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Kinematics

0(97 ¢) =
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H,(E.0,¢) = |H;| €7
44+3=7
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The Bilinear Helicity Product (BHP) Form

D= DN =

Q°7(6)
H; T5 H,
(H|'*|H)
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The Bilinear Helicity Product (BHP) Selection Scheme

Spin Observables: Sixteen spin observables are expressed in
helicity representation and BHP forms.
Classified into four sets:

@ S for the differential cross section and single spin
observables,

@ BT beam-target,
@ BR beam-recaoil,
@ TR target-recoil .



Helicity Representation S

Spin Helicity BHP
Observable Representation

Q' =12(0)  S(IHi2+ [Hal? + [Hal? + |Ha?)  3(H|T'[H)

Nl

0= ¥ Re(—HiHy + HaHy) S(H|T*|H)

Nl

~ 5 1

0= T Im(Hy H + HsHy) (H|H)

[\l

Ore= p Im(—H H — HaHy) 1(H|F2|H)



Helicity Representation B7

Spin Helicity BHP
Observable Representation
P= G Im(Hy Hy — HaH;) S(H|T3|H)
= H Im(—HoHj + HiHy) S(H|TS|H)
0= E  J(HP—|HalP+ |Hal? — |Hal?)  Z(HITOIH)
Q"= F Re(—HaoH; — HyHY) S(HIT | H)



Helicity Representation BR

Spin Helicity BHP
Observable Representation
Q"= Oy Im(—HaHy + HaH) S(H|T4|H)
7 = -0, Im(Hs Hy — HaH;) 3(HIF7|H)
Q%= —C, Re(HoH; + HiHy) S(H|T'®|H)
2= —C;  J(|F[P+ |Hol? — |Hal? — [Hal?)  Z(HIT?|H)



Helicity Representation 7R

Spin Helicity BHP
Observable Representation
Q8 = -7, Re(—HiH; — HaHY) S(H|T8|H)
Q%= T, Re(—HiH; + HsHY) S(HIT3|H)
Q8 = [ Re(HoHj — HiHy) S(H|8|H)

Q= Lz S(—|HiP + [Hel + [Hsl? — [Hal?)  3(HIT'®[H)
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Transversity Representation S

Spin Transversity BTP
Observable Representation

Q' =7(0)  L(bi[2+ |baf? + |bs? + [ba?)  L(BITT|B)

Il
™M

0= 3 3(1b1]2 + |baf? — |bs[? — [ba?)  L(b|T*|b)

Q0= T (|12 + |baf? + |bs|? — [baf?)  F(bIT'O|b)

N

O2= P I(—|b1[2+ |ba? — |bsf? + [baf?)  L(b|TT2|b)



Transversity Representation BT

Spin Transversity BTP
Observable  Representation

B = G  Im(—byb; —bobj) F(bI°|b)
°= H  Re(bibj—bebj) 3(bIr°|b)
G° = E Re(bib; + bobj)  1(b|T°|b)
al= F Im(by b5 — boby)  3(bT'|b)



Transversity Representation BR

Spin Transversity BTP
Observable  Representation

0= Oy  Re(—bibj + babs) L(b]T'*|b)

O = -0, Im(=bib;—beb;) L(bIT7|b)

Nl

O1%= —C,  Im(bib; — bobs)  H(bT'®|b)

&S
I

|
o

Re(bibj + babs)  1(b|T?|b)



Transversity Representation 7R

Spin Transversity BTP
Observable  Representation

% = —T, Re(—bibs+bsb;) L(bT8|b)

OB= —T,  Im(bibs — bsb;)  (b|T'3|b)

08 = L, Im(—bib; —bsb;) L(bIT8|b)

Nl

A

ol
I
'\
N

Re(—bib; — bsbj)  L(bIT'5|b)



The Bilinear Helicity Product (BHP) Summary

S: (1,¥,-T, P) r,r4,rio ri2
BT : (G,H,EF) r3,rero
BR : (O, -0z, —Cy, —C;) M4 17,116 r2
TR : (=T, =Tz, Ly, ) r6,r13 ré ris

Ambiguities: T, 110 112
r15 /{07
ré Ko, ré Ko, rts Ko



Sixteen Hermitian Gamma Matrices

= =1,9% 7

ra:6-~11 _ O_OX’ iUOy’ iJOZ,

icY, ic* ic?

=121 = iy°y%,7°7,7°.



[ Properties

e [* are Hermitian and unitary.

° Tr(l'al‘ﬁ) = 4(5(15.

o ™ are linearly independent. and form a
complete set (a basis) for 4 x 4 matrices.
Any 4 x 4 matrices X can be expanded as
X = Z C,U* with C, = 1Tr(r*X).

o > T35 = 406250t

o [TF = pogy T With pogy = FTr(Mr7M).

° %pa'yépﬁVn - 11—6Tr(r5rarnrﬂ) = C?nﬂ: used for
the Fierz transformation



Transversity

Transversity transformation: |b) = U* |H) T = U*reyut

i1
i—i
i1
—i =i -1

U4 —

]
1] 1
2| 1
1

which involves rotating the helicity quantization axis to the
direction normal to the scattering plane. The sixteen spin
observables can be expressed in this transversity basis by

v 1 ~ 1 ~
Qa:QaI(e):Eb;kr;j)‘bl:§<b|ra|b>’ Oé:1,16



The transversity I matrices form four classes with four
members in each class according to their “shape:” diagonal

(D); right parallelogram (PR); antidiagonal (AD); and left

parallelogram (PL) correspond to S, B7, BR and 7R type

experiments.

OO OoOn

o oo o

o0 OO

Q O OO

|bi|
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i ) 0 0 ao
prR=IpT = 00005 5
c 0 0O r
0 d 00O Fs
o
M1

13, P24

21
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000 a =
~ ~ 00 b o 4
Pao=Ter=| ¢ ¢ 0 0 Tz
d 000 M6

P

14, P23
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Discrete Ambiguities in Helicity Basis

G. Keaton & R. Workman Phys.Rev. C53, 1434 (1996) gave

discrete ambiguity relations associated with transformations of
helicity amplitudes:
Amblgwty I: H1 — H4 Hg «—> —H3

H 0 0 0 -+1 H, H,
H,| | 0o 0 -1 0 Ho | _a| Ho
Hy |~ 0o -1 0 o0 Hy | ~ Hs
H; +1 0 0 O H, H,

24



Discrete Ambiguities in Helicity Basis

Ambiguity II:
H —H, H,— —Hy H3—Hy Hy— —H;

H 0 +1 0 0 Hy Hy
4 1 0 0 0 Ho | __ir1o| Ho
sl 0 0 0 41| |H | Hs

H, 0 0 -1 0 Hy Hy

25



Discrete Ambiguities in Helicity Basis

Ambiguity I
H —Hy Ho—Hy H3— —Hy Hy— —Ho

H, 0 0 +1 0 H; Hy
4 0 0 0 +1||H|_ e|h
] -1 0 o0 o Hs |~ Hs

H, 0 -1 0 0 Hy Hi

26



Ambiguity IV:
H1 — —H.T

Hp — Hy  Hs — H;

27

H4 e —HZ



Ambiguities in the transversity basis

Ambiguity I:
by — +by

Ambiguity I
by — —by

/
b1
/
2
/
;
b4

bo — +bo

+1
0 +1

0
0

0

0
0

b — +bo

by — —bs
0O O b4
0O O bo
-1 0 bs
0o -1 by

b3 — + b3

0 by

0 bo

0 bs

—1 by

28

by — —by
b
_ Zi
by
by — —by
b;
_ 0 gj



Ambiguities in the transversity basis

Ambiguity lll:

by — —by

/
b;
/
2
/
;
b4

Ambiguity IV:
by — —b;

WS~
|

by — +by b3 — —bs

4 0 0 O by
0 41 0 0 bs
0 0 -1 0 bs
0 0 0 +1 ba

by — —by b3 — —bj

0o -1 0 0 b;
-1 0 0 © b
0 0 0 —1||b;
0 0 -1 0 b;

20

by — +by

by — —

_ 5

bs




Linear ambiguity I, Il and Ill L =, T1°, and "2
Antilinear ambiguity IV ambiguity A = I13K.
Other three antilinear ambiguities A = MKy, 3Ky, and 8K,

can be constructed by Ambiguity 1V and the three linear
ambiguities 1 to Ill. |

6 _ T4715
18 _ jF10F15
(I L

See KW (Ref. [?]).

20



Spin Linear Transformation L  Antilinear Transformation A

Observable T, Tyg T2 T Ts T3 M5

o(0) + o+ + + o+ o+ +
pu + + + + o+ + + S
T + o+ + + o+ o+ +
P + o+ + + o+ o+ +
G - - + + - + -
H - - + -+ - + BT
E - - + -+ - +
F - - + + -  + -

L: b,-—>b§:L,~jbj
A: b — bj = A;b;

21



Spin Linear Transformation L Antilinear Transformation A

Observable T4 Tyg 12 M6 Ts l13 Ts
O« - 4 - - - + +
O, -+ - + +
Cx - 4 - + 4+ - -
C; ~ o+ - - - 4 +
Tx + - - + - - +
T, + - - - + + -
Lx + - - -+ + -
L, + - - + - - +



Fierzing yN — = + N’ Case

Fierz for SU(4)

st —
a,b=1 a,b=1

16 16
9. b PR 76 b
r,@;rﬁ — Z Cgﬁr;?;rsj —rerh= Z Coprar

1

Calp = 7g THIFarer’re]

Fierzing Observables:

16
(07 — OC,B b
Q" Q%= Y Cp Q%Q
a,b=1

16 x 16/2 = 128 — x relations; for example:
1
r}j et = ;[r}t r.19j +75 rgj e TP '—1s/(‘5

29



Linear-Quadratic Relations (16):

Q4

Q4
Q40
Q42

L
=2 D (Q)?

a=1
Q108212 + Q26215 — Q8813
Q4 Q12 + Q2244 + 2746
Q4 Q0 + Q3211 — Q509

+Q41Q42 — Q745 + Q244828
—Q9 Q2 + Q7243 — Q1486
=5 Q12 — Q2045 — Q46828
+Q3 Qq2 + Q2243 + Q16826

24



Linear-Quadratic Relations:

Q14
Q7

Qo Q0 + 2308 — Q5 Qp
Q168210 — 238245 + Q5 Q43
Q7 Q10 — Q9828 + 2112
Q14240 — Qo245 + 118243

+Q15824 — Q5 Q44 + 21186
—Qg Q4 + Q5 Q7 + Q11
—$Q4382 + Q3 Q14 — Q9 Q46
+86 Q24 — Q3 Q27 — Q9

25



Fierz Relations

Linear-Quadratic Relations:

1 Je
— _ 2
7 = 1 =1 5_1(Qa)

Z = _TP_TxLZ +LXTZ

T = —ZP+CzOX_OzCX

P = -YT+GF -HE
1.0 0 -P G 0 0 Ox O Tx
01 P 0 H| [ o 0. 0 o T,
0 P 1 0 E | 0 0 C C; Ly
-P 0 O 1 F Ck C; 0 O L,

S x BT = BR x TR

26



o O ouw
COowo

TR

BT

BR

BT
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Quadratic Relations (15):

Q2 Q7 — Q148016 — Q3 Q9 — Q5 Q44
Q3 Q5 + Qg Q41 + Q6 Q2 + 2138245
Q2 Qg — Q7 Q14 — Q6 Q13 — Q8 Q45
Q4 Q3 — Q10211 + Q27 Qs + Q1443
Q4 Q5 + Q10029 + Q7 Qg + 2148245
Q4 Q9 + Q10025 + Q2 Qg — Q46243
Q4 Q11 — Q10823 + Q2 Qg — Q168215
Q4 Q14 — Q12802 + Q3 Q43 + Q5 Q45

28

O O O O O © o o



Quadratic Relations:

Qq Q7 — Q12016 + Q3 Qs + 5 Qg
Q4 Qg — 212827 — Qg Q43 — 21185
Q4 Q2 — Q42844 + Q9 Qe + Q11028
Q102 — Q12815 + Q5 Q2 — Q4187
Q10813 + 21228 — Q25 Q16 — 21114
Q10828 + Q128213 — Q3 Q2 + Qg Q7
Q10215 — Q1206 + Q3 Q46 + 29 244

20
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Square Relations(6):
()2 + (s )%+
(Q1a)? + (7 ) +
(6 )% + (Qa)® +

—~ ~~ ~
()
—
(2}

a0

(Q1 )2 — ()% —

(1 )% — ()2 + (Q10)* —
(1 )2+ (Qu )7 — (10)® —
(Q4)2 + (7 )2 — (6)? —
(Q )?+ (3)® — (2 )* —
(R )? — (Q3)* + (2w )* —

(Q10)? + (42)?

(Q2)?
(Q2)?

(Q2)?
(Q15)?
(Q15)?



Bounds on measurements

From

a1



Bounds on measurements

From

(Q6)% + (Q13)? + (28)? + (215)% + 2 (6 15 — Q5 Q13)
= (21)2 4 ()2 — (210)? — (Q12)? £2(21Q — Q10 Q12)

we obtain

a1



Bounds on measurements

From
(Q6)% + (Q13)? + (28)? + (215)% + 2 (6 15 — Q5 Q13)
= (21)2 4 ()2 — (210)? — (Q12)? £2(21Q — Q10 Q12)
we obtain
(Qe £ Q15)” + (6 F 13)® = (1 £ Qu)® — (0 = Q12)? .

a1



Bounds on measurements

From
(Q26)2 + (Q13)? + ()2 + (45)? £ 2 (26 Q15 — Q8 43)
= (21)2 4 ()2 — (210)? — (Q12)? £2(21Q — Q10 Q12)
we obtain
(Qe + Q15)° + (s F 13)? = (U £ Q)% — (1o + Q12)? .
The left hand side of the equation is positive, so is the right
hand side. Therefore
Q1iQ4Z‘Q1oiQ12‘ or 1iZZ‘TiP‘
Other bounds, within the set S, can be derived in the same
way:
1+T>|PtX], 1+P>|X+T|.
We can deduce the bounds *

1432 > PP+ TP

1+72 > ¥24pP?
1L P2 ~ S2_ T2



The BDS rule:
Barker, Donnachie, & Storrow, Nucl. Phys. B95, 347

(1975)

In BDS, the following rule was promulgated:

In order to determine all amplitudes without
discrete ambiguities, one has to measure five
double spin observables along with the four type
S measurements, provided no four double spin
observables are selected from the same set of
BT, BR and TR.

a2



The BDS rule:
Barker, Donnachie, & Storrow, Nucl. Phys. B95, 347

(1975)

In BDS, the following rule was promulgated:

In order to determine all amplitudes without
discrete ambiguities, one has to measure five
double spin observables along with the four type
S measurements, provided no four double spin
observables are selected from the same set of
BT, BR and TR.

Thus, they say nine experiments are required.
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The CT rule:

Chiang & Tabakin Phys. Rev. C 55, 2054 (1997)

In CT, the following revised rule was promulgated:

In order to determine all four amplitudes without
discrete ambiguities, one has to measure eight
carefully selected measurements four double spin
observables along with the four type S
measurements, provided no four double spin
observables are selected from the same set of
BT,BR and TR.

a3



The CT rule:

Chiang & Tabakin Phys. Rev. C 55, 2054 (1997)

In CT, the following revised rule was promulgated:

In order to determine all four amplitudes without
discrete ambiguities, one has to measure eight
carefully selected measurements four double spin
observables along with the four type S
measurements, provided no four double spin
observables are selected from the same set of
BT,BR and TR.

Thus, they say eight “carefully selected" experiments are
required.

a3



Pion Nucleon Elastic Case

Amplitude
T = f1 +ig- n f2
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Pion Nucleon Elastic Case

Amplitude
T = f1 +ig- n f2

Transversity amplitudes

fitih
V2

Cfi—ifh

b
1 V2

b,

Observables
Z(0) = |b1|* + |b2|* =< b|o°|b >

Z(O)P = P = |by |2 — |bo|? = AN2 =< b|o?|b >

Z(9)A = A =2 R(b} by) = 2|bs||ba| cos(f) =< b|o*|b >

Z(0)R = R =2 (b} by) = 2|by||bz| sin(0) =< b|o”|b >

2P = Ay TRI—-Ashkin & Wolfenstein
a4




Fierzing Pion Nucleon Elastic Case

Fierz for SU(2)
3 3
a B _ o, _a _b a B _ o, _a _b
o Ot = Z Ca,b oijog —o0%o’ = Z Ca7b oo
a,b=0 a,b=0

4%x4/2=8 1

0o 0 _ 1 1 2 2 3
Ojj Ost = Ojt Usj+ait Jsj—i—aita

P?+ A%+ R? =1

Thus deduce bounds: |P| < 1and 0 < A% + R? < 1
Complete set: Z, P, A =3 plus 1 for sign of R, for example. The

3
s/

Two Complex Amplitudes In Transversity Space:

> b
012 !
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a5



Fierzing Pion Nucleon Elastic Case

Fierz for SU(2)
3 3
a B _ o, _a _b a B _ o, _a _b
o Ot = Z Ca,b oijog —o0%o’ = Z Ca7b oo
a,b=0 a,b=0

4%x4/2=8 1

0o 0 _ 1 1 2 2 3
Ojj Ost = Ojt Usj+ait Jsj—i—aita

P?+ A%+ R? =1

Thus deduce bounds: |P| < 1and 0 < A% + R? < 1
Complete set: Z, P, A =3 plus 1 for sign of R, for example. The

3
s/

Two Complex Amplitudes In Transversity Space:

> b
012 !

by
a5



Fierzing Pion Nucleon Elastic Case

Fierz for SU(2)
3 3
a B _ o, _a _b a B _ o, _a _b
o Ot = Z Ca,b oijog —o0%o’ = Z Ca7b oo
a,b=0 a,b=0

4%x4/2=8 1

0o 0 _ 1 1 2 2 3
Ojj Ost = Ojt Usj+ait Jsj—i—aita

P?+ A%+ R? =1

Thus deduce bounds: |P| < 1and 0 < A% + R? < 1
Complete set: Z, P, A =3 plus 1 for sign of R, for example. The

3
s/

Two Complex Amplitudes In Transversity Space:

> b
012 !

by
a5



Fierzing Pion Nucleon Elastic Case

Fierz for SU(2)
3 3
a B _ o, _a _b a B _ o, _a _b
o Ot = Z Ca,b oijog —o0%o’ = Z Ca7b oo
a,b=0 a,b=0

4%x4/2=8 1

0o 0 _ 1 1 2 2 3
Ojj Ost = Ojt Usj+ait Jsj—i—aita

P?+ A%+ R? =1

Thus deduce bounds: |P| < 1and 0 < A% + R? < 1
Complete set: Z, P, A =3 plus 1 for sign of R, for example. The

3
s/

Two Complex Amplitudes In Transversity Space:

> b
012 !

by
a5



Complete Double spin measurements

‘X’s’ —> 3 selected measurements,
‘O’s’ —> possible 4th observable to resolve ambiguities.

G X X X X X X X X X X X X X X
H X X X X X X X X

E X X X X X X
F

Ox X (o) O 0 0O X O 0 0 OO
O, X O 0 00O O X 00 OO
Cx (o) X O 0 OO O O X 0 OO
C; o) X O 0 0O O 0O O X OO
Tx O 0O OO X 0 OO O 0 0 O X

T2 O 0O OO O X OO O 0 OO X
Ly O 0O OO OO X O O 0O OO0 O

L, O O OO O O OX O 0 OO o)

B
=]



Complete Double spin measurements

‘X’s’ —> 3 selected measurements,
‘O’s’ —> possible 4th observable to resolve ambiguities.

G

H X X X X X X X X X X X X X X
E X X X X X X X X

F X X X X X X
Ox X (o) (O I o) X O 0 0 OO
O, X OO0 o) O X 00 OO
Cx (o) X o) o) O O X 0 OO
C; o) X (O I o) O 0O O X 0O
Tx o0 O X o) O 0 0 O X

T2 (o) o) X o) O 0 OO X
Lx o) (O I o) X O 0O OO0 O

L, (O I 0) (o) X O 0 OO o)

a7



Complete Double spin measurements

‘X’s’ —> 3 selected measurements,
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Complete Double spin measurements

‘X’s’ —> 3 selected measurements,
‘O’s’ —> possible 4th observable to resolve ambiguities.

G X o) o) o) X O 0 0 OO
H X o) (O I o) O X 00 OO
E o) X (Ol o) O O X 0 OO
F o) X O o) O 0O OX OO

C; X X X X X X
Tx o) O X O O 0O OO0 X O
T2 (O I 0) O X O O OO OX
Lx (O I 0) X O O 0 OO
L, o) o) O X O 0 OO
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Complete Double spin measurements

‘X’s’ —> 3 selected measurements,
‘O’s’ —> possible 4th observable to resolve ambiguities.

G X O O 0 OO X O 0 0 OO
H O X O 0 0O O X 00 OO
E X O 0 0 OO O 0O X 0 OO
F O X 0 0 OO O 00O X OO
Ox O OO0 X 0 OO O 0O OO X O
O, O 0O OO O X 0O O O OO OX
Cx O 0O OO 0 0O X O O 0 OO

C; O 0O OO O O OX O 0 OO

Tx X X X X X X X X X X X X X X
T, X X X X X X X X

Ly X X X X X X
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Complete Double spin measurements

‘X’s’ —> 3 selected measurements,
‘O’s’ —> possible 4th observable to resolve ambiguities.

G X O o) o) X O 0 0 OO
H O X (Ol 0) O X 00 OO
E X O (Ol o) O 0O X 0 OO
F O X O o) O 0O OX OO
Ox (o) O X O O 0O OO X O
O, (O I 0) O X O O OO OX
Cx (O I 0) X O O 0 OO

C; o) o) O X O 0 OO

Tx
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Partial Wave Extraction is made difficult by:
@ Unknown Energy and Angle dependent Overall Phase
@ Cusp and Threshold effects
@ Error bars

Some Observations:
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Partial Wave Extraction is made difficult by:
@ Unknown Energy and Angle dependent Overall Phase
@ Cusp and Threshold effects
@ Error bars

Some Observations:

Determination of unique Underlining dynamics is almost always
limited in QM. Examples: Phase equivalent potentials &
Redundant Inverse scattering solutions

We live with that and instead of theorem we surround the
problem.

Completeness is ultimately a physical result.
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@ The 16 Measurements are related by a measurement
algebra

@ That algebra is equivalent to that of 16 Hermitian 4 x 4
SU(4) group

@ More than 7 experiments are needed due to discrete
ambiguities, which are also described using SU(4) algebra.

@ Constraints and Bounds can be deduced from that algebra

@ Constrains allow for one less experiment needed and is
why CT say 8 and BDS say 9 needed for compete set.

@ Procedures can be generalized to N amplitudes 3

3M. Pichowsky & F. Tabakin; On Complete Meson Electroproduction

Experiment Sets (unpublished)
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Conclusions

Fierzing Observables Yields:

Fierz —> explicit and rigorous relationships between
observables. Of course, such relationships can be derived from
the bilinear structure of the observables, with much effort. That
effort is now replaced by simply invoking the well-known Fierz
rules as a general property. That allows us to avoid much
algebra and to find all relations in one step. There are direct
physical consequences of these relations. If double spin
observables in a type set are known, then the fourth member of
that type is uniquely determined. The fourth measurement is
thus redundant.
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Some Additional references

@ M. Simonius PRL 19,279(1967)

@ "On complete sets of polarization observables," Hartmuth
Arenhovel, Winfried Leidemann, Edward L. Tomusiak .
Nucl.Phys.A641:517-527,1998.

@ Spin degrees and Polarization Observables in
Electromagnetic Reactions Hartmuth Arenhoevel
Workshop on Hadron Physics, AMU, Aligarh, India, Feb.
18-23, 2008
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Thanks for including me!
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