Extraction of Total Amplitudes from Complete Photoproduction Experiments

Frank Tabakin

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260

October 15, 2008

Outline

- Observables \& Helicity Amplitudes
- Observables \& Transversity Amplitudes
- Bilinear Form and SU(4) Г Matrices
- Discrete Ambiquities
- Fierzing The Observables
- Fierz Theorem Consequences
- Sample case: π - Nucleon
- BDS versus CT Theorems
- Limitations
- Conclusions
- Observables \& Helicity Amplitudes
- Observables \& Transversity Amplitudes
- Bilinear Form and SU(4) 「 Matrices
- Discrete Ambiguities
- Fierzing The Observables
- Fierz Theorem Consequences
- Sample case: π - Nucleon
- BDS versus CT Theorems
- Limitations
- Conclusions
- Observables \& Helicity Amplitudes
- Observables \& Transversity Amplitudes
- Bilinear Form and SU(4) 「 Matrices
- Discrete Ambiguities
- Fierzing The Observables
- Fierz Theorem Consequences
- Sample case: π - Nucleon
- BDS versus CT Theorems
- Limitations
- Conclusions
- Observables \& Helicity Amplitudes
- Observables \& Transversity Amplitudes
- Bilinear Form and SU(4) 「 Matrices
- Discrete Ambiguities
- Fierzing The Observables
- Fierz Theorem Consequences
- Sample case: π - Nucleon
- BDS versus CT Theorems
- Limitations
- Conclusions
- Observables \& Helicity Amplitudes
- Observables \& Transversity Amplitudes
- Bilinear Form and SU(4) 「 Matrices
- Discrete Ambiguities
- Fierzing The Observables
- Fierz Theorem Consequences
- Sample case: π - Nucleon
- BDS versus CT Theorems
- Limitations
- Conclusions
- Observables \& Helicity Amplitudes
- Observables \& Transversity Amplitudes
- Bilinear Form and SU(4) 「 Matrices
- Discrete Ambiguities
- Fierzing The Observables
- Fierz Theorem Consequences
- Sample case: π - Nucleon
- BDS versus CT Theorems
- Limitations
- Conclusions
- Observables \& Helicity Amplitudes
- Observables \& Transversity Amplitudes
- Bilinear Form and SU(4) 「 Matrices
- Discrete Ambiguities
- Fierzing The Observables
- Fierz Theorem Consequences
- Sample case: π - Nucleon
- BDS versus CT Theorems
- Limitations
- Conclusions
- Observables \& Helicity Amplitudes
- Observables \& Transversity Amplitudes
- Bilinear Form and SU(4) 「 Matrices
- Discrete Ambiguities
- Fierzing The Observables
- Fierz Theorem Consequences
- Sample case: π - Nucleon
- BDS versus CT Theorems
- Limitations
- Conclusions
- Observables \& Helicity Amplitudes
- Observables \& Transversity Amplitudes
- Bilinear Form and SU(4) 「 Matrices
- Discrete Ambiguities
- Fierzing The Observables
- Fierz Theorem Consequences
- Sample case: π - Nucleon
- BDS versus CT Theorems
- Limitations
- Conclusions
- Observables \& Helicity Amplitudes
- Observables \& Transversity Amplitudes
- Bilinear Form and SU(4) 「 Matrices
- Discrete Ambiguities
- Fierzing The Observables
- Fierz Theorem Consequences
- Sample case: π - Nucleon
- BDS versus CT Theorems
- Limitations
- Conclusions

$$
\sigma(\theta, \phi)=\frac{q}{k} \mathcal{I}(\theta, \phi)
$$

The Four Complex Amplitudes In Helicity Space

The Four Complex Amplitudes In Helicity Space

$$
H_{i}(E, \theta, \phi)=\left|H_{i}\right| e^{i \phi_{i}}
$$

The Four Complex Amplitudes In Helicity Space

$$
\begin{gathered}
H_{i}(E, \theta, \phi)=\left|H_{i}\right| e^{i \phi_{i}} \\
4+3=7
\end{gathered}
$$

The Four Complex Amplitudes In Helicity Space

$$
\begin{gathered}
H_{i}(E, \theta, \phi)=\left|H_{i}\right| e^{i \phi_{i}} \\
4+3=7
\end{gathered}
$$

Discrete ambiguities 7 + ?

$$
\begin{aligned}
\check{\Omega}^{\alpha} & =\Omega^{\alpha} \mathcal{I}(\theta) \\
& =\frac{1}{2} H_{i}^{*} \Gamma_{i j}^{\alpha} H_{j} \\
\equiv & \frac{1}{2}\langle H| \Gamma^{\alpha}|H\rangle, \\
\alpha=1, \cdots & 16
\end{aligned}
$$

Spin Observables: Sixteen spin observables are expressed in helicity representation and BHP forms.
Classified into four sets:

- \mathcal{S} for the differential cross section and single spin observables,
- $\mathcal{B T}$ beam-target,
- $\mathcal{B R}$ beam-recoil,
- $\mathcal{T R}$ target-recoil.

Spin
Observable

Helicity
BHP

Representation

$$
\begin{array}{lcl}
\check{\Omega}^{1} \equiv \mathcal{I}(\theta) & \frac{1}{2}\left(\left|H_{1}\right|^{2}+\left|H_{2}\right|^{2}+\left|H_{3}\right|^{2}+\left|H_{4}\right|^{2}\right) & \frac{1}{2}\langle H| \Gamma^{1}|H\rangle \\
\check{\Omega}^{4} \equiv \check{\Sigma} & \operatorname{Re}\left(-H_{1} H_{4}^{*}+H_{2} H_{3}^{*}\right) & \frac{1}{2}\langle H| \Gamma^{4}|H\rangle \\
\check{\Omega}^{10} \equiv-\check{\zeta} & \operatorname{Im}\left(H_{1} H_{2}^{*}+H_{3} H_{4}^{*}\right) & \frac{1}{2}\langle H| \Gamma^{-10}|H\rangle \\
\check{\Omega}^{12} \equiv \check{P} & \operatorname{Im}\left(-H_{1} H_{3}^{*}-H_{2} H_{4}^{*}\right) & \frac{1}{2}\langle H| \Gamma^{12}|H\rangle
\end{array}
$$

Spin
Observable

Helicity
BHP

$$
\begin{array}{rcc}
\check{\Omega}^{3} \equiv \check{G} & \operatorname{Im}\left(H_{1} H_{4}^{*}-H_{3} H_{2}^{*}\right) & \frac{1}{2}\langle H| \Gamma^{3}|H\rangle \\
\check{\Omega}^{5} \equiv \check{H} & \operatorname{lm}\left(-H_{2} H_{4}^{*}+H_{1} H_{3}^{*}\right) & \frac{1}{2}\langle H| \Gamma^{5}|H\rangle \\
\check{\Omega}^{9} \equiv \check{E} & \frac{1}{2}\left(\left|H_{1}\right|^{2}-\left|H_{2}\right|^{2}+\left|H_{3}\right|^{2}-\left|H_{4}\right|^{2}\right) & \frac{1}{2}\langle H| \Gamma^{9}|H\rangle \\
\check{\Omega}^{11} \equiv \check{F} & \operatorname{Re}\left(-H_{2} H_{1}^{*}-H_{4} H_{3}^{*}\right) & \frac{1}{2}\langle H| \Gamma^{11}|H\rangle
\end{array}
$$

Spin
Observable

Helicity
Representation

$$
\begin{array}{lcl}
\check{\Omega}^{14} \equiv \check{O}_{x} & \operatorname{Im}\left(-H_{2} H_{1}^{*}+H_{4} H_{3}^{*}\right) & \frac{1}{2}\langle H| \Gamma^{14}|H\rangle \\
\check{\Omega}^{7} \equiv-\check{O}_{z} & \operatorname{Im}\left(H_{1} H_{4}^{*}-H_{2} H_{3}^{*}\right) & \frac{1}{2}\langle H| \Gamma^{7}|H\rangle \\
\check{\Omega}^{16} \equiv-\check{C}_{X} & \operatorname{Re}\left(H_{2} H_{4}^{*}+H_{1} H_{3}^{*}\right) & \frac{1}{2}\langle H| \Gamma^{16}|H\rangle \\
\check{\Omega}^{2} \equiv-\check{C}_{z} & \frac{1}{2}\left(\left|H_{1}\right|^{2}+\left|H_{2}\right|^{2}-\left|H_{3}\right|^{2}-\left|H_{4}\right|^{2}\right) & \frac{1}{2}\langle H| \Gamma^{2}|H\rangle
\end{array}
$$

Spin
Observable

Helicity

BHP

Representation

$$
\begin{array}{lcl}
\check{\Omega}^{6} \equiv-\check{T}_{x} & \operatorname{Re}\left(-H_{1} H_{4}^{*}-H_{2} H_{3}^{*}\right) & \frac{1}{2}\langle H| \Gamma^{6}|H\rangle \\
\check{\Omega}^{13} \equiv-\check{T}_{z} & \operatorname{Re}\left(-H_{1} H_{2}^{*}+H_{4} H_{3}^{*}\right) & \frac{1}{2}\langle H| \Gamma^{13}|H\rangle \\
\check{\Omega}^{8} \equiv \check{L}_{x} & \operatorname{Re}\left(H_{2} H_{4}^{*}-H_{1} H_{3}^{*}\right) & \frac{1}{2}\langle H| \Gamma^{8}|H\rangle \\
\check{\Omega}^{15} \equiv \check{L}_{z} & \frac{1}{2}\left(-\left|H_{1}\right|^{2}+\left|H_{2}\right|^{2}+\left|H_{3}\right|^{2}-\left|H_{4}\right|^{2}\right) & \frac{1}{2}\langle H| \Gamma^{15}|H\rangle
\end{array}
$$

The Four Complex Amplitudes In Transversity Space

$$
b_{i}(E, \theta, \phi)=\left|b_{i}\right| e^{i \phi_{i}}
$$

The Four Complex Amplitudes In Transversity Space

$4+3=7$

The Four Complex Amplitudes In Transversity Space

$$
b_{i}(E, \theta, \phi)=\left|b_{i}\right| e^{i \phi_{i}}
$$

$$
4+3=7
$$

The Four Complex Amplitudes In Transversity Space

$$
b_{i}(E, \theta, \phi)=\left|b_{i}\right| e^{i \phi_{i}}
$$

$$
4+3=7
$$

Discrete ambiguities $7+$?

The Four Complex Amplitudes In Transversity Space

$$
b_{i}(E, \theta, \phi)=\left|b_{i}\right| e^{i \phi_{i}}
$$

$$
4+3=7
$$

Discrete ambiguities $7+$?

The Four Complex Amplitudes In Transversity Space

$$
b_{i}(E, \theta, \phi)=\left|b_{i}\right| e^{i \phi_{i}}
$$

$$
4+3=7
$$

Discrete ambiguities $7+$?

The Four Complex Amplitudes In Transversity Space

$$
b_{i}(E, \theta, \phi)=\left|b_{i}\right| e^{i \phi_{i}}
$$

$$
4+3=7
$$

Discrete ambiguities $7+$?

The Four Complex Amplitudes In Transversity Space

$$
b_{i}(E, \theta, \phi)=\left|b_{i}\right| e^{i \phi_{i}}
$$

$$
4+3=7
$$

Discrete ambiguities $7+$?

Spin
Observable

Transversity
Representation

$$
\begin{array}{lll}
\check{\Omega}^{1} \equiv \mathcal{I}(\theta) & \frac{1}{2}\left(\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}+\left|b_{3}\right|^{2}+\left|b_{4}\right|^{2}\right) & \frac{1}{2}\langle b| \widetilde{\Gamma}^{1}|b\rangle \\
\check{\Omega}^{4} \equiv \check{\Sigma} & \frac{1}{2}\left(\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}-\left|b_{3}\right|^{2}-\left|b_{4}\right|^{2}\right) & \frac{1}{2}\langle | \widetilde{\Gamma}^{4}|b\rangle \\
\check{\Omega}^{10} \equiv-\check{广} & \frac{1}{2}\left(-\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}+\left|b_{3}\right|^{2}-\left|b_{4}\right|^{2}\right) & \frac{1}{2}\langle b| \widetilde{\Gamma}^{10}|b\rangle \\
\check{\Omega}^{12} \equiv \check{P} & \frac{1}{2}\left(-\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}-\left|b_{3}\right|^{2}+\left|b_{4}\right|^{2}\right) & \frac{1}{2}\langle b| \widetilde{\Gamma}^{12}|b\rangle
\end{array}
$$

$$
\begin{array}{ccc}
\begin{array}{c}
\text { Spin } \\
\text { Observable }
\end{array} & \begin{array}{c}
\text { Transversity } \\
\text { Representation }
\end{array} & \text { BTP } \\
\check{\Omega}^{3} \equiv \check{G} & \operatorname{Im}\left(-b_{1} b_{3}^{*}-b_{2} b_{4}^{*}\right) & \frac{1}{2}\langle b| \widetilde{\Gamma}^{3}|b\rangle \\
\check{\Omega}^{5} \equiv \check{H} & \operatorname{Re}\left(b_{1} b_{3}^{*}-b_{2} b_{4}^{*}\right) & \frac{1}{2}\langle b| \widetilde{\Gamma}^{5}|b\rangle \\
\check{\Omega}^{9} \equiv \check{E} & \operatorname{Re}\left(b_{1} b_{3}^{*}+b_{2} b_{4}^{*}\right) & \frac{1}{2}\langle b| \widetilde{\Gamma}^{9}|b\rangle \\
\check{\Omega}^{11} \equiv \check{F} & \operatorname{Im}\left(b_{1} b_{3}^{*}-b_{2} b_{4}^{*}\right) & \frac{1}{2}\langle b| \widetilde{\Gamma}^{11}|b\rangle
\end{array}
$$

Spin
Observable

Transversity
BTP
Representation

$$
\begin{array}{lll}
\check{\Omega}^{14} \equiv \check{O}_{x} & \operatorname{Re}\left(-b_{1} b_{4}^{*}+b_{2} b_{3}^{*}\right) & \frac{1}{2}\langle b| \widetilde{\Gamma}^{14}|b\rangle \\
\check{\Omega}^{7} \equiv-\check{O}_{z} & \operatorname{Im}\left(-b_{1} b_{4}^{*}-b_{2} b_{3}^{*}\right) & \frac{1}{2}\langle b| \widetilde{\Gamma}^{7}|b\rangle \\
\check{\Omega}^{16} \equiv-\check{C}_{x} & \operatorname{Im}\left(b_{1} b_{4}^{*}-b_{2} b_{3}^{*}\right) & \frac{1}{2}\langle b| \widetilde{\Gamma}^{16}|b\rangle \\
\check{\Omega}^{2} \equiv-\check{C}_{z} & \operatorname{Re}\left(b_{1} b_{4}^{*}+b_{2} b_{3}^{*}\right) & \frac{1}{2}\langle b| \widetilde{\Gamma}^{2}|b\rangle
\end{array}
$$

Spin
Observable

Transversity
BTP
Representation

$$
\begin{array}{lcc}
\check{\Omega}^{6} \equiv-\check{T}_{x} & \operatorname{Re}\left(-b_{1} b_{2}^{*}+b_{3} b_{4}^{*}\right) & \frac{1}{2}\langle b| \widetilde{\Gamma}^{6}|b\rangle \\
\check{\Omega}^{13} \equiv-\check{T}_{z} & \operatorname{Im}\left(b_{1} b_{2}^{*}-b_{3} b_{4}^{*}\right) & \frac{1}{2}\langle b| \widetilde{\Gamma}^{13}|b\rangle \\
\check{\Omega}^{8} \equiv \check{L}_{x} & \operatorname{Im}\left(-b_{1} b_{2}^{*}-b_{3} b_{4}^{*}\right) & \frac{1}{2}\langle b| \widetilde{\Gamma}^{8}|b\rangle \\
\check{\Omega}^{15} \equiv \check{L}_{z} & \operatorname{Re}\left(-b_{1} b_{2}^{*}-b_{3} b_{4}^{*}\right) & \frac{1}{2}\langle b| \widetilde{\Gamma}^{15}|b\rangle
\end{array}
$$

$$
\begin{aligned}
& \mathcal{S}:(\mathcal{I}, \Sigma \check{\Sigma},-\bar{Y}, \check{P}) \\
& \mathcal{B T}:(\check{G}, \check{H}, \check{E}, \check{F}) \\
& \mathcal{B R}:\left(\check{O}_{x},-\check{O}_{z},-\check{C}_{x},-\check{C}_{z}\right) \\
& \mathcal{T R}:\left(-\check{T}_{x},-\check{I}_{z}, \check{L}_{x}, \check{L}_{z}\right)
\end{aligned}
$$

$$
\begin{gathered}
\Gamma^{1}, \Gamma^{4}, \Gamma^{10}, \Gamma^{12} \\
\Gamma^{3}, \Gamma^{5}, \Gamma^{9}, \Gamma^{11} \\
\Gamma^{14}, \Gamma^{7}, \Gamma^{16}, \Gamma^{2} \\
\Gamma^{6}, \Gamma^{13}, \Gamma^{8}, \Gamma^{15}
\end{gathered}
$$

Ambiguities:

$$
\begin{aligned}
& \Gamma^{4}, \Gamma^{10}, \Gamma^{12} \\
& \Gamma^{15} K_{0}, \\
& \Gamma^{6} K_{0}, \Gamma^{8} K_{0}, \Gamma^{13} K_{0}
\end{aligned}
$$

$$
\begin{gathered}
\Gamma^{\alpha=1 \cdots 5}=1, \gamma^{0}, i \vec{\gamma} \\
\Gamma^{\alpha=6 \cdots 11}= \\
\sigma^{0 x}, i \sigma^{0 y}, i \sigma^{0 z}, \\
\\
i \sigma^{x y}, i \sigma^{x z}, i \sigma^{z y} \\
\Gamma^{\alpha=12 \cdots 16}= \\
i \gamma^{5} \gamma^{0}, \gamma^{5} \vec{\gamma}, \gamma^{5} .
\end{gathered}
$$

- Γ^{α} are Hermitian and unitary.
- $\operatorname{Tr}\left(\Gamma^{\alpha} \Gamma^{\beta}\right)=4 \delta_{\alpha \beta}$.
- Γ^{α} are linearly independent. and form a complete set (a basis) for 4×4 matrices. Any 4×4 matrices X can be expanded as $X=\sum_{\alpha} C_{\alpha} U^{4}$ with $C_{\alpha}=\frac{1}{4} \operatorname{Tr}\left(\Gamma^{\alpha} X\right)$.
- $\sum_{\alpha} \Gamma_{b a}^{\alpha} \Gamma_{s t}^{\alpha}=4 \delta_{a s} \delta_{b t}$.
- $\Gamma^{\alpha} \Gamma^{\beta}=\rho_{\alpha \beta \gamma} \Gamma^{\gamma}$ with $\rho_{\alpha \beta \gamma}=\frac{1}{4} \operatorname{Tr}\left(\Gamma^{\alpha} \Gamma^{\beta} \Gamma^{\gamma}\right)$.
- $\frac{1}{4} \rho_{\alpha \gamma \delta} \rho_{\beta \gamma \eta}=\frac{1}{16} \operatorname{Tr}\left(\Gamma^{\delta} \Gamma^{\alpha} \Gamma^{\eta} \Gamma^{\beta}\right) \equiv C_{\delta \eta}^{\alpha \beta}$: used for the Fierz transformation

Transversity transformation: $|b\rangle=U^{4}|H\rangle \quad \tilde{\Gamma}^{\alpha}=U^{4} \Gamma^{\alpha} U^{\dagger 4}$

$$
U^{(4)}=\frac{1}{2}\left(\begin{array}{rrrr}
1 & -i & i & 1 \\
1 & i & -i & 1 \\
1 & i & i & -1 \\
1 & -i & -i & -1
\end{array}\right)
$$

which involves rotating the helicity quantization axis to the direction normal to the scattering plane. The sixteen spin observables can be expressed in this transversity basis by

$$
\check{\Omega}^{\alpha}=\Omega^{\alpha} \mathcal{I}(\theta)=\frac{1}{2} b_{i}^{*} \widetilde{\Gamma}_{i j}^{\alpha} b_{j}=\frac{1}{2}\langle b| \widetilde{\Gamma}^{\alpha}|b\rangle, \quad \alpha=1, \cdots 16 .
$$

The transversity $\widetilde{\Gamma}$ matrices form four classes with four members in each class according to their "shape:" diagonal (D); right parallelogram ($P R$); antidiagonal ($A D$); and left parallelogram ($P L$) correspond to $\mathcal{S}, \mathcal{B T}, \mathcal{B} \mathcal{R}$ and \mathcal{T} type experiments.

$$
\tilde{\Gamma}_{D}=\tilde{\Gamma}_{\mathcal{S}}=\left[\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{array}\right] ; \quad \begin{array}{llcccc}
& \tilde{\Gamma}_{1} & a & b & c & d \\
\hline 1 & +1 & +1 \\
& & & & \Gamma_{4} & +1 \\
+1 & -1 & -1 \\
\tilde{\Gamma}_{10} & -1 & +1 & +1 & -1 \\
\tilde{\Gamma}_{12} & -1 & +1 & -1 & +1
\end{array}
$$

$$
\left|b_{i}\right|
$$

$$
\widetilde{\Gamma}_{P R}=\widetilde{\Gamma}_{\mathcal{B T}}=\left[\begin{array}{cccc}
0 & 0 & a & 0 \\
0 & 0 & 0 & b \\
c & 0 & 0 & 0 \\
0 & d & 0 & 0
\end{array}\right] ; \quad \begin{array}{llcccc}
& \widetilde{\Gamma}_{3} & -i & b & c & d \\
& +i & +i \\
\widetilde{\Gamma}_{5} & +1 & -1 & +1 & -1 \\
\widetilde{\Gamma}_{9} & +1 & +1 & +1 & +1 \\
\widetilde{\Gamma}_{11} & +i & -i & -i & +i
\end{array}
$$

ϕ_{13}, ϕ_{24}

$$
\widetilde{\Gamma}_{A D}=\widetilde{\Gamma}_{\mathcal{B R}}=\left[\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & b & 0 \\
0 & c & 0 & 0 \\
d & 0 & 0 & 0
\end{array}\right] ; \quad \begin{array}{cccccc}
& \widetilde{\Gamma}_{14} & -1 & b & c & d \\
& +1 & -1 \\
\widetilde{\Gamma}_{7} & -i & -i & +i & +i \\
\widetilde{\Gamma}_{16} & +i & -i & +i & -i \\
\widetilde{\Gamma}_{2} & +1 & +1 & +1 & +1
\end{array}
$$

[^0]\[

\widetilde{\Gamma}_{P L}=\widetilde{\Gamma}_{\mathcal{T R}}=\left[$$
\begin{array}{cccc}
0 & a & 0 & 0 \\
b & 0 & 0 & 0 \\
0 & 0 & 0 & c \\
0 & 0 & d & 0
\end{array}
$$\right] ; \quad $$
\begin{array}{llcccc}
& \widetilde{\Gamma}_{6} & -1 & -1 & +1 & +1 \\
& \widetilde{\Gamma}_{13} & +i & -i & -i & +i \\
\widetilde{\Gamma}_{8} & -i & +i & -i & +i \\
\widetilde{\Gamma}_{15} & -1 & -1 & -1 & -1
\end{array}
$$
\]

ϕ_{12}, ϕ_{34}

Discrete Ambiguities in Helicity Basis

G. Keaton \& R. Workman Phys.Rev. C53, 1434 (1996) gave discrete ambiguity relations associated with transformations of helicity amplitudes:
Ambiguity I: $H_{1} \longleftrightarrow H_{4} \quad H_{2} \longleftrightarrow-H_{3}$

$$
\left[\begin{array}{l}
H_{1}^{\prime} \\
H_{2}^{\prime} \\
H_{3}^{\prime} \\
H_{4}^{\prime \prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & +1 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
+1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
H_{1} \\
H_{2} \\
H_{3} \\
H_{4}
\end{array}\right]=\Gamma^{4}\left[\begin{array}{l}
H_{1} \\
H_{2} \\
H_{3} \\
H_{4}
\end{array}\right] .
$$

Discrete Ambiguities in Helicity Basis

Ambiguity II:
$H_{1} \longrightarrow H_{2} \quad H_{2} \longrightarrow-H_{1} \quad H_{3} \longrightarrow H_{4} \quad H_{4} \longrightarrow-H_{3}$
$\left[\begin{array}{l}H_{1}^{\prime} \\ H_{2}^{\prime} \\ H_{3}^{\prime} \\ H_{4}^{\prime}\end{array}\right]=\left[\begin{array}{cccc}0 & +1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & +1 \\ 0 & 0 & -1 & 0\end{array}\right]\left[\begin{array}{l}H_{1} \\ H_{2} \\ H_{3} \\ H_{4}\end{array}\right]=-i \Gamma^{10}\left[\begin{array}{l}H_{1} \\ H_{2} \\ H_{3} \\ H_{4}\end{array}\right]$.

Discrete Ambiguities in Helicity Basis

Ambiguity III:
$H_{1} \longrightarrow H_{3} \quad H_{2} \longrightarrow H_{4} \quad H_{3} \longrightarrow-H_{1} \quad H_{4} \longrightarrow-H_{2}$

$$
\left[\begin{array}{l}
H_{1}^{\prime} \\
H_{2}^{\prime} \\
H_{3}^{\prime} \\
H_{4}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & +1 & 0 \\
0 & 0 & 0 & +1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
H_{1} \\
H_{2} \\
H_{3} \\
H_{4}
\end{array}\right]=i \Gamma^{12}\left[\begin{array}{l}
H_{1} \\
H_{2} \\
H_{3} \\
H_{4}
\end{array}\right] .
$$

Ambiguity IV:
$H_{1} \longrightarrow-H_{1}^{*} \quad H_{2} \longrightarrow H_{2}^{*} \quad H_{3} \longrightarrow H_{3}^{*} \quad H_{4} \longrightarrow-H_{4}^{*}$

$$
\left[\begin{array}{l}
H_{1}^{\prime} \\
H_{2}^{\prime} \\
H_{3}^{\prime} \\
H_{4}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & +1 & 0 & 0 \\
0 & 0 & +1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
H_{1}^{*} \\
H_{2}^{*} \\
H_{3}^{*} \\
H_{4}^{*}
\end{array}\right]=\Gamma^{15}\left[\begin{array}{l}
H_{1}^{*} \\
H_{2}^{*} \\
H_{3}^{*} \\
H_{4}^{*}
\end{array}\right] .
$$

Ambiguities in the transversity basis

Ambiguity I:
$b_{1} \longrightarrow+b_{1} \quad b_{2} \longrightarrow+b_{2} \quad b_{3} \longrightarrow-b_{3} \quad b_{4} \longrightarrow-b_{4}$

$$
\left[\begin{array}{l}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
b_{3}^{\prime} \\
b_{4}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
+1 & 0 & 0 & 0 \\
0 & +1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]=\tilde{\Gamma}^{4}\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]
$$

Ambiguity II:
$b_{1} \longrightarrow-b_{1} \quad b_{2} \longrightarrow+b_{2} \quad b_{3} \longrightarrow+b_{3} \quad b_{4} \longrightarrow-b_{4}$

$$
\left[\begin{array}{l}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
b_{3}^{\prime} \\
b_{4}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & +1 & 0 & 0 \\
0 & 0 & +1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]=-i \tilde{\Gamma}^{10}\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right] .
$$

Ambiguities in the transversity basis

Ambiguity III:

$b_{1} \longrightarrow-b_{1} \quad b_{2} \longrightarrow+b_{2} \quad b_{3} \longrightarrow-b_{3} \quad b_{4} \longrightarrow+b_{4}$

$$
\left[\begin{array}{l}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
b_{3}^{\prime} \\
b_{4}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & +1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & +1
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]=i \tilde{\Gamma}^{12}\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]
$$

Ambiguity IV:
$b_{1} \longrightarrow-b_{2}^{*} \quad b_{2} \longrightarrow-b_{1}^{*} \quad b_{3} \longrightarrow-b_{4}^{*} \quad b_{4} \longrightarrow-b_{3}^{*}$

$$
\left[\begin{array}{l}
b_{1}^{\prime} \tag{1}\\
b_{2}^{\prime} \\
b_{3}^{\prime} \\
b_{4}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
b_{1}^{*} \\
b_{2}^{*} \\
b_{3}^{*} \\
b_{4}^{*}
\end{array}\right]=\tilde{\Gamma}^{15}\left[\begin{array}{l}
b_{1}^{*} \\
b_{2}^{*} \\
b_{3}^{*} \\
b_{4}^{*}
\end{array}\right] .
$$

Linear ambiguity I, II and III $L=\widetilde{\Gamma}^{4}, \widetilde{\Gamma}^{10}$, and $\widetilde{\Gamma}^{12}$
Antilinear ambiguity IV ambiguity $A=\widetilde{\Gamma}{ }^{15} K_{0}$.
Other three antilinear ambiguities $A=\widetilde{\Gamma}^{6} K_{0}, \tilde{\Gamma}^{13} K_{0}$, and $\tilde{\Gamma}^{8} K_{0}$, can be constructed by Ambiguity IV and the three linear ambiguities I to III. I

$$
\begin{aligned}
\tilde{\Gamma}^{6} & =\tilde{\Gamma}^{4} \tilde{\Gamma}^{15} \\
\tilde{\Gamma}^{13} & =i \tilde{\Gamma}^{10} \tilde{\Gamma}^{15} \\
\tilde{\Gamma}^{8} & =-i \tilde{\Gamma}^{12} \tilde{\Gamma}^{15}
\end{aligned}
$$

See KW (Ref. [?]).

Spin Linear Transformation $L \quad$ Antilinear Transformation A

Observable
$\widetilde{\Gamma}_{4} \tilde{\Gamma}$

$\sigma(\theta)$	+	+
Σ	+	+
T	+	+
P	+	+
G	-	-
H	-	-
E	-	-
F	-	-

+	+	+	+	+
+	+	+	+	+
+	+	+	+	+
+	+	+	+	+

$$
\begin{array}{llll}
\tilde{\Gamma}_{6} & \tilde{\Gamma}_{8} & \tilde{\Gamma}_{13} & \tilde{\Gamma}_{15} \\
\hline
\end{array}
$$

Spin Linear Transformation L Antilinear Transformation A

Observable	$\tilde{\Gamma}_{4}$	$\tilde{\Gamma}_{10}$	$\tilde{\Gamma}_{12}$	$\tilde{\Gamma}_{6}$	$\tilde{\Gamma}_{8}$	$\tilde{\Gamma}_{13}$	$\tilde{\Gamma}_{15}$
O_{x}	-	+	-	-	-	+	+
O_{z}	-	+	-	+	+	-	-
C_{X}	-	+	-	+	+	-	-
C_{z}	-	+	-	-	-	+	+
T_{X}	+	-	-	+	-	-	+
T_{z}	+	-	-	-	+	+	-
L_{x}	+	-	-	-	+	+	-
L_{z}	+	-	-	+	-	-	+

$$
\begin{aligned}
L: & b_{i} \longrightarrow b_{i}^{\prime}=L_{i j} b_{j} \\
A: & b_{i} \longrightarrow b_{i}^{\prime}=A_{i j} b_{j}^{*}
\end{aligned}
$$

Fierzing $\vec{\gamma} N \rightarrow \pi+N^{\prime}$ Case

Fierz for SU(4)

$$
\begin{gathered}
\Gamma_{i j}^{\alpha} \Gamma_{s t}^{\beta}=\sum_{a, b=1}^{16} C_{a, b}^{\alpha, \beta} \Gamma_{i t}^{a} \Gamma_{s j}^{b} \longrightarrow \Gamma^{\alpha} \Gamma^{\beta}=\sum_{a, b=1}^{16} C_{a, b}^{\alpha, \beta} \Gamma^{a} \Gamma^{b} \\
C_{a, b}^{\alpha, \beta} \equiv \frac{1}{16} \operatorname{Tr}\left[\Gamma^{a} \Gamma^{\alpha} \Gamma^{\beta} \Gamma^{b}\right]
\end{gathered}
$$

Fierzing Observables:

$$
\Omega^{\alpha} \Omega^{\beta}=\sum_{a, b=1}^{16} C_{a, b}^{\alpha, \beta} \Omega^{a} \Omega^{b}
$$

$16 \times 16 / 2=128 \longrightarrow x$ relations; for example:

$$
\Gamma_{i j}^{1} \Gamma_{s t}^{1}=\frac{1}{x}\left[\Gamma_{i t}^{1} \Gamma_{s j}^{1}+\Gamma_{i t}^{2} \Gamma_{s j}^{2}+\cdots+\Gamma_{i t}^{16} \Gamma_{s j}^{16}\right]
$$

Linear-Quadratic Relations (16):

$$
\begin{aligned}
& \Omega_{1}=1=\frac{1}{4} \sum_{\alpha=1}^{16}\left(\Omega_{\alpha}\right)^{2} \\
& \Omega_{4}=\Omega_{10} \Omega_{12}+\Omega_{6} \Omega_{15}-\Omega_{8} \Omega_{13} \\
& \Omega_{10}=\Omega_{4} \Omega_{12}+\Omega_{2} \Omega_{14}+\Omega_{7} \Omega_{16} \\
& \Omega_{12}=\Omega_{4} \Omega_{10}+\Omega_{3} \Omega_{11}-\Omega_{5} \Omega_{9} \\
& \Omega_{3}=+\Omega_{11} \Omega_{12}-\Omega_{7} \Omega_{15}+\Omega_{14} \Omega_{8} \\
& \Omega_{5}=-\Omega_{9} \Omega_{12}+\Omega_{7} \Omega_{13}-\Omega_{14} \Omega_{6} \\
& \Omega_{9}=-\Omega_{5} \Omega_{12}-\Omega_{2} \Omega_{15}-\Omega_{16} \Omega_{8} \\
& \Omega_{11}=+\Omega_{3} \Omega_{12}+\Omega_{2} \Omega_{13}+\Omega_{16} \Omega_{6}
\end{aligned}
$$

Linear-Quadratic Relations:

$$
\begin{aligned}
\Omega_{14} & =\Omega_{2} \Omega_{10}+\Omega_{3} \Omega_{8}-\Omega_{5} \Omega_{6} \\
\Omega_{7} & =\Omega_{16} \Omega_{10}-\Omega_{3} \Omega_{15}+\Omega_{5} \Omega_{13} \\
\Omega_{16} & =\Omega_{7} \Omega_{10}-\Omega_{9} \Omega_{8}+\Omega_{11} \Omega_{6} \\
\Omega_{2} & =\Omega_{14} \Omega_{10}-\Omega_{9} \Omega_{15}+\Omega_{11} \Omega_{13} \\
\Omega_{6} & =+\Omega_{15} \Omega_{4}-\Omega_{5} \Omega_{14}+\Omega_{11} \Omega_{16} \\
\Omega_{13} & =-\Omega_{8} \Omega_{4}+\Omega_{5} \Omega_{7}+\Omega_{11} \Omega_{2} \\
\Omega_{8} & =-\Omega_{13} \Omega_{4}+\Omega_{3} \Omega_{14}-\Omega_{9} \Omega_{16} \\
\Omega_{15} & =+\Omega_{6} \Omega_{4}-\Omega_{3} \Omega_{7}-\Omega_{9} \Omega_{2}
\end{aligned}
$$

Linear-Quadratic Relations:

$$
\begin{aligned}
& \mathcal{I}=1=\frac{1}{4} \sum_{\alpha=1}^{16}\left(\Omega_{\alpha}\right)^{2} \\
& \Sigma=-T P-T_{x} L_{z}+L_{x} T_{z} \\
& T=-\Sigma P+C_{z} O_{x}-O_{z} C_{x} \\
& P=-\Sigma T+G F-H E \\
&\left(\begin{array}{rrrr}
1 & 0 & 0 & -P \\
0 & 1 & P & 0 \\
0 & P & 1 & 0 \\
-P & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
G \\
H \\
E \\
F
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & O_{x} & O_{z} \\
O_{x} & O_{z} & 0 & 0 \\
0 & 0 & C_{x} & C_{z} \\
C_{x} & C_{z} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
T_{x} \\
T_{z} \\
L_{x} \\
L_{z}
\end{array}\right) \\
& \times \mathcal{B T}=\quad \begin{array}{ccc}
\mathcal{B R}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
1 & 0 & 0 & -T \\
0 & 1 & T & 0 \\
0 & T & 1 & 0 \\
-T & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
O_{x} \\
O_{z} \\
C_{x} \\
C_{z}
\end{array}\right)=\left(\begin{array}{cccc}
H & 0 & G & 0 \\
0 & H & 0 & G \\
F & 0 & E & 0 \\
0 & F & 0 & E
\end{array}\right)\left(\begin{array}{l}
T_{x} \\
T_{z} \\
L_{x} \\
L_{z}
\end{array}\right) \\
& \mathcal{S} \times \mathcal{B R}=\mathcal{B T} \times \mathcal{T R} \\
& \left(\begin{array}{rrrr}
1 & 0 & 0 & \Sigma \\
0 & 1 & -\Sigma & 0 \\
0 & -\Sigma & 1 & 0 \\
\Sigma & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
T_{x} \\
T_{z} \\
L_{x} \\
L_{z}
\end{array}\right)=\left(\begin{array}{cccc}
H & 0 & F & 0 \\
0 & H & 0 & F \\
G & 0 & E & 0 \\
0 & G & 0 & E
\end{array}\right)\left(\begin{array}{l}
O_{x} \\
O_{z} \\
C_{x} \\
C_{z}
\end{array}\right) \\
& \mathcal{S} \times \mathcal{T R}=\mathcal{B T} \times \mathcal{B R}
\end{aligned}
$$

Quadratic Relations (15):

$$
\begin{array}{r}
\Omega_{2} \Omega_{7}-\Omega_{14} \Omega_{16}-\Omega_{3} \Omega_{9}-\Omega_{5} \Omega_{11}=0 \\
\Omega_{3} \Omega_{5}+\Omega_{9} \Omega_{11}+\Omega_{6} \Omega_{8}+\Omega_{13} \Omega_{15}=0 \\
\Omega_{2} \Omega_{16}-\Omega_{7} \Omega_{14}-\Omega_{6} \Omega_{13}-\Omega_{8} \Omega_{15}=0 \\
\Omega_{4} \Omega_{3}-\Omega_{10} \Omega_{11}+\Omega_{7} \Omega_{6}+\Omega_{14} \Omega_{13}=0 \\
\Omega_{4} \Omega_{5}+\Omega_{10} \Omega_{9}+\Omega_{7} \Omega_{8}+\Omega_{14} \Omega_{15}=0 \\
\Omega_{4} \Omega_{9}+\Omega_{10} \Omega_{5}+\Omega_{2} \Omega_{6}-\Omega_{16} \Omega_{13}=0 \\
\Omega_{4} \Omega_{11}-\Omega_{10} \Omega_{3}+\Omega_{2} \Omega_{8}-\Omega_{16} \Omega_{15}=0 \\
\Omega_{4} \Omega_{14}-\Omega_{12} \Omega_{2}+\Omega_{3} \Omega_{13}+\Omega_{5} \Omega_{15}=0
\end{array}
$$

Quadratic Relations:

$$
\begin{array}{r}
\Omega_{4} \Omega_{7}-\Omega_{12} \Omega_{16}+\Omega_{3} \Omega_{6}+\Omega_{5} \Omega_{8}=0 \\
\Omega_{4} \Omega_{16}-\Omega_{12} \Omega_{7}-\Omega_{9} \Omega_{13}-\Omega_{11} \Omega_{15}=0 \\
\Omega_{4} \Omega_{2}-\Omega_{12} \Omega_{14}+\Omega_{9} \Omega_{6}+\Omega_{11} \Omega_{8}=0 \\
\Omega_{10} \Omega_{6}-\Omega_{12} \Omega_{15}+\Omega_{5} \Omega_{2}-\Omega_{11} \Omega_{7}=0 \\
\Omega_{10} \Omega_{13}+\Omega_{12} \Omega_{8}-\Omega_{5} \Omega_{16}-\Omega_{11} \Omega_{14}=0 \\
\Omega_{10} \Omega_{8}+\Omega_{12} \Omega_{13}-\Omega_{3} \Omega_{2}+\Omega_{9} \Omega_{7}=0 \\
\Omega_{10} \Omega_{15}-\Omega_{12} \Omega_{6}+\Omega_{3} \Omega_{16}+\Omega_{9} \Omega_{14}=0
\end{array}
$$

Square Relations(6):

$$
\begin{aligned}
\left(\Omega_{3}\right)^{2}+\left(\Omega_{5}\right)^{2}+\left(\Omega_{9}\right)^{2}+\left(\Omega_{11}\right)^{2} & =\left(\Omega_{1}\right)^{2}-\left(\Omega_{4}\right)^{2}-\left(\Omega_{10}\right)^{2}+\left(\Omega_{12}\right)^{2} \\
\left(\Omega_{14}\right)^{2}+\left(\Omega_{7}\right)^{2}+\left(\Omega_{16}\right)^{2}+\left(\Omega_{2}\right)^{2} & =\left(\Omega_{1}\right)^{2}-\left(\Omega_{4}\right)^{2}+\left(\Omega_{10}\right)^{2}-\left(\Omega_{12}\right)^{2} \\
\left(\Omega_{6}\right)^{2}+\left(\Omega_{13}\right)^{2}+\left(\Omega_{8}\right)^{2}+\left(\Omega_{15}\right)^{2} & =\left(\Omega_{1}\right)^{2}+\left(\Omega_{4}\right)^{2}-\left(\Omega_{10}\right)^{2}-\left(\Omega_{12}\right)^{2} \\
& \\
\left(\Omega_{3}\right)^{2}+\left(\Omega_{5}\right)^{2}-\left(\Omega_{9}\right)^{2}-\left(\Omega_{11}\right)^{2} & =\left(\Omega_{14}\right)^{2}+\left(\Omega_{7}\right)^{2}-\left(\Omega_{16}\right)^{2}-\left(\Omega_{2}\right)^{2} \\
-\left(\Omega_{3}\right)^{2}+\left(\Omega_{5}\right)^{2}-\left(\Omega_{9}\right)^{2}+\left(\Omega_{11}\right)^{2} & =\left(\Omega_{6}\right)^{2}+\left(\Omega_{13}\right)^{2}-\left(\Omega_{8}\right)^{2}-\left(\Omega_{15}\right)^{2} \\
\left(\Omega_{14}\right)^{2}-\left(\Omega_{7}\right)^{2}+\left(\Omega_{16}\right)^{2}-\left(\Omega_{2}\right)^{2} & =\left(\Omega_{6}\right)^{2}-\left(\Omega_{13}\right)^{2}+\left(\Omega_{8}\right)^{2}-\left(\Omega_{15}\right)^{2}
\end{aligned}
$$

Bounds on measurements

From

$$
\begin{aligned}
& \left(\Omega_{6}\right)^{2}+\left(\Omega_{13}\right)^{2}+\left(\Omega_{8}\right)^{2}+\left(\Omega_{15}\right)^{2} \pm 2\left(\Omega_{6} \Omega_{15}-\Omega_{8} \Omega_{13}\right) \\
= & \left(\Omega_{1}\right)^{2}+\left(\Omega_{4}\right)^{2}-\left(\Omega_{10}\right)^{2}-\left(\Omega_{12}\right)^{2} \pm 2\left(\Omega_{1} \Omega_{4}-\Omega_{10} \Omega_{12}\right)
\end{aligned}
$$

we obtain

$$
\left(\Omega_{6} \pm \Omega_{15}\right)^{2}+\left(\Omega_{8} \mp \Omega_{13}\right)^{2}=\left(\Omega_{1} \pm \Omega_{4}\right)^{2}-\left(\Omega_{10} \pm \Omega_{12}\right)^{2}
$$

The left hand side of the equation is positive, so is the right hand side. Therefore

$$
\Omega_{1} \pm \Omega_{4} \geq\left|\Omega_{10} \pm \Omega_{12}\right| \quad \text { or } \quad 1 \pm \Sigma \geq|T \pm P|
$$

Other bounds, within the set \mathcal{S}, can be derived in the same way:

$$
1 \pm T \geq|P \pm \Sigma|, \quad 1 \pm P \geq|\Sigma \pm T|
$$

We can deduce the bounds ${ }^{1}$

$$
\begin{aligned}
& 1+\Sigma^{2} \geq P^{2}+T^{2} \\
& 1+T^{2} \geq \Sigma^{2}+P^{2} \\
& 1+P^{2}
\end{aligned}
$$

Bounds on measurements

From

$$
\begin{aligned}
& \left(\Omega_{6}\right)^{2}+\left(\Omega_{13}\right)^{2}+\left(\Omega_{8}\right)^{2}+\left(\Omega_{15}\right)^{2} \pm 2\left(\Omega_{6} \Omega_{15}-\Omega_{8} \Omega_{13}\right) \\
= & \left(\Omega_{1}\right)^{2}+\left(\Omega_{4}\right)^{2}-\left(\Omega_{10}\right)^{2}-\left(\Omega_{12}\right)^{2} \pm 2\left(\Omega_{1} \Omega_{4}-\Omega_{10} \Omega_{12}\right)
\end{aligned}
$$

we obtain

The left hand side of the equation is positive, so is the right hand side. Therefore

Other bounds, within the set \mathcal{S}, can be derived in the same way:

We can deduce the bounds

Bounds on measurements

From

$$
\begin{aligned}
& \left(\Omega_{6}\right)^{2}+\left(\Omega_{13}\right)^{2}+\left(\Omega_{8}\right)^{2}+\left(\Omega_{15}\right)^{2} \pm 2\left(\Omega_{6} \Omega_{15}-\Omega_{8} \Omega_{13}\right) \\
= & \left(\Omega_{1}\right)^{2}+\left(\Omega_{4}\right)^{2}-\left(\Omega_{10}\right)^{2}-\left(\Omega_{12}\right)^{2} \pm 2\left(\Omega_{1} \Omega_{4}-\Omega_{10} \Omega_{12}\right)
\end{aligned}
$$

we obtain

$$
\left(\Omega_{6} \pm \Omega_{15}\right)^{2}+\left(\Omega_{8} \mp \Omega_{13}\right)^{2}=\left(\Omega_{1} \pm \Omega_{4}\right)^{2}-\left(\Omega_{10} \pm \Omega_{12}\right)^{2} .
$$

The left hand side of the equation is positive, so is the right hand side. Therefore

Other bounds, within the set \mathcal{S}, can be derived in the same way:

We can deduce the bounds ${ }^{1}$

From

$$
\begin{aligned}
& \left(\Omega_{6}\right)^{2}+\left(\Omega_{13}\right)^{2}+\left(\Omega_{8}\right)^{2}+\left(\Omega_{15}\right)^{2} \pm 2\left(\Omega_{6} \Omega_{15}-\Omega_{8} \Omega_{13}\right) \\
= & \left(\Omega_{1}\right)^{2}+\left(\Omega_{4}\right)^{2}-\left(\Omega_{10}\right)^{2}-\left(\Omega_{12}\right)^{2} \pm 2\left(\Omega_{1} \Omega_{4}-\Omega_{10} \Omega_{12}\right)
\end{aligned}
$$

we obtain

$$
\left(\Omega_{6} \pm \Omega_{15}\right)^{2}+\left(\Omega_{8} \mp \Omega_{13}\right)^{2}=\left(\Omega_{1} \pm \Omega_{4}\right)^{2}-\left(\Omega_{10} \pm \Omega_{12}\right)^{2} .
$$

The left hand side of the equation is positive, so is the right hand side. Therefore

$$
\Omega_{1} \pm \Omega_{4} \geq\left|\Omega_{10} \pm \Omega_{12}\right| \quad \text { or } \quad 1 \pm \Sigma \geq|T \pm P| .
$$

Other bounds, within the set \mathcal{S}, can be derived in the same way:

$$
1 \pm T \geq|P \pm \Sigma|, \quad 1 \pm P \geq|\Sigma \pm T| .
$$

We can deduce the bounds ${ }^{1}$

$$
\begin{aligned}
& 1+\Sigma^{2} \geq P^{2}+T^{2} \\
& 1+T^{2} \geq \Sigma^{2}+P^{2} \\
& 1+P^{2} \geq \Sigma^{2} \Sigma^{2}+T^{2}
\end{aligned}
$$

The BDS rule: Barker, Donnachie, \& Storrow, Nucl. Phys. B95, 347 (1975)

In BDS, the following rule was promulgated:
In order to determine all amplitudes without discrete ambiguities, one has to measure five double spin observables along with the four type \mathcal{S} measurements, provided no four double spin observables are selected from the same set of $\mathcal{B T}, \mathcal{B R}$ and \mathcal{T}.

Thus, they say nine experiments are required.

The BDS rule: Barker, Donnachie, \& Storrow, Nucl. Phys. B95, 347 (1975)

In BDS, the following rule was promulgated:
In order to determine all amplitudes without discrete ambiguities, one has to measure five double spin observables along with the four type \mathcal{S} measurements, provided no four double spin observables are selected from the same set of $\mathcal{B T}, \mathcal{B R}$ and $\mathcal{T} \mathcal{R}$.

Thus, they say nine experiments are required.

The CT rule:
 Chiang \& Tabakin Phys. Rev. C 55, 2054 (1997)

In CT, the following revised rule was promulgated:
In order to determine all four amplitudes without discrete ambiguities, one has to measure eight carefully selected measurements four double spin observables along with the four type \mathcal{S} measurements, provided no four double spin observables are selected from the same set of $\mathcal{B T}, \mathcal{B R}$ and $\mathcal{T} \mathcal{R}$.

The CT rule:
 Chiang \& Tabakin Phys. Rev. C 55, 2054 (1997)

In CT, the following revised rule was promulgated:
In order to determine all four amplitudes without discrete ambiguities, one has to measure eight carefully selected measurements four double spin observables along with the four type \mathcal{S} measurements, provided no four double spin observables are selected from the same set of $\mathcal{B T}, \mathcal{B R}$ and $\mathcal{T} \mathcal{R}$.

Thus, they say eight "carefully selected" experiments are required.

Pion Nucleon Elastic Case

Amplitude

$$
T=f_{1}+i \vec{\sigma} \cdot \hat{n} f_{2}
$$

Transversity amplitudes

Observables

$$
\left.\mathcal{I}(\theta)=\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}=<b\left|\sigma^{0}\right| b\right\rangle
$$

$$
\left.\mathcal{I}(\theta) P=\hat{P}=\left|b_{1}\right|^{2}-\left|b_{2}\right|^{2}=A_{N}^{2}=<b\left|\sigma^{z}\right| b\right\rangle
$$

$$
\mathcal{I}(\theta) A=\hat{A}=2 \Re\left(b_{1}^{*} b_{2}\right)=2\left|b_{1}\right|\left|b_{2}\right| \cos (\theta)=<b\left|\sigma^{x}\right| b
$$

$$
I(\theta) R=\hat{R}=2 S\left(b_{1}^{*} b_{2}\right)=2\left|b_{1}\right|\left|b_{2}\right| \sin (\theta)=<b\left|\sigma^{y}\right| b
$$

Amplitude

$$
T=f_{1}+i \vec{\sigma} \cdot \hat{n} f_{2}
$$

Transversity amplitudes

$$
b_{1}=\frac{f_{1}+i f_{2}}{\sqrt{2}} \quad b_{2}=\frac{f_{1}-i f_{2}}{\sqrt{2}}
$$

Observables

$$
\mathcal{I}(\theta) A=\hat{A}=2 \Re\left(b_{1}^{*} b_{2}\right)=2\left|b_{1}\right|\left|b_{2}\right| \cos (\theta)=<b\left|\sigma^{x}\right| b
$$

Pion Nucleon Elastic Case

Amplitude

$$
T=f_{1}+i \vec{\sigma} \cdot \hat{n} f_{2}
$$

Transversity amplitudes

$$
b_{1}=\frac{f_{1}+i f_{2}}{\sqrt{2}} \quad b_{2}=\frac{f_{1}-i f_{2}}{\sqrt{2}}
$$

Observables

$$
\mathcal{I}(\theta)=\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}=\langle b| \sigma^{0}|b\rangle
$$

Amplitude

$$
T=f_{1}+i \vec{\sigma} \cdot \hat{n} f_{2}
$$

Transversity amplitudes

$$
b_{1}=\frac{f_{1}+i f_{2}}{\sqrt{2}} \quad b_{2}=\frac{f_{1}-i f_{2}}{\sqrt{2}}
$$

Observables

$$
\begin{gathered}
\mathcal{I}(\theta)=\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}=<b\left|\sigma^{0}\right| b> \\
\mathcal{I}(\theta) P=\hat{P}=\left|b_{1}\right|^{2}-\left|b_{2}\right|^{2}=A_{N}^{2}=<b\left|\sigma^{z}\right| b>
\end{gathered}
$$

[^1]
Amplitude

$$
T=f_{1}+i \vec{\sigma} \cdot \hat{n} f_{2}
$$

Transversity amplitudes

$$
b_{1}=\frac{f_{1}+i f_{2}}{\sqrt{2}} \quad b_{2}=\frac{f_{1}-i f_{2}}{\sqrt{2}}
$$

Observables

$$
\begin{gathered}
\mathcal{I}(\theta)=\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}=\langle b| \sigma^{0}|b\rangle \\
\mathcal{I}(\theta) P=\hat{P}=\left|b_{1}\right|^{2}-\left|b_{2}\right|^{2}=A_{N}{ }^{2}=\langle b| \sigma^{z}|b\rangle
\end{gathered}
$$

$$
\mathcal{I}(\theta) A=\hat{A}=2 \Re\left(b_{1}^{*} b_{2}\right)=2\left|b_{1}\right|\left|b_{2}\right| \cos (\theta)=\langle b| \sigma^{x}|b\rangle
$$

${ }^{2} P=A_{N}$ TRI—-Ashkin \& Wolfenstein

Amplitude

$$
T=f_{1}+i \vec{\sigma} \cdot \hat{n} f_{2}
$$

Transversity amplitudes

$$
b_{1}=\frac{f_{1}+i f_{2}}{\sqrt{2}} \quad b_{2}=\frac{f_{1}-i f_{2}}{\sqrt{2}}
$$

Observables

$$
\begin{gathered}
\mathcal{I}(\theta)=\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}=\langle b| \sigma^{0}|b\rangle \\
\mathcal{I}(\theta) P=\hat{P}=\left|b_{1}\right|^{2}-\left|b_{2}\right|^{2}=A_{N}{ }^{2}=\langle b| \sigma^{z}|b\rangle \\
\mathcal{I}(\theta) A=\hat{A}=2 \Re\left(b_{1}^{*} b_{2}\right)=2\left|b_{1}\right|\left|b_{2}\right| \cos (\theta)=\langle b| \sigma^{x}|b\rangle \\
\mathcal{I}(\theta) R=\hat{R}=2 \Im\left(b_{1}^{*} b_{2}\right)=2\left|b_{1}\right|\left|b_{2}\right| \sin (\theta)=\langle b| \sigma^{y}|b\rangle
\end{gathered}
$$

Fierzing Pion Nucleon Elastic Case

Fierz for SU(2)

$$
\sigma_{i j}^{\alpha} \sigma_{s t}^{\beta}=\sum_{a, b=0}^{3} C_{a, b}^{\alpha, \beta} \sigma_{i t}^{a} \sigma_{s j}^{b} \longrightarrow \sigma^{\alpha} \sigma^{\beta}=\sum_{a, b=0}^{3} C_{a, b}^{\alpha, \beta} \sigma^{a} \sigma^{b}
$$

$4 \times 4 / 2=8 \longrightarrow 1$

$$
\begin{gathered}
\sigma_{i j}^{0} \sigma_{s t}^{0}=\sigma_{i t}^{1} \sigma_{s j}^{1}+\sigma_{i t}^{2} \sigma_{s j}^{2}+\sigma_{i t}^{3} \sigma_{s j}^{3} \\
P^{2}+A^{2}+R^{2}=1
\end{gathered}
$$

Thus deduce bounds: $|P| \leq 1$ and $0 \leq A^{2}+R^{2} \leq 1$
Complete set: $\mathcal{I}, P, A=3$ plus 1 for sign of R , for example. The

Two Complex Amplitudes In Transversity Space:

Fierzing Pion Nucleon Elastic Case

Fierz for SU(2)

$$
\sigma_{i j}^{\alpha} \sigma_{s t}^{\beta}=\sum_{a, b=0}^{3} C_{a, b}^{\alpha, \beta} \sigma_{i t}^{a} \sigma_{s j}^{b} \longrightarrow \sigma^{\alpha} \sigma^{\beta}=\sum_{a, b=0}^{3} C_{a, b}^{\alpha, \beta} \sigma^{a} \sigma^{b}
$$

$4 \times 4 / 2=8 \longrightarrow 1$

$$
\begin{gathered}
\sigma_{i j}^{0} \sigma_{s t}^{0}=\sigma_{i t}^{1} \sigma_{s j}^{1}+\sigma_{i t}^{2} \sigma_{s j}^{2}+\sigma_{i t}^{3} \sigma_{s j}^{3} \\
P^{2}+A^{2}+R^{2}=1
\end{gathered}
$$

Thus deduce bounds: $|P| \leq 1$ and $0 \leq A^{2}+R^{2} \leq 1$
Complete set: $\mathcal{I}, P, A=3$ plus 1 for sign of R , for example. The

Two Complex Amplitudes In Transversity Space:

Fierzing Pion Nucleon Elastic Case

Fierz for SU(2)

$$
\sigma_{i j}^{\alpha} \sigma_{s t}^{\beta}=\sum_{a, b=0}^{3} C_{a, b}^{\alpha, \beta} \sigma_{i t}^{a} \sigma_{s j}^{b} \longrightarrow \sigma^{\alpha} \sigma^{\beta}=\sum_{a, b=0}^{3} C_{a, b}^{\alpha, \beta} \sigma^{a} \sigma^{b}
$$

$4 \times 4 / 2=8 \longrightarrow 1$

$$
\begin{gathered}
\sigma_{i j}^{0} \sigma_{s t}^{0}=\sigma_{i t}^{1} \sigma_{s j}^{1}+\sigma_{i t}^{2} \sigma_{s j}^{2}+\sigma_{i t}^{3} \sigma_{s j}^{3} \\
P^{2}+A^{2}+R^{2}=1
\end{gathered}
$$

Thus deduce bounds: $|P| \leq 1$ and $0 \leq A^{2}+R^{2} \leq 1$
Complete set: $\mathcal{I}, P, A=3$ plus 1 for sign of R , for example. The

Two Complex Amplitudes In Transversity Space:

Fierzing Pion Nucleon Elastic Case

Fierz for SU(2)

$$
\sigma_{i j}^{\alpha} \sigma_{s t}^{\beta}=\sum_{a, b=0}^{3} C_{a, b}^{\alpha, \beta} \sigma_{i t}^{a} \sigma_{s j}^{b} \longrightarrow \sigma^{\alpha} \sigma^{\beta}=\sum_{a, b=0}^{3} C_{a, b}^{\alpha, \beta} \sigma^{a} \sigma^{b}
$$

$4 \times 4 / 2=8 \longrightarrow 1$

$$
\begin{gathered}
\sigma_{i j}^{0} \sigma_{s t}^{0}=\sigma_{i t}^{1} \sigma_{s j}^{1}+\sigma_{i t}^{2} \sigma_{s j}^{2}+\sigma_{i t}^{3} \sigma_{s j}^{3} \\
P^{2}+A^{2}+R^{2}=1
\end{gathered}
$$

Thus deduce bounds: $|P| \leq 1$ and $0 \leq A^{2}+R^{2} \leq 1$
Complete set: $\mathcal{I}, P, A=3$ plus 1 for sign of R , for example. The

Two Complex Amplitudes In Transversity Space:

Complete Double spin measurements

'X's' -> 3 selected measurements,
'O's' -> possible 4th observable to resolve ambiguities.

| G | X |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | H $\quad \mathbf{X} \quad \mathbf{X}$

E
F

O_{x}	\mathbf{x}		0		0	0	0	0	\mathbf{x}	0	0	0	0	0
O_{z}		\mathbf{x}		$\mathbf{0}$	0	0	0	0	0	\mathbf{x}	0	0	0	0
C_{x}	$\mathbf{0}$		\mathbf{x}		0	0	0	0	0	0	\mathbf{x}	0	0	0
C_{z}		0		\mathbf{x}	0	0	0	0	0	0	0	\mathbf{x}	0	0
T_{x}	0	0	0	0	\mathbf{x}	0	0	0	0	0	0	0	\mathbf{x}	
T_{z}	0	0	0	0	0	\mathbf{x}	0	0	0	0	0	0		\mathbf{x}
L_{x}	0	0	0	0	0	0	\mathbf{x}	0	0	0	0	0	0	
L_{z}	0	0	0	0	0	0	0	\mathbf{x}	0	0	0	0		0

Complete Double spin measurements

'X's' -> 3 selected measurements,
'O's' -> possible 4th observable to resolve ambiguities.

G
H $\quad \begin{array}{llllllllllllll}\mathbf{X} & \mathbf{X} & \mathbf{x}\end{array}$
$\begin{array}{lllllllll}E & \mathbf{X} & \mathbf{X}\end{array}$
F

O_{x}	X		0			0	0		X	0	0	0	0	0
O_{z}		X		0	0			0	0	X	0	0	0	0
C^{\prime}	0		X		0			0	0	0	X	0	0	0
C_{z}		0		X		0	0		0	0	0	X	0	0
T_{X}		0	0		X		0		0	0	0	0	X	
T_{z}	0			0		X		0	0	0	0	0		X
L_{x}	0			0	0		X		0	0	0	0	0	
L_{z}		0	0			0		X	0	0	0	0		0

Complete Double spin measurements

'X's' -> 3 selected measurements,
'O's' -> possible 4th observable to resolve ambiguities.

$O_{X} \quad \begin{array}{llllllllllllll} & \mathbf{X} & \mathbf{X}\end{array} \mathbf{X}$
$O_{z} \quad \begin{array}{lllllllll}\mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X}\end{array}$
C_{x}
$\mathbf{x} \quad \mathrm{X} \quad \mathrm{X} \quad \mathrm{X} \quad \mathrm{X} \quad \mathrm{X}$

T_{x}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	\mathbf{x}	$\mathbf{0}$	0	0	0	0	0	0	\mathbf{x}	0
T_{z}	0	0	0	0	0	\mathbf{x}	0	0	0	0	0	0	0	\mathbf{x}
L_{x}	0	0	0	0	0	0	\mathbf{x}	0	0	0	0	0		
L_{z}	0	0	0	0	0	0	0	\mathbf{x}	0	0	0	0		

Complete Double spin measurements

'X's' -> 3 selected measurements,
'O's' -> possible 4th observable to resolve ambiguities.

G	X		0		0			0	X	0	0	0	0	0
H		X		0		0	0		0	X	0	0	0	0
E	0		X			0	0		0	0	X	0	0	0
F		0		X	0			0	0	0	0	X	0	0
O_{X}														
O_{z}	X	X	X	X	X	X	X	X	X	X	X	X	X	X
$C^{\text {x }}$	X	X	X	X	X	X	X	X						
C_{z}									X	X	X	X	X	X
T_{X}	0			0	X	0			0	0	0	0	X	0
T_{z}		0	0		0	X			0	0	0	0	0	X
L_{x}		0	0				X	0	0	0	0	0		
L_{z}	0			0			0	X	0	0	0	0		

Complete Double spin measurements

'X's' -> 3 selected measurements,
'O's' -> possible 4th observable to resolve ambiguities.

G	\mathbf{x}	$\mathbf{0}$			0	0	0	0	\mathbf{x}	0	0	0	0	0
H	$\mathbf{0}$	\mathbf{x}			0	0	0	0	0	\mathbf{x}	0	0	0	0
E			\mathbf{x}	$\mathbf{0}$	0	0	0	0	0	0	\mathbf{x}	0	0	0
F			0	\mathbf{x}	0	0	0	0	0	0	0	\mathbf{x}	0	0
					\mathbf{x}									
O_{x}	0	0	0	0	\mathbf{x}	0	0	0	0	0	0	0	\mathbf{x}	0
O_{z}	0	0	0	0	0	\mathbf{x}	0	0	0	0	0	0	0	\mathbf{x}
C_{x}	0	0	0	0	0	0	\mathbf{x}	0	0	0	0	0		
C_{z}	0	0	0	0	0	0	0	\mathbf{x}	0	0	0	0		

$\begin{array}{llllllllllllll}T_{x} & \mathbf{X} & \mathbf{X}\end{array} \mathbf{X}$
$\begin{array}{lllllllll}T_{z} & \mathbf{X} & \mathbf{X}\end{array}$
L_{x}
L_{z}

Complete Double spin measurements

'X's' -> 3 selected measurements,
'O's' -> possible 4th observable to resolve ambiguities.

T_{x}
$\begin{array}{lllllllllllllll}T_{z} & \mathbf{X} & \mathbf{X}\end{array}$
$L_{X} \quad \mathbf{X} \quad \mathbf{X}$
L_{z}
X XX XX

Partial Wave Extraction is made difficult by:

- Unknown Energy and Angle dependent Overall Phase
- Cusp and Threshold effects
- Error bars

Some Observations:
Determination of unique Underlining dynamics is almost always
limited in QM. Examples: Phase equivalent potentials \&
Redundant Inverse scattering solutions
We live with that and instead of theorem we surround the
problem.
Completeness is ultimately a physical result.

Partial Wave Extraction is made difficult by:

- Unknown Energy and Angle dependent Overall Phase
- Cusp and Threshold effects
- Error bars

Some Observations:
Determination of unique Underlining dynamics is almost always limited in QM. Examples: Phase equivalent potentials \&
Redundant Inverse scattering solutions
We live with that and instead of theorem we surround the
problem.
Completeness is ultimately a physical result.

Partial Wave Extraction is made difficult by:

- Unknown Energy and Angle dependent Overall Phase
- Cusp and Threshold effects
- Error bars

Some Observations:
Determination of unique Underlining dynamics is almost always limited in QM. Examples: Phase equivalent potentials \&
Redundant Inverse scattering solutions
We live with that and instead of theorem we surround the problem.
Completeness is ultimately a physical result.

Partial Wave Extraction is made difficult by:

- Unknown Energy and Angle dependent Overall Phase
- Cusp and Threshold effects
- Error bars

Some Observations:
Determination of unique Underlining dynamics is almost always
limited in QM. Examples: Phase equivalent potentials \&
Redundant Inverse scattering solutions
We live with that and instead of theorem we surround the problem.
Completeness is ultimately a physical result.

- The 16 Measurements are related by a measurement algebra
- That algebra is equivalent to that of 16 Hermitian 4×4 SU(4) group
- More than 7 experiments are needed due to discrete ambiguities, which are also described using SU(4) algebra.
- Constraints and Bounds can be deduced from that algebra
- Constrains allow for one less experiment needed and is why CT say 8 and BDS say 9 needed for compete set.
- Procedures can be generalized to N amplitudes ${ }^{3}$

[^2]- The 16 Measurements are related by a measurement algebra
- That algebra is equivalent to that of 16 Hermitian 4×4 SU(4) group
- More than 7 experiments are needed due to discrete ambiguities, which are also described using SU(4) algebra.
- Constraints and Bounds can be deduced from that algebra
- Constrains allow for one less experiment needed and is why CT say 8 and BDS say 9 needed for compete set.
- Procedures can be generalized to N amplitudes ${ }^{3}$

[^3]- The 16 Measurements are related by a measurement algebra
- That algebra is equivalent to that of 16 Hermitian 4×4 SU(4) group
- More than 7 experiments are needed due to discrete ambiguities, which are also described using $\operatorname{SU}(4)$ algebra.
- Constraints and Bounds can be deduced from that algebra
- Constrains allow for one less experiment needed and is why CT say 8 and BDS say 9 needed for compete set.
- Procedures can be generalized to N amplitudes ${ }^{3}$

- The 16 Measurements are related by a measurement algebra
- That algebra is equivalent to that of 16 Hermitian 4×4 SU(4) group
- More than 7 experiments are needed due to discrete ambiguities, which are also described using SU(4) algebra.
- Constraints and Bounds can be deduced from that algebra
- Constrains allow for one less experiment needed and is why CT say 8 and BDS say 9 needed for compete set.
- Procedures can be generalized to N amplitudes ${ }^{3}$

- The 16 Measurements are related by a measurement algebra
- That algebra is equivalent to that of 16 Hermitian 4×4 SU(4) group
- More than 7 experiments are needed due to discrete ambiguities, which are also described using $\operatorname{SU}(4)$ algebra.
- Constraints and Bounds can be deduced from that algebra
- Constrains allow for one less experiment needed and is why CT say 8 and BDS say 9 needed for compete set.
- Procedures can be generalized to N amplitudes ${ }^{3}$
\square
${ }^{3}$ M. Pichowsky \& F. Tabakin; On Complete Meson Electroproduction
- The 16 Measurements are related by a measurement algebra
- That algebra is equivalent to that of 16 Hermitian 4×4 SU(4) group
- More than 7 experiments are needed due to discrete ambiguities, which are also described using $\operatorname{SU}(4)$ algebra.
- Constraints and Bounds can be deduced from that algebra
- Constrains allow for one less experiment needed and is why CT say 8 and BDS say 9 needed for compete set.
- Procedures can be generalized to N amplitudes ${ }^{3}$

[^4]Fierzing Observables Yields:
Fierz —> explicit and rigorous relationships between observables. Of course, such relationships can be derived from the bilinear structure of the observables, with much effort. That effort is now replaced by simply invoking the well-known Fierz rules as a general property. That allows us to avoid much algebra and to find all relations in one step. There are direct physical consequences of these relations. If double spin observables in a type set are known, then the fourth member of that type is uniquely determined. The fourth measurement is thus redundant.

Fierzing Observables Yields:
Fierz \rightarrow explicit and rigorous relationships between observables.
the bilinear structure of the observables, with much effort. That
effort is now replaced by simply invoking the well-known Fierz
rules as a general property. That allows us to avoid much
algebra and to find all relations in one step. There are direct
physical consequences of these relations. If double spin
observables in a type set are known, then the fourth member of
that type is uniquely determined. The fourth measurement is thus redundant.

Fierzing Observables Yields:
Fierz \rightarrow explicit and rigorous relationships between observables. Of course, such relationships can be derived from the bilinear structure of the observables, with much effort.
> effort is now replaced by simply invoking the well-known Fierz rules as a general property. That allows us to avoid much algebra and to find all relations in one step. There are direct physical consequences of these relations. If double spin observables in a type set are known, then the fourth member of that type is uniquely determined. The fourth measurement is thus redundant.

Fierzing Observables Yields:
Fierz \rightarrow explicit and rigorous relationships between observables. Of course, such relationships can be derived from the bilinear structure of the observables, with much effort. That effort is now replaced by simply invoking the well-known Fierz rules as a general property.
algebra and to find all relations in one step. There are direct
physical consequences of these relations. If double spin
observables in a type set are known, then the fourth member of
that type is uniquely determined. The fourth measurement is
thus redundant.

Fierzing Observables Yields:
Fierz \rightarrow explicit and rigorous relationships between observables. Of course, such relationships can be derived from the bilinear structure of the observables, with much effort. That effort is now replaced by simply invoking the well-known Fierz rules as a general property. That allows us to avoid much algebra and to find all relations in one step. There are direct physical consequences of these relations.

[^5]Fierzing Observables Yields:
Fierz \rightarrow explicit and rigorous relationships between observables. Of course, such relationships can be derived from the bilinear structure of the observables, with much effort. That effort is now replaced by simply invoking the well-known Fierz rules as a general property. That allows us to avoid much algebra and to find all relations in one step. There are direct physical consequences of these relations. If double spin observables in a type set are known, then the fourth member of that type is uniquely determined. The fourth measurement is thus redundant.

- M. Simonius PRL 19,279(1967)
- "On complete sets of polarization observables," Hartmuth Arenhovel, Winfried Leidemann, Edward L. Tomusiak . Nucl.Phys.A641:517-527,1998.
- Spin degrees and Polarization Observables in Electromagnetic Reactions Hartmuth Arenhoevel Workshop on Hadron Physics, AMU, Aligarh, India, Feb. 18-23, 2008

Thanks for including me!

[^0]: ϕ_{14}, ϕ_{23}

[^1]: ${ }^{2} P=A_{N}$ TRI—-Ashkin \& Wolfenstein

[^2]: ${ }^{3}$ M. Pichowsky \& F. Tabakin; On Complete Meson Electroproduction Experiment Sets (unpublished)

[^3]: ${ }^{3}$ M. Pichowsky \& F. Tabakin; On Complete Meson Electroproduction Experiment Sets (unpublished)

[^4]: ${ }^{3}$ M. Pichowsky \& F. Tabakin; On Complete Meson Electroproduction Experiment Sets (unpublished)

[^5]: observables in a type set are known, then the fourth member of
 that type is uniquely determined. The fourth measurement is
 thus redundant.

