

Lattice Calculations of N-N* Form Factors

Huey-Wen Lin

Electromagnetic N-N* Transition Form Factors Workshop

Oct. 14, 2008

In collaboration with

Saul Cohen, Robert Edwards, and David Richards (JLab)

Kostas Orginos (W&M; JLab)

Lattice Baryon Form Factors

 Lattice QCD group at JLab
 main physics directions in support of (JLab) hadronic physics experimental program

Baryon form factors proposals

- Strange baryon (transition) form factors
- Radically excited transition form factors
 - Challenge: never been done in lattice calculations before
 - Starting with first excited state of nucleon: Roper(?)
 - Experiments at Jefferson Laboratory (CLAS), MIT-Bates, LEGS, Mainz, Bonn, GRAAL, and Spring-8
 - \clubsuit Long term goal: extend calculation to more N^*

Lattice QCD

- Physical observables are calculated from the path integral $\langle 0|O(\overline{\psi},\psi,A)|0\rangle = \frac{1}{Z} \int [dA] [d\overline{\psi}] [d\psi] O(\overline{\psi},\psi,A) e^{i\int d^4x \mathcal{L}^{QCD}(\overline{\psi},\psi,A)}$
- Strong-coupling regions: expansions no longer converge
- Lattice QCD is a discrete version of continuum QCD theory

- Numerical integration to calculate the path integral
- Take $a \to 0$ and $V \to \infty$ in the continuum limit

Lattice Challenge

Euclidean space:

obtain correlators with time-dependent form $\sum_{n} Z_{n,B} e^{-E_n(\vec{P})t}$

- Signal falls exponentially with time dominated by ground state; challenge for excited states
- Solution: increase resolution

Anisotropic lattice

more complications to generate 2+1f lattice ensembles

Huey-Wen Lin - NN* Workshop, JLab

Lattice Setup

"Quenched" for exploratory study

- no sea quark contributions
 - Bad: Uncontrollable systematic error
 - Good?
 - Preserve nice features: confining, asymptotically free, spontaneously broken chiral symmetry
 - Cheap exploratory studies to develop new methods
- Some detailed Parameters
 - $16^3 \times 64$ **an**isotropic lattice, $\xi = 3$
 - Wilson gauge action + clover fermion action
 - $a_t^{-1} \approx 6 \text{ GeV}$ and $a_s \approx 0.125 \text{ fm} (L < 2 \text{ fm})$
 - ▶ $m_{\pi} \approx 720$ (480 and 1100) MeV
 - 200 configurations

6

Green Functions

 \diamond Three-point function with interpolation operator J

$$C_{\mathsf{3pt}}^{\Gamma,\mathcal{O}}\left(\overrightarrow{p},t,\tau\right) = \sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J_{\beta}\left(\overrightarrow{p},t\right) \mathcal{O}(\tau) \overline{J}_{\alpha}\left(\overrightarrow{p},0\right) \rangle$$

Baryon interpolating field

 $J_{\alpha}\left(\vec{p},t\right) = \sum_{\vec{x},a,b,c} e^{i\vec{p}\cdot\vec{x}} \epsilon^{abc} \left[u_{a}^{T}(y_{1},t)C\gamma_{5}d_{b}(y_{2},t) \right] u_{c,\alpha}(y_{3},t)\phi(y_{1}-x)\phi(y_{2}-x)\phi(y_{3}-x)$

Two contraction categories:

We use only the "connected" construction for this work Ongoing investigation into "disconnected" contribution

Form Factors

The form factors are buried in the amplitudes

$$\begin{split} & \sum_{\mu,AB}^{(3),T} \left(t_i, t, t_f, \overrightarrow{p}_i, \overrightarrow{p}_f \right) \\ &= a^3 \sum_{n} \sum_{n'} \frac{1}{Z_j} \frac{Z_{n',B}(p_f) Z_{n,A}(p_i)}{4E'_n(\overrightarrow{p}_f) E_n(\overrightarrow{p}_i)} e^{-(t_f - t)E'_n(\overrightarrow{p}_f)} e^{-(t - t_i)E_n(\overrightarrow{p}_i)} \\ & \swarrow \sum_{s,s'} T_{\alpha\beta} u_{n'}(\overrightarrow{p}_f, s')_\beta \langle N_{n'}(\overrightarrow{p}_f, s') | j_\mu(0) | N_n(\overrightarrow{p}_i, s) \rangle \overline{u}_n(\overrightarrow{p}_i, s)_\alpha \end{split}$$

Nucleon form factor (n = n' = 0)

Γ

$$\langle N | V_{\mu} | N \rangle(q) = \overline{u}_{N}(p') \left[\gamma_{\mu} F_{1}(q^{2}) + \sigma_{\mu\nu} q_{\nu} \frac{F_{2}(q^{2})}{2m} \right] u_{N}(p) e^{-iq \cdot x}$$

Nucleon-Roper form factor $(n = 0, n' = 1 \text{ or } n = 1, n' = 0)$

$$\langle N_2 \left| V_{\mu} \right| N_1 \rangle_{\mu}(q) = \overline{u}_{N_2}(p') \left[F_1(q^2) \left(\gamma_{\mu} - \frac{q_{\mu}}{q^2} \not{q} \right) + \sigma_{\mu\nu} q_{\nu} \frac{F_2(q^2)}{M_{N_1} + M_{N_2}} \right] u_{N_1}(p) e^{-iq \cdot x}$$

Need best possible input from two-point correlators

Variational Method

Generalized eigenvalue problem:

[C. Michael, Nucl. Phys. B 259, 58 (1985)] [M. Lüscher and U. Wolff, Nucl. Phys. B 339, 222 (1990)]

Construct the matrix

 $C_{ij}(t) = \langle 0 \mid \mathcal{O}_i(t)^{\dagger} \mathcal{O}_j(0) \mid 0 \rangle$

Solve for the generalized eigensystem of

 $C(t_0)^{-1/2}C(t)C(t_0)^{-1/2}v = \lambda(t, t_0)v$

with eigenvalues

$$\lambda_n(t, t_0) = e^{-(t-t_0)E_n} (1 + \mathcal{O}(e^{-|\delta E|(t-t_0)}))$$

Now the original correlator matrix can be approximated by

$$C_{ij} = \sum_{n=1}^{r} (C(t_0)^{1/2} v_n^*)_i (v_n C(t_0)^{1/2})_j \lambda_n(t, t_0) = \sum_n \frac{E_n + m}{2E_n} Z_{i,n} Z_{j,n} e^{-E_n t}$$

Three smearings (*i*,*j*) are chosen for this work
 2nd excited state is contaminated by remaining states

Variational Method

Variational Method

\Rightarrow Eigenvectors (at p = 0) show overlap of smearings with states

Huey-Wen Lin — NN* Workshop, JLab

Three-Point Fitting

◆ Example: $P_f = \{0,0,0\}, P_i = \{0,1,1\}, V_4$

Nucleon Form Factors

Lattice Form Factors

♦ Large- Q^2 calculations

Typical Q^2 range for nucleon form factors is < 3.0 GeV²

Nucleon-Roper Form Factors

• Converting experimental data $(\gamma^* N_1 \to N_2)$ $A_{1/2}(Q^2)/\kappa_A = G_M(Q^2) = F_1^*(Q^2) + F_2^*(Q^2)$ $S_{1/2}(Q^2)/\kappa_S = G_E(Q^2) = F_1^*(Q^2) - F_2^*(Q^2) Q^2 / (M_{N_1} + M_{N_2})^2$ with

$$k_A(Q^2) \equiv \sqrt{2\pi\alpha} \frac{Q^2 + (M_{N_1} - M_{N_2})^2}{M_{N_1} (M_{N_1}^2 - M_{N_2}^2)}$$

$$k_S(Q^2) \equiv k_A(Q^2) \frac{M_{N_1} + M_{N_2}}{2\sqrt{2}Q^2 M_{N_2}} \sqrt{Q^2 + (M_{N_1} - M_{N_2})^2} \times \sqrt{Q^2 + (M_{N_1} + M_{N_2})^2}$$

Use CLAS analysis and PDG results to solve for $F_{1,2}^*(Q^2)$

I. Aznauryan et al., arXiv:0804.0447[nucl-ex], arXiv:0711.1120[nucl-th]; K. Park et al., Phys. Rev. C77, 015208 (2008); V. I. Mokeev et. al, AIP Conf. Proc. 842, 339 (2006).

Nucleon-Roper Form Factors

Nucleon-Roper Form Factors

Full-QCD Ensembles

Why Dynamical?

Lattice QCD spectrum

Successfully calculates many ground states (Nature, ...)

Roper Resonance on the Lattice

 \diamond Mostly done in "quenched" approx. N, P₁₁, S₁₁ spectrum $P_{11} S_{11}$ NMathur '03 Leinweber[†] '04 Ю ⊕ A Guadagnoli '04 θ Sasaki '05 Ð Burch '06 **(b)** Basak[†] '06 ₿ θ 0.5 1.0 2.0 2.5 1.5

	Group	$N_{\mathbf{f}}$	$S_{\mathbf{f}}$	$a_t^{-1}~({\rm GeV})$	M_{π} (GeV)	$L~({\rm fm})$	Method	Extrapolation
	Basak et al. [12]	0	Wilson	6.05	0.49	2.35	VM	N/A
≯	Burch et al. [11]	0	CIDO	1.68, 1.35	0.35 - 1.1	2.4	VM	$a + bm_{\pi}^2$
≯	Sasaki et al. [9]	0	Wilson	2.1	0.61 - 1.22	1.5, 3.0	MEM	$\sqrt{a+bm_{\pi}^2}$
╞	Guadagnoli et al. [7]	0	Clover [13]	2.55	0.51 – 1.08	1.85	SBBM	$a + bm_\pi^2 + cm_\pi^4$
	Leinweber et al. [8]	0	FLIC	1.6	0.50 - 0.91	2.0	VM	N/A
	\rightarrow Mathur et al. [6]	0	Overlap [14]	1.0	0.18 - 0.87	2.4, 3.2	CCF	$a + bm_{\pi} + cm_{\pi}^2$

Huey-Wen Lin — NN* Workshop, JLab

Roper in Full QCD

Not a crazy possibility (see the hand-drawn extrapolation lines) Stay tuned for future $N_f = 2+1$ lattice calculations

Roper in Full QCD

♦ $N_f = 2+1$ isotropic clover action calculation ($L \sim 2$ fm)

Huey-Wen Lin — NN* Workshop, JLab

Dynamical Anisotropic Lattices

♦ $N_f = 2+1$ anisotropic clover action available ensemble list
[R. Edwards et al., Phys. Rev. D 78, 014505 (2008)]

[R. Edwards and M. Peardon, LAT2008]

r	r			$T (f_{res})$	т.	$m (M \rho V)$
L_x	L_t	m_l	m_s	L (fm)	m_{π} L	$\pi(\mathbf{W} \mathbf{c} \mathbf{v})$
12	96	-0.0540	-0.0540	1.44	11.6	~ 1600
12	96	-0.0699	-0.0540	1.44	8.3	
12	96	-0.0794	-0.0540	1.44	5.9	
12	96	-0.0826	-0.0540	1.44	9.6	
16	96	-0.0826	-0.0540	1.92	6.3	~ 660
12	96	-0.0618	-0.0618	1.44	9.7	~ 1340
16	128	-0.0743	-0.0743	1.92	8.1	~ 850
16	128	-0.0808	-0.0743	1.92	5.6	
16	128	-0.0830	-0.0743	1.92	4.5	
16	128	-0.0840	-0.0743	1.92	3.8	
24	128	-0.0840	-0.0743	2.88	5.7	~ 360
						-

Computational Resources

USQCD facilities: JLab, Fermilab, BNL

Non-lattice resources open to USQCD: ORNL, LLNL, ANL

NSF supercomputer and world-wide increase in computation facilities

Huey-Wen Lin — NN* Workshop, JLab

Gauge Generation

- Most of the major 2+1-flavor gauge ensembles:
 - $M_{\pi} < 300 \text{ MeV}$ (Most of them have multiple lattice spacings and volumes)
 - MILC (staggered): $M_{\pi} \sim 217$ MeV
 - PACS-CS (Clover action): $M_{\pi} \sim 156$ MeV (but small volume)
 - The Budapest-Marseille-Wuppertal (BMW) Collaboration: $M_{\pi} \sim 193$ MeV
 - RBC/UKQCD (DWF), $M_{\pi} \sim 210$ MeV (on-going)
 - The Hadron Spectrum Collaboration (anisotropic clover): $M_{\pi} \sim 175$ MeV (on-going)
- Small range of chiral extrapolation:
 significantly reduces the systematic uncertainties
 Example: BMW Collaboration, LAT2008

Extended Operators on-going project

Orthogonal Operators

D. Richards, this workshop

Classify states according to symmetry properties

Projection onto irreducible representations of finite groups

Number of operators: [–]

N^+ Operator type	G_{1g}	H_g	G_{2g}
Single-Site	3	1	0
Singly-Displaced	24	32	8
${\rm Doubly}\text{-}{\rm Displaced}\text{-}{\rm I}$	24	32	8
${\rm Doubly}\text{-}{\rm Displaced}\text{-}{\rm L}$	64	128	64
Triply-Displaced-T	64	128	64
Total	179	321	144

S. Basak et al., Phys. Rev. D72, 094506 (2005)

Huey-Wen Lin — NN* Workshop, JLab

Summary and Outlook

Lattice QCD calculations of $N-P_{11}$ form factors...

- Test case is in a small "quenched" box with large pion mass
- We demonstrate a method to determine N-N* form factors with reasonable signal on anisotropic lattices
- ◆ Clean signal for large Q^2 momentum *N*-*N* form factors

Further along our roadmap...

- \Rightarrow g_{*πNN*}* from axial coupling and Goldberger-Treiman relation
- Moving forward to full-QCD anisotropic lattice calculations
- Implement group theory operators for baryons
- Other N-N* form factors. The methodology developed can be applied to many other excited-nucleon form factors.

Backup Slides

Including Disconnected Diagrams

Example: Sea-quark contribution to (unrenormalized) quark momentum fraction

> 2+1f clover lattices, $M_{\pi} \sim 610-840$ MeV

T. Doi (XQCD), Lattice 2008

Challenges for the Future

As one goes to lighter pion-mass regions...

Need more statistics to get sufficient single-to-noise ratio

Signal	_	$\langle J(t)J(0) angle$
Noise	_	$\frac{1}{\sqrt{N}}\sqrt{\langle J(t)J(0) ^2\rangle - \langle J(t)J(0)\rangle^2}$
	\sim	Ae^{-M_nt}
		$\frac{1}{\sqrt{N}}\sqrt{Be^{-3m_{\pi}t} - Ce^{-2M_{n}t}}$
	\sim	$\sqrt{N}De^{-(M_n-\frac{3}{2}m_\pi)t}$

Challenges for the Future

As one goes to lighter pion-mass regions...

- Need more statistics to get sufficient single-to-noise ratio
- Decay channels open up...
 - Conservative approach: using multiple volumes to identify single- and multiple-particle states
- Further improvement:
 - Symmetry-breaking on the lattice:
 - construct more operators that would generate the same quantum numbers in a = 0 world
 - More data input
 - Better discrimination among different states

Nucleon Form Factors

Pion masses around 480, 720 and 1100 MeV Isovector F_1 Isovector F_2

N-P₁₁ Form Factor

- Experiments at Jefferson Laboratory (CLAS), MIT-Bates, LEGS, Mainz, Bonn, GRAAL, and Spring-8
 Helicity amplitudes are measured (in 10⁻³ GeV^{-1/2} units)
- Many models disagree (a selection are shown below)

If the Roper is the first radially excited state of the nucleon, this is the data to compare with