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Kinematics

σ(θ, φ) =
q
k
I(θ, φ)
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The Four Complex Amplitudes
In Helicity Space
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Hi(E , θ, φ) = |Hi | eiφi

4 + 3 = 7

Discrete ambiguities 7 + ?
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The Bilinear Helicity Product (BHP) Form

Ω̌α = Ωα I(θ)

=
1
2

H∗i Γαij Hj

≡ 1
2
〈H|Γα|H〉 ,

α = 1, · · · 16
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The Bilinear Helicity Product (BHP) Selection Scheme

Spin Observables: Sixteen spin observables are expressed in
helicity representation and BHP forms.
Classified into four sets:

S for the differential cross section and single spin
observables,
BT beam-target,
BR beam-recoil,
T R target-recoil .
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Helicity Representation S

Spin Helicity BHP
Observable Representation

Ω̌1 ≡ I(θ) 1
2(|H1|2 + |H2|2 + |H3|2 + |H4|2) 1

2〈H|Γ
1|H〉

Ω̌4 ≡ Σ̌ Re(−H1H∗4 + H2H∗3) 1
2〈H|Γ

4|H〉

Ω̌10≡ −Ť Im(H1H∗2 + H3H∗4) 1
2〈H|Γ

10|H〉

Ω̌12≡ P̌ Im(−H1H∗3 − H2H∗4) 1
2〈H|Γ

12|H〉
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Helicity Representation BT

Spin Helicity BHP
Observable Representation

Ω̌3 ≡ Ǧ Im(H1H∗4 − H3H∗2) 1
2〈H|Γ

3|H〉

Ω̌5 ≡ Ȟ Im(−H2H∗4 + H1H∗3) 1
2〈H|Γ

5|H〉

Ω̌9 ≡ Ě 1
2(|H1|2 − |H2|2 + |H3|2 − |H4|2) 1

2〈H|Γ
9|H〉

Ω̌11≡ F̌ Re(−H2H∗1 − H4H∗3) 1
2〈H|Γ

11|H〉
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Helicity Representation BR

Spin Helicity BHP
Observable Representation

Ω̌14≡ Ǒx Im(−H2H∗1 + H4H∗3) 1
2〈H|Γ

14|H〉

Ω̌7 ≡ −Ǒz Im(H1H∗4 − H2H∗3) 1
2〈H|Γ

7|H〉

Ω̌16≡ −Čx Re(H2H∗4 + H1H∗3) 1
2〈H|Γ

16|H〉

Ω̌2 ≡ −Čz
1
2(|H1|2 + |H2|2 − |H3|2 − |H4|2) 1

2〈H|Γ
2|H〉
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Helicity Representation T R

Spin Helicity BHP
Observable Representation

Ω̌6 ≡ −Ťx Re(−H1H∗4 − H2H∗3) 1
2〈H|Γ

6|H〉

Ω̌13≡ −Ťz Re(−H1H∗2 + H4H∗3) 1
2〈H|Γ

13|H〉

Ω̌8 ≡ Ľx Re(H2H∗4 − H1H∗3) 1
2〈H|Γ

8|H〉

Ω̌15≡ Ľz
1
2(−|H1|2 + |H2|2 + |H3|2 − |H4|2) 1

2〈H|Γ
15|H〉
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The Four Complex Amplitudes
In Transversity Space
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Transversity Representation S

Spin Transversity BTP
Observable Representation

Ω̌1 ≡ I(θ) 1
2(|b1|2 + |b2|2 + |b3|2 + |b4|2) 1

2〈b|Γ̃
1|b〉

Ω̌4 ≡ Σ̌ 1
2(|b1|2 + |b2|2 − |b3|2 − |b4|2) 1

2〈b|Γ̃
4|b〉

Ω̌10≡ −Ť 1
2(−|b1|2 + |b2|2 + |b3|2 − |b4|2) 1

2〈b|Γ̃
10|b〉

Ω̌12≡ P̌ 1
2(−|b1|2 + |b2|2 − |b3|2 + |b4|2) 1

2〈b|Γ̃
12|b〉
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Transversity Representation BT

Spin Transversity BTP
Observable Representation

Ω̌3 ≡ Ǧ Im(−b1b∗3 − b2b∗4) 1
2〈b|Γ̃

3|b〉

Ω̌5 ≡ Ȟ Re(b1b∗3 − b2b∗4) 1
2〈b|Γ̃

5|b〉

Ω̌9 ≡ Ě Re(b1b∗3 + b2b∗4) 1
2〈b|Γ̃

9|b〉

Ω̌11≡ F̌ Im(b1b∗3 − b2b∗4) 1
2〈b|Γ̃

11|b〉
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Transversity Representation BR

Spin Transversity BTP
Observable Representation

Ω̌14≡ Ǒx Re(−b1b∗4 + b2b∗3) 1
2〈b|Γ̃

14|b〉

Ω̌7 ≡ −Ǒz Im(−b1b∗4 − b2b∗3) 1
2〈b|Γ̃

7|b〉

Ω̌16≡ −Čx Im(b1b∗4 − b2b∗3) 1
2〈b|Γ̃

16|b〉

Ω̌2 ≡ −Čz Re(b1b∗4 + b2b∗3) 1
2〈b|Γ̃

2|b〉
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Transversity Representation T R

Spin Transversity BTP
Observable Representation

Ω̌6 ≡ −Ťx Re(−b1b∗2 + b3b∗4) 1
2〈b|Γ̃

6|b〉

Ω̌13≡ −Ťz Im(b1b∗2 − b3b∗4) 1
2〈b|Γ̃

13|b〉

Ω̌8 ≡ Ľx Im(−b1b∗2 − b3b∗4) 1
2〈b|Γ̃

8|b〉

Ω̌15≡ Ľz Re(−b1b∗2 − b3b∗4) 1
2〈b|Γ̃

15|b〉
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The Bilinear Helicity Product (BHP) Summary

S : (I, Σ̌,−Ť , P̌) Γ1, Γ4, Γ10, Γ12

BT : (Ǧ, Ȟ, Ě , F̌ ) Γ3, Γ5, Γ9, Γ11

BR : (Ǒx ,−Ǒz ,−Čx ,−Čz) Γ14, Γ7, Γ16, Γ2

T R : (−Ťx ,−Ťz , Ľx , Ľz) Γ6, Γ13, Γ8, Γ15

Ambiguities: Γ4, Γ10, Γ12

Γ15 K0,
Γ6 K0, Γ

8 K0, Γ
13 K0
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Sixteen Hermitian Gamma Matrices

Γα=1···5 = 1, γ0, i~γ

Γα=6···11 = σ0x , iσ0y , iσ0z,

iσxy , iσxz, iσzy

Γα=12···16 = iγ5γ0, γ5~γ, γ5.
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Γα Properties

Γα are Hermitian and unitary.
Tr(ΓαΓβ) = 4δαβ.
Γα are linearly independent. and form a
complete set (a basis) for 4× 4 matrices.
Any 4× 4 matrices X can be expanded as
X =

∑
α CαU4 with Cα = 1

4Tr(ΓαX ).∑
α ΓαbaΓαst = 4δasδbt .

ΓαΓβ = ραβγΓγ with ραβγ = 1
4Tr(ΓαΓβΓγ).

1
4ραγδρβγη = 1

16Tr(ΓδΓαΓηΓβ) ≡ Cαβ
δη : used for

the Fierz transformation

18



Transversity Γ̃α

Transversity transformation: |b〉 = U4 |H〉 Γ̃α = U4ΓαU†4

U(4) =
1
2


1 −i i 1
1 i −i 1
1 i i −1
1 −i −i −1

 ,

which involves rotating the helicity quantization axis to the
direction normal to the scattering plane. The sixteen spin
observables can be expressed in this transversity basis by

Ω̌α = Ωα I(θ) =
1
2

b∗i Γ̃αij bj =
1
2
〈b|Γ̃α|b〉 , α = 1, · · · 16 .

19



The transversity Γ̃ matrices form four classes with four
members in each class according to their “shape:” diagonal
(D); right parallelogram (PR); antidiagonal (AD); and left
parallelogram (PL) correspond to S, BT , BR and T R type
experiments.

Γ̃D = Γ̃S =


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

 ;

a b c d
Γ̃1 +1 +1 +1 +1
Γ̃4 +1 +1 −1 −1
Γ̃10 −1 +1 +1 −1
Γ̃12 −1 +1 −1 +1

|bi |

20



Γ̃PR = Γ̃BT =


0 0 a 0
0 0 0 b
c 0 0 0
0 d 0 0

 ;

a b c d
Γ̃3 −i −i +i +i
Γ̃5 +1 −1 +1 −1
Γ̃9 +1 +1 +1 +1
Γ̃11 +i −i −i +i

φ13, φ24
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Γ̃AD = Γ̃BR =


0 0 0 a
0 0 b 0
0 c 0 0
d 0 0 0

 ;

a b c d
Γ̃14 −1 +1 +1 −1
Γ̃7 −i −i +i +i
Γ̃16 +i −i +i −i
Γ̃2 +1 +1 +1 +1

φ14, φ23
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Γ̃PL = Γ̃T R =


0 a 0 0
b 0 0 0
0 0 0 c
0 0 d 0

 ;

a b c d
Γ̃6 −1 −1 +1 +1
Γ̃13 +i −i −i +i
Γ̃8 −i +i −i +i
Γ̃15 −1 −1 −1 −1

φ12, φ34
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Discrete Ambiguities in Helicity Basis

G. Keaton & R. Workman Phys.Rev. C53, 1434 (1996) gave
discrete ambiguity relations associated with transformations of
helicity amplitudes:
Ambiguity I: H1 ←→ H4 H2 ←→ −H3


H ′1
H ′2
H ′3
H ′4

 =


0 0 0 +1
0 0 −1 0
0 −1 0 0

+1 0 0 0




H1
H2
H3
H4

 = Γ4


H1
H2
H3
H4

 .
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Discrete Ambiguities in Helicity Basis

Ambiguity II:
H1 −→ H2 H2 −→ −H1 H3 −→ H4 H4 −→ −H3


H ′1
H ′2
H ′3
H ′4

 =


0 +1 0 0
−1 0 0 0
0 0 0 +1
0 0 −1 0




H1
H2
H3
H4

 = −i Γ10


H1
H2
H3
H4

 .
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Discrete Ambiguities in Helicity Basis

Ambiguity III:
H1 −→ H3 H2 −→ H4 H3 −→ −H1 H4 −→ −H2


H ′1
H ′2
H ′3
H ′4

 =


0 0 +1 0
0 0 0 +1
−1 0 0 0
0 −1 0 0




H1
H2
H3
H4

 = i Γ12


H1
H2
H3
H4

 .
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Ambiguity IV:
H1 −→ −H∗1 H2 −→ H∗2 H3 −→ H∗3 H4 −→ −H∗4


H ′1
H ′2
H ′3
H ′4

 =


−1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 −1




H∗1
H∗2
H∗3
H∗4

 = Γ15


H∗1
H∗2
H∗3
H∗4

 .
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Ambiguities in the transversity basis

Ambiguity I:
b1 −→ +b1 b2 −→ +b2 b3 −→ −b3 b4 −→ −b4

b′1
b′2
b′3
b′4

 =


+1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 −1




b1
b2
b3
b4

 = Γ̃4


b1
b2
b3
b4

 .

Ambiguity II:
b1 −→ −b1 b2 −→ +b2 b3 −→ +b3 b4 −→ −b4

b′1
b′2
b′3
b′4

 =


−1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 −1




b1
b2
b3
b4

 = −i Γ̃10


b1
b2
b3
b4

 .
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Ambiguities in the transversity basis

Ambiguity III:
b1 −→ −b1 b2 −→ +b2 b3 −→ −b3 b4 −→ +b4

b′1
b′2
b′3
b′4

 =


−1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 +1




b1
b2
b3
b4

 = i Γ̃12


b1
b2
b3
b4

 .

Ambiguity IV:
b1 −→ −b∗2 b2 −→ −b∗1 b3 −→ −b∗4 b4 −→ −b∗3


b′1
b′2
b′3
b′4

 =


0 −1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0




b∗1
b∗2
b∗3
b∗4

 = Γ̃15


b∗1
b∗2
b∗3
b∗4

 . (1)
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Linear ambiguity I, II and III L = Γ̃4, Γ̃10, and Γ̃12

Antilinear ambiguity IV ambiguity A = Γ̃15K0.

Other three antilinear ambiguities A = Γ̃6K0, Γ̃13K0, and Γ̃8K0,
can be constructed by Ambiguity IV and the three linear
ambiguities I to III. I

Γ̃6 = Γ̃4 Γ̃15

Γ̃13 = i Γ̃10 Γ̃15

Γ̃8 = −i Γ̃12 Γ̃15 .

See KW (Ref. [?]).
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Spin Linear Transformation L Antilinear Transformation A

Observable Γ̃4 Γ̃10 Γ̃12 Γ̃6 Γ̃8 Γ̃13 Γ̃15

σ(θ) + + + + + + +
Σ + + + + + + + S
T + + + + + + +
P + + + + + + +

G − − + + − + −
H − − + − + − + BT
E − − + − + − +
F − − + + − + −

L : bi −→ b′i = Lijbj

A : bi −→ b′i = Aijb∗j
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Spin Linear Transformation L Antilinear Transformation A

Observable Γ̃4 Γ̃10 Γ̃12 Γ̃6 Γ̃8 Γ̃13 Γ̃15

Ox − + − − − + +
Oz − + − + + − − BR
Cx − + − + + − −
Cz − + − − − + +

Tx + − − + − − +
Tz + − − − + + − T R
Lx + − − − + + −
Lz + − − + − − +

L : bi −→ b′i = Lijbj

A : bi −→ b′i = Aijb∗j
32



Fierzing ~γ~N → π + ~N ′ Case

Fierz for SU(4)

Γαij Γβst =
16∑

a,b=1

Cα,β
a,b Γa

it Γb
sj −→ Γα Γβ =

16∑
a,b=1

Cα,β
a,b Γa Γb

Cα,β
a,b ≡

1
16

Tr [ΓaΓαΓβΓb]

Fierzing Observables:

Ωα Ωβ =
16∑

a,b=1

Cα,β
a,b Ωa Ωb

16× 16/2 = 128 −→ x relations; for example:

Γ1
ij Γ1

st =
1
x

[Γ1
it Γ1

sj + Γ2
it Γ2

sj + · · ·+ Γ16
it Γ16

sj ]

33



Linear-Quadratic Relations (16):

Ω1 = 1 =
1
4

16∑
α=1

(Ωα)2

Ω4 = Ω10Ω12 + Ω6Ω15 − Ω8Ω13

Ω10 = Ω4 Ω12 + Ω2Ω14 + Ω7Ω16

Ω12 = Ω4 Ω10 + Ω3Ω11 − Ω5Ω9

Ω3 = +Ω11Ω12 − Ω7Ω15 + Ω14Ω8

Ω5 = −Ω9 Ω12 + Ω7Ω13 − Ω14Ω6

Ω9 = −Ω5 Ω12 − Ω2Ω15 − Ω16Ω8

Ω11 = +Ω3 Ω12 + Ω2Ω13 + Ω16Ω6

34



Linear-Quadratic Relations:

Ω14 = Ω2 Ω10 + Ω3Ω8 − Ω5 Ω6

Ω7 = Ω16Ω10 − Ω3Ω15 + Ω5 Ω13

Ω16 = Ω7 Ω10 − Ω9Ω8 + Ω11Ω6

Ω2 = Ω14Ω10 − Ω9Ω15 + Ω11Ω13

Ω6 = +Ω15Ω4 − Ω5 Ω14 + Ω11Ω16

Ω13 = −Ω8 Ω4 + Ω5 Ω7 + Ω11Ω2

Ω8 = −Ω13Ω4 + Ω3 Ω14 − Ω9 Ω16

Ω15 = +Ω6 Ω4 − Ω3 Ω7 − Ω9 Ω2

35



Fierz Relations

Linear-Quadratic Relations:

I = 1 =
1
4

16∑
α=1

(Ωα)2

Σ = −T P − Tx Lz + Lx Tz

T = −Σ P + Cz Ox −Oz Cx

P = −Σ T + G F − H E


1 0 0 −P
0 1 P 0
0 P 1 0
−P 0 0 1




G
H
E
F

 =


0 0 Ox Oz

Ox Oz 0 0
0 0 Cx Cz

Cx Cz 0 0




Tx
Tz
Lx
Lz


S × BT = BR × T R

36




1 0 0 −T
0 1 T 0
0 T 1 0
−T 0 0 1




Ox
Oz
Cx
Cz

 =


H 0 G 0
0 H 0 G
F 0 E 0
0 F 0 E




Tx
Tz
Lx
Lz


S × BR = BT × T R

1 0 0 Σ
0 1 −Σ 0
0 −Σ 1 0
Σ 0 0 1




Tx
Tz
Lx
Lz

 =


H 0 F 0
0 H 0 F
G 0 E 0
0 G 0 E




Ox
Oz
Cx
Cz


S × T R = BT × BR

37



Quadratic Relations (15):

Ω2 Ω7 − Ω14Ω16 − Ω3 Ω9 − Ω5 Ω11 = 0
Ω3 Ω5 + Ω9 Ω11 + Ω6 Ω8 + Ω13Ω15 = 0
Ω2 Ω16 − Ω7 Ω14 − Ω6 Ω13 − Ω8 Ω15 = 0
Ω4 Ω3 − Ω10Ω11 + Ω7 Ω6 + Ω14Ω13 = 0
Ω4 Ω5 + Ω10Ω9 + Ω7 Ω8 + Ω14Ω15 = 0
Ω4 Ω9 + Ω10Ω5 + Ω2 Ω6 − Ω16Ω13 = 0
Ω4 Ω11 − Ω10Ω3 + Ω2 Ω8 − Ω16Ω15 = 0
Ω4 Ω14 − Ω12Ω2 + Ω3 Ω13 + Ω5 Ω15 = 0
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Quadratic Relations:

Ω4 Ω7 − Ω12Ω16 + Ω3 Ω6 + Ω5 Ω8 = 0
Ω4 Ω16 − Ω12Ω7 − Ω9 Ω13 − Ω11Ω15 = 0
Ω4 Ω2 − Ω12Ω14 + Ω9 Ω6 + Ω11Ω8 = 0
Ω10Ω6 − Ω12Ω15 + Ω5 Ω2 − Ω11Ω7 = 0

Ω10Ω13 + Ω12Ω8 − Ω5 Ω16 − Ω11Ω14 = 0
Ω10Ω8 + Ω12Ω13 − Ω3 Ω2 + Ω9 Ω7 = 0

Ω10Ω15 − Ω12Ω6 + Ω3 Ω16 + Ω9 Ω14 = 0
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Square Relations(6):

(Ω3 )2 + (Ω5 )2 + (Ω9 )2 + (Ω11)2 = (Ω1 )2 − (Ω4 )2 − (Ω10)2 + (Ω12)2

(Ω14)2 + (Ω7 )2 + (Ω16)2 + (Ω2 )2 = (Ω1 )2 − (Ω4 )2 + (Ω10)2 − (Ω12)2

(Ω6 )2 + (Ω13)2 + (Ω8 )2 + (Ω15)2 = (Ω1 )2 + (Ω4 )2 − (Ω10)2 − (Ω12)2

(Ω3 )2 + (Ω5 )2 − (Ω9 )2 − (Ω11)2 = (Ω14)2 + (Ω7 )2 − (Ω16)2 − (Ω2 )2

−(Ω3 )2 + (Ω5 )2 − (Ω9 )2 + (Ω11)2 = (Ω6 )2 + (Ω13)2 − (Ω8 )2 − (Ω15)2

(Ω14)2 − (Ω7 )2 + (Ω16)2 − (Ω2 )2 = (Ω6 )2 − (Ω13)2 + (Ω8 )2 − (Ω15)2
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Bounds on measurements

From

(Ω6)2 + (Ω13)2 + (Ω8)2 + (Ω15)2 ± 2 (Ω6 Ω15 − Ω8 Ω13)

= (Ω1)2 + (Ω4)2 − (Ω10)2 − (Ω12)2 ± 2 (Ω1Ω4 − Ω10 Ω12)

we obtain

(Ω6 ± Ω15)2 + (Ω8 ∓ Ω13)2 = (Ω1 ± Ω4)2 − (Ω10 ± Ω12)2 .

The left hand side of the equation is positive, so is the right
hand side. Therefore

Ω1 ± Ω4 ≥ |Ω10 ± Ω12| or 1± Σ ≥ |T ± P| .
Other bounds, within the set S, can be derived in the same

way:
1± T ≥ |P ± Σ| , 1± P ≥ |Σ± T | .

We can deduce the bounds 1

1 + Σ2 ≥ P2 + T 2

1 + T 2 ≥ Σ2 + P2

1 + P2 ≥ Σ2 + T 2

(2)

as well as P2 ≤ 1, Σ2 ≤ 1 and T 2 ≤ 1.
In this way all bounds among spin observables can be obtained
using these Fierz relations.

1See X. Artru, J-M Richard and J. Soffer, Phys.Rev C75 024002(2007) for
an alternate ρ > 0 approach to deduce bounds,
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The BDS rule:
Barker, Donnachie, & Storrow, Nucl. Phys. B95, 347
(1975)

In BDS, the following rule was promulgated:
In order to determine all amplitudes without
discrete ambiguities, one has to measure five
double spin observables along with the four type
S measurements, provided no four double spin
observables are selected from the same set of
BT , BR and T R.

Thus, they say nine experiments are required.
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The CT rule:
Chiang & Tabakin Phys. Rev. C 55, 2054 (1997)

In CT, the following revised rule was promulgated:
In order to determine all four amplitudes without
discrete ambiguities, one has to measure eight
carefully selected measurements four double spin
observables along with the four type S
measurements, provided no four double spin
observables are selected from the same set of
BT , BR and T R.

Thus, they say eight “carefully selected" experiments are
required.
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Pion Nucleon Elastic Case

Amplitude
T = f1 + i ~σ · n̂ f2

Transversity amplitudes

b1 =
f1 + i f2√

2
b2 =

f1 − i f2√
2

Observables

I(θ) = |b1|2 + |b2|2 =< b|σ0|b >

I(θ)P = P̂ = |b1|2 − |b2|2 = AN
2 =< b|σz |b >

I(θ)A = Â = 2 <(b∗1 b2) = 2|b1||b2| cos(θ) =< b|σx |b >

I(θ)R = R̂ = 2 =(b∗1 b2) = 2|b1||b2| sin(θ) =< b|σy |b >
2P = AN TRI—-Ashkin & Wolfenstein
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I(θ)A = Â = 2 <(b∗1 b2) = 2|b1||b2| cos(θ) =< b|σx |b >

I(θ)R = R̂ = 2 =(b∗1 b2) = 2|b1||b2| sin(θ) =< b|σy |b >
2P = AN TRI—-Ashkin & Wolfenstein

44



Pion Nucleon Elastic Case

Amplitude
T = f1 + i ~σ · n̂ f2

Transversity amplitudes

b1 =
f1 + i f2√

2
b2 =

f1 − i f2√
2

Observables

I(θ) = |b1|2 + |b2|2 =< b|σ0|b >

I(θ)P = P̂ = |b1|2 − |b2|2 = AN
2 =< b|σz |b >
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Fierzing Pion Nucleon Elastic Case

Fierz for SU(2)

σαij σ
β
st =

3∑
a,b=0

Cα,β
a,b σa

it σ
b
sj −→ σα σβ =

3∑
a,b=0

Cα,β
a,b σa σb

4× 4/2 = 8 −→ 1

σ0
ij σ

0
st = σ1

it σ
1
sj + σ2

it σ
2
sj + σ3

it σ
3
sj

P2 + A2 + R2 = 1

Thus deduce bounds: |P| ≤ 1 and 0 ≤ A2 + R2 ≤ 1
Complete set: I,P,A =3 plus 1 for sign of R, for example. The

Two Complex Amplitudes In Transversity Space:
-

HHH
HHH

HHj

b1

b2

θ12

Hi (E, θ, φ) = |Hi | eiφi

2 + 1 = 3

Discrete ambiguities
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Complete Double spin measurements

‘X’s’ –> 3 selected measurements,
‘O’s’ –> possible 4th observable to resolve ambiguities.

G X X X X X X X X X X X X X X X X X X X X X X X X
H X X X X X X X X BT
E X X X X X X X X
F X X X X X X X X

Ox X O O O O O X O O O O O O O X O O O
Oz X O O O O O O X O O O O O O X O O O BR
Cx O X O O O O O O X O O O O O O X O O
Cz O X O O O O O O O X O O O O O X O O

Tx O O O O X O O O O O O O X O O O X O
Tz O O O O O X O O O O O O X O O O X O T R
Lx O O O O O O X O O O O O O X O O O X
Lz O O O O O O O X O O O O O X O O O X
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Complete Double spin measurements

‘X’s’ –> 3 selected measurements,
‘O’s’ –> possible 4th observable to resolve ambiguities.

G X O O O O O X O O O O O O O X O O O
H X O O O O O O X O O O O O O X O O O BT
E O X O O O O O O X O O O O O O X O O
F O X O O O O O O O X O O O O O X O O

Ox X X X X X X X X X X X X X X X X X X X X X X X X
Oz X X X X X X X X BR
Cx X X X X X X X X
Cz X X X X X X X X

Tx O O O O X O O O O O O O X O O O X O
Tz O O O O O X O O O O O O O X O O O X T R
Lx O O O O O O X O O O O O X O O O X O
Lz O O O O O O O X O O O O O X O O O X

48



Complete Double spin measurements

‘X’s’ –> 3 selected measurements,
‘O’s’ –> possible 4th observable to resolve ambiguities.

G X O O O X O O O O O O O X O O O O O
H X O O O O X O O O O O O X O O O O O BT
E O X O O O O X O O O O O O X O O O O
F O X O O O O O X O O O O O X O O O O

Ox
Oz X X X X X X X X X X X X X X X X BR
Cx X X X X X X X X X X X X X X X X
Cz X X X X X X X X X X X X X X X X

Tx O O X O O O O O X O O O O O X O O O
Tz O O O X O O O O O X O O O O O X O O T R
Lx O O X O O O O O X O O O O O O O X O
Lz O O O X O O O O O X O O O O O O O X

49



Complete Double spin measurements

‘X’s’ –> 3 selected measurements,
‘O’s’ –> possible 4th observable to resolve ambiguities.

G X O O O O O X O O O O O O O X O O O
H O X O O O O O X O O O O O O O X O O BT
E X O O O O O O O X O O O O O X O O O
F O X O O O O O O O X O O O O O X O O

Ox O O O O X O O O O O O O X O O O X O
Oz O O O O O X O O O O O O O X O O O X BR
Cx O O O O O O X O O O O O X O O O X O
Cz O O O O O O O X O O O O O X O O O X

Tx X X X X X X X X X X X X X X X X X X X X X X X X
Tz X X X X X X X X T R
Lx X X X X X X X X
Lz X X X X X X X X
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Complete Double spin measurements

‘X’s’ –> 3 selected measurements,
‘O’s’ –> possible 4th observable to resolve ambiguities.

G X O O O X O O O O O O O X O O O O O
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Oz O O O X O O O O O X O O O O O X O O BR
Cx O O X O O O O O X O O O O O O O X O
Cz O O O X O O O O O X O O O O O O O X

Tx
Tz X X X X X X X X X X X X X X X X T R
Lx X X X X X X X X X X X X X X X X
Lz X X X X X X X X X X X X X X X X
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Limitations

Partial Wave Extraction is made difficult by:
Unknown Energy and Angle dependent Overall Phase
Cusp and Threshold effects
Error bars

Some Observations:
Determination of unique Underlining dynamics is almost always
limited in QM. Examples: Phase equivalent potentials &
Redundant Inverse scattering solutions
We live with that and instead of theorem we surround the
problem.
Completeness is ultimately a physical result.
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Conclusions

The 16 Measurements are related by a measurement
algebra
That algebra is equivalent to that of 16 Hermitian 4× 4
SU(4) group
More than 7 experiments are needed due to discrete
ambiguities, which are also described using SU(4) algebra.
Constraints and Bounds can be deduced from that algebra
Constrains allow for one less experiment needed and is
why CT say 8 and BDS say 9 needed for compete set.
Procedures can be generalized to N amplitudes 3

3M. Pichowsky & F. Tabakin; On Complete Meson Electroproduction
Experiment Sets (unpublished)
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3M. Pichowsky & F. Tabakin; On Complete Meson Electroproduction
Experiment Sets (unpublished)
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Conclusions

Fierzing Observables Yields:
Fierz —> explicit and rigorous relationships between
observables. Of course, such relationships can be derived from
the bilinear structure of the observables, with much effort. That
effort is now replaced by simply invoking the well-known Fierz
rules as a general property. That allows us to avoid much
algebra and to find all relations in one step. There are direct
physical consequences of these relations. If double spin
observables in a type set are known, then the fourth member of
that type is uniquely determined. The fourth measurement is
thus redundant.
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Some Additional references

M. Simonius PRL 19,279(1967)
"On complete sets of polarization observables," Hartmuth
Arenhovel, Winfried Leidemann, Edward L. Tomusiak .
Nucl.Phys.A641:517-527,1998.
Spin degrees and Polarization Observables in
Electromagnetic Reactions Hartmuth Arenhoevel
Workshop on Hadron Physics, AMU, Aligarh, India, Feb.
18-23, 2008
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