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Our pion photoproduction model

• Nucleons, pions, photons [Born terms]
• Vector mesons (ρ and ω)
• Nucleon resonances

◦ Up to 1.8 GeV
◦ Up to spin-3/2
◦ ∆(1232), ∆(1620), and ∆(1700)
◦ N(1440), N(1520), N(1535), N(1650), and N(1720)

Fernández-Ramírez, Moya de Guerra, Udías, AP(NY) 321 (2006) 1408

The underlying physics is embedded in the
constants of the model → obtained fitting the data
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Optimization

• Gradient-based routines are the usual optimization tools
(MINUIT, NAG)

CERN, MINUIT 95.03, CERN Library D506 Edition, 1995
Numerical Algorithms Group Ltd., http://www.nag.co.uk

• In complex optimization problems these routines may get
easily stuck in local minima
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problem: gradient based methods alone fail
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Optimization

• Gradient-based routines are the usual optimization tools
(MINUIT, NAG)

CERN, MINUIT 95.03, CERN Library D506 Edition, 1995
Numerical Algorithms Group Ltd., http://www.nag.co.uk

• In complex optimization problems these routines may get
easily stuck in local minima

• Alternative: Stochastic optimization → Genetic algorithms
• Example: E04FCF from NAG by itself is useless for our

problem: gradient based methods alone fail
• Hybrid optimization: combine GA with gradient based

routine E04FCF from NAG libraries

GA + E04FCF −→ Parameters

• GA provides E04FCF the initial value
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Evolution (optimization)

• Evolution as an optimization scheme
• The different kinds of species evolve to the optimal

adaptation to the surrounding environment. Thus, evolution
is an ’algorithm’ that searchs for the best solution creating a
set of individuals (a generation), it decides which individuals
are the best ones, and, by means of crossover, keeps the
good genetic characteristics for the next generation – that
will be closer to the optimal solution – and removes the
individuals with worst genetic content
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Biology ↔ GA

Environment ↔ Objective function (v.g. χ2)
Individual ↔ Set of parameters
Generation (set of individuals) ↔ Set of possible solutions
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How a GA works

• We start with a first generation randomly generated
(N individuals)

• Each individual encodes a complete set of parameters

GE GM M∆
. . .

each parameter is a "gene"
• Scale population, v.g. using the χ2, to assign a survival and

mating probability to each individual
• Generate the offspring (fight, crossover, and mutation of

individuals)
• Repeat process until a given number of generations is

reached
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How a GA works

• We start with a first generation randomly generated
(N individuals)

• Each individual encodes a complete set of parameters

GE GM M∆
. . .

each parameter is a "gene"
• Scale population, v.g. using the χ2, to assign a survival and

mating probability to each individual
• Generate the offspring (fight, crossover, and mutation of

individuals)
• Repeat process until a given number of generations is

reached

Simulate evolution in a computer!
• We perform several optimizations to obtain a set of minima
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Particularities of GAs

• Whereas most methods employ a single solution which
evolves to reach the local optimum, GAs work on a
population of many possible solutions simultaneously

• GAs only need the objective function to determine how fit an
individual is. Neither derivatives nor other auxiliary
knowledge are required

• GAs use probabilistic rules to evolve
(randomness does not mean directionless!)
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Evolution of the optimization
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Evolution of the χ2 normalized to the final χ2

The best individual of each generation is plotted
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Effect of the gradient-based routine
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We have performed several optimizations (20), for each run
(x-axis) we get a different minimum (y-axis). We normalize all of
the minima to the best one and we plot the minima given by the
GA alone and the improvement achieve by the NAG routine for
each run
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∆(1232) parameters and E2/M1 ratio
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∆(1700) parameters and model and database effects
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∆(1700) parameters and model and database effects
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2005 SAID database
Model up to 1 GeV

2006 SAID database
Model up to 1.2 GeV
∆(1700) tail fully covered
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Fits to electromagnetics multipoles
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GAs in experimental nuclear physics at JLab

• Hall A experiment E06-007: "Impulse approximation
limitations to the (e, e′p) on 208Pb, identifying correlations
and relativistic effects in the nuclear medium"

• Optics calibration using GAs
• Allows to get all the parameters of the optics database at

the same time
• More efficient procedure (unattended optimization)

J.L. Herraiz, PhD Thesis (UCM, expected in 2009)
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Conclusions (I)

• Optimization is not a trivial problem
• Traditional optimization tools are often useless for this kind

of multi-parameter optimizations when the parameter space
is large and the function to fit presents many local minima

• If the parameters of a resonance want to be assessed its
energy range has to be fully covered, tail included. If not,
misleading results may be obtained
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Conclusions (II)

• The hybrid optimization procedure presented in this talk is a
powerful and versatile optimization tool that can be applied
to many problems in physics that involve the determination
of a set of parameters from data

• It is a promising method for extracting both reliable physical
parameters as well as their confidence intervals, probably
more meaningful than the simple covariance matrices
returned by gradient based optimization routines

• Not only the error bars have to be considered when quoting
the uncertainty in the determination of a parameter, but also
whether the minima are concentrated into one single region
or split into several ones, and the possible physical
implications of such situation
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