Proposal to Study the N→N* Transition Form Factors with CLAS at 11 GeV

Ralf W. Gothe University of South Carolina

Electromagnetic N-N* Transition Form Factors Workshop

October 13 -15, 2008 Jefferson Lab, Newport News, VA USA

Motivation: Why Baryon Transition Form Factors?
Consistency: N→Δ, N→ Roper, and other N→N* Transitions
Experiment: Cross Sections and Beam Time Estimates

Physics Goals

- Understand QCD in the full strong coupling regime
 - transition form factors to nucleon excited states allow us to study
 - relevant degrees-of-freedom
 - wave function and interaction of the constituents

Hadron Structure with Electromagnetic Probes

Quark mass extrapolated to the chiral limit, where q is the momentum variable of the tree-level quark propagator using the Asquat action.

Ralf W. Gothe

 $N \rightarrow N^*$ Transition Form Factors

To avoid confusions

The Soy Although non-diagonal DVCS is a hard process it probes <u>soft</u> B* excitation by <u>low-energy</u> QCD string. Physics-wise it is more analogous to B* photoexcitation B* 3 Than to hard electro-B* production of B* 52 3 String S x (hand) Non-diagonal DVCS probes physics qualitativey different from that in hard & electroproduction!

Jefferson Pal

M. Polyakov

Constituent Counting Rule

5

$N \rightarrow \Delta$ Multipole Ratios R_{EM} , R_{SM}

New trend towards pQCD behavior does not show up.

- $> R_{EM} \rightarrow +1$
- $> G_M^* \rightarrow 1/Q^4$
- > CLAS12 can measure R_{EM} and R_{SM} up to Q²~12 GeV².

Ralf W. Gothe $N \rightarrow N^*$ Transition Form Factors

... but the trend that R_{SM} becomes constant in the limit of $Q^2 \rightarrow \infty$ seems to show up in the latest MAID 2007 analysis of the high Q^2 data.

Ralf W. Gothe $N \rightarrow N^*$ Transition Form Factors

EmNN* 2008

Integrated Target and Beam-Target Asymmetries

CLAS

$\vec{e} \vec{p} \rightarrow e' p \pi^0$

The asymmetries are integrated over θ^* and ϕ^* in the Q² range from 0.187 to 0.770 GeV² and will further reduce the model dependence of the extracted resonance parameters.

Ralf W. Gothe N→N* Transition Form Factors **EmNN* 2008**

8

A. Biselli

Roper Electro-Coupling Amplitudes A_{1/2}, S_{1/2}

Ralf W. Gothe

N→N* Transition Form Factors

EmNN* 2008

Roper Electro-Coupling Amplitudes A_{1/2}, S_{1/2}

Ralf W. Gothe

N→N* Transition Form Factors

S₁₁(1535) Electro-Coupling Amplitudes A_{1/2}, S_{1/2}

Energy-Dependence of π^+ **Multipoles for** P_{11} , S_{11}

I. Aznauryan (UIM)

The study of some baryon resonances becomes easier at higher Q².

Jefferson Pab

Ralf W. Gothe

N→N* Transition Form Factors

Legendre Moments of Structure Functions

CLAS

 $Q^2 = 2.05 GeV^2$

K. Park

W(GeV)

$$\sigma_T + \epsilon \sigma_L = \sum_{l=0}^n D_l^{T+L} P_l(\cos \theta_\pi^*)$$

- I. Aznauryan DR fit
- I. Aznauryan – DR fit w/o P11
- I. Aznauryan UIM fit

-Jefferson Lab--

The dominating final state multipole amplitude M_{1-} of the $P_{11}(1440)$ resonance is at high Q² are much more prominent than at small Q².

πN invariant mass / MC phase spaceBES/BEPC, Phys. Rev. Lett. 97 (2006)

Fermion Helicity Conservation

Quark mass extrapolated to the chiral limit, where q is the momentum variable of the tree-level quark propagator using the Asquat action.

Ralf W. Gothe $N \rightarrow N^*$ Transition Form Factors **EmNN* 2008**

D₁₃(1520) Helicity Asymmetry

Nucleon Resonances in 2π Electroproduction

Ralf W. Gothe

 $N \rightarrow N^*$ Transition Form Factors

EmNN* 2008

Contributing Mechanisms to $\gamma^{(*)}p \rightarrow p\pi^+\pi^-$

Isobar Model JM05

- Full calculations
- $---- \gamma p \rightarrow \pi^- \Delta^{++}$
- $---- \gamma p \rightarrow \pi^+ \Delta^0$
- --- $\gamma p \to \pi^+ D_{13}(1520)$
 - $---- \gamma p \rightarrow \rho p$
- $--- \gamma p \to \pi^{-} \Delta^{++}(1600)$
 - $\cdots \qquad \gamma p \to \pi^+ F^0{}_{15}(1685)$
 - direct 2π production

> The combined fit of nine single differential cross sections allowed to establish all significant mechanisms.

efferson Pal

Ralf W. Gothe $N \rightarrow N^*$ Trans

JM

Fit of the CLAS $N\pi\pi$ Data within JM-Model

Ralf W. Gothe

N→N* Transition Form Factors

EmNN* 2008

19

Roper Electro-Coupling Amplitudes A_{1/2}, S_{1/2}

Roper Electro-Coupling Amplitudes A_{1/2}, S_{1/2}

D₁₃(1520) Electro-Coupling Amplitudes A_{3/2}, S_{1/2}

I. Starkovski

χ²/dp

W	1650	MeV Q2	= 0.40±0.	05 GeV2	
	SM08	CLAS40	MAID07	Data	
π ^o	1.6	1.6	1.5	5820	
π^{*}	1.5	1.2	2.2	3352	
W < 1650 MeV Q ² = 0.65±0.05 GeV ²					
- 5	80M	CLAS65	MAID07	Data	
π ^o	1.3	1.3	1.1	8271	
π*	1.1	1.3	1.8	2515	

- The good agreement for $A_{3/2}$ and $S_{1/2}$ determination between various resonance extractions gives a more reliable estimate of systematics
 - CLAS12 is favorable for Q^2 evaluation

Combined 1π - 2π Analysis of CLAS Data

Jefferson Pab

- > PDG at $Q^2=0$
- Previous world data
- $> 2\pi$ analysis
- 1π-2π combined at Q²=0.65 GeV²
- Many more examples: P₁₁(1440), D₁₃(1520), S₃₁(1650), S₁₁(1650), F₁₅(1685), D₁₃(1700),
- EBAC at JLab: Full coupled channel analysis

JM05

Combined 1π - 2π Analysis of CLAS Data

Inclusive Structure Function in the Resonance Region

Jefferson Pab

Event Generators

- Genova-EG: Dipole Form Factor
- SI-DIS: Deep Inelastic Scattering

Kinematic Coverage of CLAS12

(E',Q ²)	(5.75 GeV, 3 GeV ²)	(11 GeV, 3 GeV ²)	(11 GeV, 12 GeV ²)
$\mathrm{N}^{\pi+}$	1.41*10 ⁵	$6.26*10^{6}$	5.18*10 ⁴
$N^{p\pi_0}$	-	4.65*10 ⁵	1.45*10 ⁴
$N^{p\eta}$	-	$1.72*10^4$	1.77*10 ⁴

Jefferson Pab

L= 10^{35} cm⁻² sec⁻¹, $\Delta W = 0.100$ GeV, $\Delta Q^2 = 0.5$ GeV²

Ralf W. Gothe

N→N* Transition Form Factors

Kinematical Coverage of CLAS12

P₁₁(1440)

27

Conclusion: Do Exclusive Electron Scattering

