-like performance in 25% overall length or less
- >X-band tolerance acceptable from 10-250 pC

Parameter	Sym.	LCLS	XFEL-GB	XFEL-LowC	LCLSinj	unit
bunch charge	Q	250	250	10	250	рC
Energy	E	<u>14</u>	<u>7</u>	<u>6</u>	<u>14</u>	GeV
N. emittance	$\gamma \mathcal{E}_{x,y}$	0.6	0.6	0.15	0.6	μm
peak current	I_{pk}	3.0	3.0	3.0	5.0	kA
Slice espread	$\sigma_{\!\scriptscriptstyle E}\!/\!$	0.01	0.01	0.01	0.01	%
Pulse length	ΔT	60	50	2	30	fs

I would like to thank the following people for their great help and useful discussions:

C. Adolphsen, K. Bane, A. Chao, Y. Cai, Y. Ding, J. England, P. Emma, Z. Huang,

C. Limborg, Y. Jiao, Y. Nosochkov, T. Raubenheimer, M. Woodley, W. Wan, J. Wu

Thank you for your patience!

