Universal Truths

u.s. defartuent of emenay
oftice of Nuclear Phys

Argonne
national
laborator

Universal Truths

- Spectrum of excited states and transition form factors provide unique information about long-range interaction between light-quarks and distribution of hadron's characterising properties amongst its QCD constituents.
\square Contents Back Eonclusion

Universal Truths

- Spectrum of excited states and transition form factors provide unique information about long-range interaction between light-quarks and distribution of hadron's characterising properties amongst its QCD constituents.
- Dynamical Chiral Symmetry Breaking (DCSB) is most important mass generating mechanism for visible matter in the Universe.
\square Conclusion

Universal Truths

- Spectrum of excited states and transition form factors provide unique information about long-range interaction between light-quarks and distribution of hadron's characterising properties amongst its QCD constituents.
- Dynamical Chiral Symmetry Breaking (DCSB) is most important mass generating mechanism for visible matter in the Universe. Higgs mechanism is irrelevant to light-quarks.
\square

Universal Truths

- Spectrum of excited states and transition form factors provide unique information about long-range interaction between light-quarks and distribution of hadron's characterising properties amongst its QCD constituents.
- Dynamical Chiral Symmetry Breaking (DCSB) is most important mass generating mechanism for visible matter in the Universe. Higgs mechanism is irrelevant to light-quarks.
$0 \begin{gathered}\text { Office of } \\ \text { Science }\end{gathered}$ u.s. demahtment of enenay othice of Nuclear $\mathrm{Ph}_{\mathrm{S}_{\text {sic }}}$
- Running of quark mass entails that calculations at even modest Q^{2} require a Poincaré-covariant approach.

Universal Truths

- Spectrum of excited states and transition form factors provide unique information about long-range interaction between light-quarks and distribution of hadron's characterising properties amongst its QCD constituents.
- Dynamical Chiral Symmetry Breaking (DCSB) is most important mass generating mechanism for visible matter in the Universe. Higgs mechanism is irrelevant to light-quarks.
$0 \begin{aligned} & \text { Office of } \\ & \text { Science }\end{aligned}$ u.s. DIFARTMENT OF EMERAY Running of quark mass entails that calculations at even modest Q^{2} require a Poincaré-covariant approach. Covariance requires existence of quark orbital angular momentum in hadron's rest-frame wave function.
\square Conclusion

Universal Truths

- Spectrum of excited states and transition form factors provide unique information about long-range interaction between light-quarks and distribution of hadron's characterising properties amongst its QCD constituents.
- Dynamical Chiral Symmetry Breaking (DCSB) is most important mass generating mechanism for visible matter in the Universe. Higgs mechanism is irrelevant to light-quarks.
$0 \begin{aligned} & \text { Office of } \\ & \text { Science }\end{aligned}$ U.s. DEFARTMENT OF EmEROY Otice of Nuclear $\mathrm{Ph}_{\mathrm{h}_{S_{i c}}}$
- Challenge: understand relationship between parton properties on the light-front and rest frame structure of hadrons.

Universal Truths

- Spectrum of excited states and transition form factors provide unique information about long-range interaction between light-quarks and distribution of hadron's characterising properties amongst its QCD constituents.
- Dynamical Chiral Symmetry Breaking (DCSB) is most important mass generating mechanism for visible matter in the Universe. Higgs mechanism is irrelevant to light-quarks.
- Challenge: understand relationship between parton properties on the light-front and rest frame structure of hadrons. Problem because, e.g., DCSB - an established keystone of low-energy QCD and the origin of constituent-quark masses - has not been realised in the light-front formulation.

QCD's Challenges

Argonne
national
laborator

QCD's Challenges

- Quark and Gluon Confinement
- No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon

QCD's Challenges

- Quark and Gluon Confinement
- No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon
- Dynamical Chiral Symmetry Breaking
- Very unnatural pattern of bound state masses
- e.g., Lagrangian (pQCD) quark mass is small but ... no degeneracy between $J^{P=+}$ and $J^{P=-}$

QCD's Challenges

- Quark and Gluon Confinement
- No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon
- Dynamical Chiral Symmetry Breaking
- Very unnatural pattern of bound state masses
- e.g., Lagrangian (pQCD) quark mass is small but ... no degeneracy between $J^{P=+}$ and $J^{P=-}$
- Neither of these phenomena is apparent in QCD's Lagrangian yet they are the dominant determining characteristics of real-world QCD.

QCD's Challenges

Understand Emergent Phenomena

- Quark and Gluon Confinement
- No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon
- Dynamical Chiral Symmetry Breaking
- Very unnatural pattern of bound state masses - e.g., Lagrangian (pQCD) quark mass is smalf but ... no degeneracy between $J^{P=+}$ and $J^{P=-}$!
- Neither of these phenomena is apparent in QÇD's Lagrangian yet they are the dominant determining characteristics of real-world QCD.
- QCD - Complex behaviour arises from apparently simple rules

Office of Science . ormantment of smara

\square

Dichotomy of Pion - Goldstone Mode and Bound state

Dichotomy of Pion - Goldstone Mode and Bound state

- How does one make an almost massless particle from two massive constituent-quarks?

Dichotomy of Pion - Goldstone Mode and Bound state

- How does one make an almost massless particle from two massive constituent-quarks?
- Not Allowed to do it by fine-tuning a potential Must exhibit $m_{\pi}^{2} \propto m_{q}$

Current Algebra ... 1968

Dichotomy of Pion

- Goldstone Mode and Bound state
- How does one make an almost massless particle from two massive constituent-quarks?
- Not Allowed to do it by fine-tuning a potential Must exhibit $m_{\pi}^{2} \propto m_{q}$ Current Algebra ... 1968
The correct understanding of pion observables; e.g. mass, decay constant and form factors, requires an approach to contain a
- well-defined and valid chiral limit;
- and an accurate realisation of dynamical chiral symmetry breaking.

Dichotomy of Pion

- Goldstone Mode and Bound state
- How does one make an almost massless particle from two massive constituent-quarks?
- Not Allowed to do it by fine-tuning a potential Must exhibit $m_{\pi}^{2} \propto m_{q}$ Current Algebra ... 1968
The correct understanding of pion observables; e.g. mass, decay constant and form factors, requires an approach to contain a
- well-defined and valid chiral limit;
- and an accurate realisation of dynamical chiral symmetry breaking.

Argonne
NATIONAL
LABORATORY
\square
Highly Nontrivial

What's the Problem?

What's the Problem?

- Minimal requirements
- detailed understanding of connection between Current-quark and Constituent-quark masses;
- and systematic, symmetry preserving means of realising this connection in bound-states.

What's the Problem?

- Minimal requirements
- detailed understanding of connection between Current-quark and Constituent-quark masses;
- and systematic, symmetry preserving means of realising this connection in bound-states.
- Means ... must calculate hadron wave functions
- Can't be done using perturbation theory

What's the Problem?

- Minimal requirements
- detailed understanding of connection between Current-quark and Constituent-quark masses;
- and systematic, symmetry preserving means of realising this connection in bound-states.
- Means ... must calculate hadron wave functions
- Can't be done using perturbation theory
- Why problematic? Isn't same true in quantum mechanics?

What's the Problem?

- Minimal requirements
- detailed understanding of connection between Current-quark and Constituent-quark masses;
- and systematic, symmetry preserving means of realising this connection in bound-states.
- Means ... must calculate hadron wave functions
- Can't be done using perturbation theory
- Why problematic? Isn't same true in quantum mechanics?
- Differences!
national

What's the Problem? Relativistic QFT!

- Minimal requirements
- detailed understanding of connection between Current-quark and Constituent-quark masses;
- and systematic, symmetry preserving means of realising this connection in bound-states.
- Differences!
- Here relativistic effects are crucial - virtual particles, quintessence of Relativistic Quantum Field Theory must be included

What's the Problem?
 Relativistic QFT!

- Minimal requirements
- detailed understanding of connection between Current-quark and Constituent-quark masses;
- and systematic, symmetry preserving means of realising this connection in bound-states.
- Differences!
- Here relativistic effects are crucial - virtual particles, quintessence of Relativistic Quantum Field Theory must be included
- Interaction between quarks - the Interquark "Potential" unknown throughout $>98 \%$ of a hadron's volume

Intranucleon Interaction

Intranucleon Interaction

Intranucleon Interaction

Contents Back Conclusior

What is the Intranucleon Interaction?

The question must be rigorously defined, and the answer mapped out using experiment and theory.

98% of the volume
\square
\square Conclusion

Dyson-Schwinger Equations

Dyson-Schwinger Equations Dressed-Quark Propagator

Dyson-Schwinger Equations Dressed-Quark Propagator

$$
S(p)=\frac{Z\left(p^{2}\right)}{i \gamma \cdot p+M\left(p^{2}\right)}
$$

Dyson-Schwinger Equations Dressed-Quark Propagator

$$
S(p)=\frac{Z\left(p^{2}\right)}{i \gamma \cdot p+M\left(p^{2}\right)}
$$

Gap Equation

- Gap Equation's Kernel Enhanced on IR domain
\Rightarrow IR Enhancement of $M\left(p^{2}\right)$

Dyson-Schwinger Equations Dressed-Quark Propagator

$$
S(p)=\frac{Z\left(p^{2}\right)}{i \gamma \cdot p+M\left(p^{2}\right)}
$$

Gap Equation

- Gap Equation's Kernel Enhanced on IR domain
\Rightarrow IR Enhancement of $M\left(p^{2}\right)$

Euclidean Constituent-Q
Mass: $M_{f}^{E}: p^{2}=M\left(p^{2}\right)^{2}$

flavour	u / d	s	c	b
$\frac{M^{E}}{m_{\zeta}}$	$\sim 10^{2}$	~ 10	~ 1.5	~ 1.1

Contents
\square Back
Conclusior

Dyson-Schwinger Equations Dressed-Quark Propagator

$$
S(p)=\frac{Z\left(p^{2}\right)}{i \gamma \cdot p+M\left(p^{2}\right)}
$$

Gap Equation

- Gap Equation's Kernel Enhanced on IR domain
\Rightarrow IR Enhancement of $M\left(p^{2}\right)$

flavour	u / d	s	c	b
$\frac{M^{E}}{m_{\zeta}}$	$\sim 10^{2}$	~ 10	~ 1.5	~ 1.1

Predictions confirmed in numerical simulations of lattice-QCD

Frontiers of Nuclear Science: A Long Range Plan (2007)

u.s. defantuent of emenay
otice of Nuclear $\mathrm{Ph}_{\mathrm{H}_{S_{i c s}}}$

Argonne
national

Frontiers of Nuclear Science:

Theoretical Advances

Frontiers of Nuclear Science: Theoretical Advances

Office of
Science
u.s. defantment of emenay
oftice of Nuclear P_{h} sic

Frontiers of Nuclear Science:

Theoretical Advances

Mass from nothing.

In QCD a quark's effective mass depends on its momentum. The function describing this can be calculated and is depicted here. Numerical simulations of lattice QCD (data, at two different bare masses) have confirmed model predictions (solid curves) that the vast bulk of the constituent mass of a light quark comes from a cloud of gluons that are dragged along by the quark as it propagates. In this way, a quark that appears to be absolutely

Office of Science 1. difartment of enenay office of Nuclear Ph

Argonne massless at high energies ($m=0$, red curve) acquires a large constituent mass at low energies.

Frontiers of Nuclear Science:

Theoretical Advances

Mass from nothing.

In QCD a quark's effective mass depends on its momentum. The function describing this can be calculated and is depicted here. Numerical simulations of lattice QCD (data, at two different bare masses) have confirmed model predictions (solid curves) that the vast bulk of the constituent mass of a light quark comes from a cloud of gluons that are dragged along by the quark as it propagates. In this way, a quark that appears to be absolutely

Office of Science

Argonne massless at high energies ($m=0$, red curve) acquires a large constituent mass at low energies.

(0) Office of
 Science

Argonne

(6) office of
 Science
 - Established understanding of two- and three-point functions

Argonne
national
laboratory

Hadrons

Office of
3. defanttient of inera

Office of Nuclear $\mathrm{Ph}_{\mathrm{h}_{\text {Sics }}}$

- Established understanding of two- and three-point functions
- What about bound states?
\square

Hadrons

- Without bound states, Comparison with experiment is impossible

Hadrons

- Without bound states, Comparison with experiment is impossible
- They appear as pole contributions to $n \geq 3$-point colour-singlet Schwinger functions

Hadrons

- Without bound states, Comparison with experiment is impossible
- Bethe-Salpeter Equation

QFT Generalisation of Lippmann-Schwinger Equation.

Hadrons

- Without bound states, Comparison with experiment is impossible
- Bethe-Salpeter Equation

QFT Generalisation of Lippmann-Schwinger Equation.

- What is the kernel, K ?

Argonne
national
laboratory or

Confinement

u.s. defartuent of emenay
office of Nuclear $\mathrm{Ph}_{\text {l }}$ s

Argonne
national
laboratory

Confinement

- Infinitely Heavy Quarks ... Picture in Quantum Mechanics

$$
\begin{array}{r}
\boldsymbol{V}(\boldsymbol{r})=\boldsymbol{\sigma} \boldsymbol{r}-\frac{\boldsymbol{\pi}}{\mathbf{1 2}} \frac{\mathbf{1}}{\boldsymbol{r}} \\
\sigma \sim 470 \mathrm{MeV}
\end{array}
$$

Necco \& Sommer he-la/0108008

Argonne
national

Confinement

- Illustrate this in terms of the action density ... analogous to plotting the Force $=F_{\bar{Q} Q}(r)=\sigma+\frac{\pi}{12} \frac{1}{r^{2}}$

Bali, et al. he-la/0512018

Confinement

- What happens in the real world; namely, in the presence of light-quarks?

Confinement

- What happens in the real world; namely, in the presence of light-quarks? No one knows \ldots but $\bar{Q} Q+2 \times \bar{q} q$

Confinement

- What happens in the real world; namely, in the presence of light-quarks? No one knows \ldots but $\bar{Q} Q+2 \times \bar{q} q$
"The breaking of the string appears to be an instantaneous

Office of Science us. defartment of inthay

\square Conclusion

Confinement

- What happens in the real world; namely, in the presence of light-quarks? No one knows \ldots but $\bar{Q} Q+2 \times \bar{q} \boldsymbol{q}$
"The breaking of the string appears to be an instantaneous process, with de-localized light quark pair creation."

Office of Science u.s. offartment of enenay

Therefore ... No
information on potential between light-quarks.

What is the light-quark Long-Range Potential?

THG GRANK

What is the light-quark Long-Range Potential?

Potential between static (infinitely heavy) quarks measured in simulations of lattice-QCD is not related in any simple way to the light-quark interaction

Bethe-Salpeter Kernel

u.s. defartment of enemay
oftice of Nuclear Phys

Argonne
national
laborator

Bethe-Salpeter Kernel

- Axial-vector Ward-Takahashi identity

$$
\begin{aligned}
P_{\mu} \Gamma_{5 \mu}^{l}(k ; P)= & \mathcal{S}^{-1}\left(k_{+}\right) \frac{1}{2} \lambda_{f}^{l} i \gamma_{5}+\frac{1}{2} \lambda_{f}^{l} i \gamma_{5} \mathcal{S}^{-1}\left(k_{-}\right) \\
& -M_{\zeta} i \Gamma_{5}^{l}(k ; P)-i \Gamma_{5}^{l}(k ; P) M_{\zeta}
\end{aligned}
$$

QFT Statement of Chiral Symmetry

Bethe-Salpeter Kernel

- Axial-vector Ward-Takahashi identity

Bethe-Salpeter Kernel

- Axial-vector Ward-Takahashi identity

Bethe-Salpeter Kernel

- Axial-vector Ward-Takahashi identity

$$
\begin{aligned}
P_{\mu}\left(\Gamma_{5 \mu}^{l}(k ; P)=\right. & \mathcal{S}^{-1}\left(k_{+}\right) \frac{1}{2} \lambda_{f}^{l} i \gamma_{5}+\frac{1}{2} \lambda_{f}^{l} i \gamma_{5} \mathcal{S}^{-1} \\
& -M_{\zeta} i \Gamma_{5}^{l}(k ; P)-i \Gamma_{5}^{l}(k ; P) M_{\zeta}
\end{aligned}
$$

Satisfies BSE
Kernels very different
but must be intimately related

- Relation must be preserved by truncation

Argonne
national

Bethe-Salpeter Kernel

- Axial-vector Ward-Takahashi identity

- Relation must be preserved by truncation
- Nontrivial constraint

Bethe-Salpeter Kernel

Axial-vector Ward-Takahashil identity

$$
\begin{aligned}
& \left.P_{\mu} \Gamma_{5 \mu}^{l}(k ; P)\right)=\mathcal{S}^{-1}\left(k_{+}\right) \frac{1}{2} \lambda_{f}^{l} \\
& -M_{\zeta} i \Gamma_{5}^{l}(k ; 1 \\
& \text { Kernels very different }
\end{aligned}
$$

but must be intimately related

- Relation must be preserved by truncation
- Failure \Rightarrow Explicit Violation of QCD's Chiral Symmetry

Persistent Challenge

Persistent Challenge

- Infinitely Many Coupled Equations

Persistent Challenge

- Infinitely Many Coupled Equations

- Coupling between equations necessitates truncation

Persistent Challenge

- Infinitely Many Coupled Equations

- Coupling between equations necessitates truncation
- Weak coupling expansion \Rightarrow Perturbation Theory

Persistent Challenge

- Infinitely Many Coupled Equations

- Coupling between equations necessitates truncation
- Weak coupling expansion \Rightarrow Perturbation Theory Not useful for the nonperturbative problems in which we're interested

Office of
Science

Persistent Challenge

- Infinitely Many Coupled Equations
- There is at least one systematic nonperturbative, symmetry-preserving truncation scheme H.J. Munczek Phys. Rev. D 52 (1995) 4736

Dynamical chiral symmetry breaking, Goldstone's theorem and the consistency of the Schwinger-Dyson and Bethe-Salpeter Equations
A. Bender, C. D. Roberts and L. von Smekal, Phys.

Lett. B 380 (1996) 7
Goldstone Theorem and Diquark Confinement Beyond
Rainbow Ladder Approximation

Office of
Science
ent of enenay
Otice of Nuclear Ph_{h} s

Persistent Challenge

- Infinitely Many Coupled Equations
- There is at least one systematic nonperturbative, symmetry-preserving truncation scheme
- Has Enabled Proof of EXACT Results in QCD

Persistent Challenge

- Infinitely Many Coupled Equations
- There is at least one systematic nonperturbative, symmetry-preserving truncation scheme
- Has Enabled Proof of EXACT Results in QCD
- And Formulation of Practical Phenomenological Tool to
- Illustrate Exact Results
\square

Persistent Challenge

- Infinitely Many Coupled Equations
- There is at least one systematic nonperturbative, symmetry-preserving truncation scheme
- Has Enabled Proof of EXACT Results in QCD
- And Formulation of Practical Phenomenological Tool to
- Illustrate Exact Results
- Make Predictions with Readily Quantifiable Errors

Radial Excitations

 \& Chiral Symmetry

 \& Chiral Symmetry}

Radial Excitations
 \& Chiral Symmetry

(Maris, Roberts, Tandy
nu-th/9707003)

$$
f_{H} m_{H}^{2}=-\rho_{\zeta}^{H} \quad \mathcal{M}_{H}
$$

u.s. Difantment of emenay
oftice of Nuclear Ph ${ }_{\text {sic }}$

Argonne
national

Radial Excitations
 \& Chiral Symmetry

(Maris, Roberts, Tandy
nu-th/9707003)

- Mass ${ }^{2}$ of pseudoscalar hadron

Radial Excitations
 \& Chiral Symmetry

(Maris, Roberts, Tandy
nu-th/9707003)

- Sum of constituents' current-quark masses
- e.g., $T^{K^{+}}=\frac{1}{2}\left(\lambda^{4}+i \lambda^{5}\right)$

Radial Excitations

(Maris, Roberts, Tandy nu-th/9707003)

- Pseudovector projection of BS wave function at $x=0$
- Pseudoscalar meson's leptonic decay constant

Radial Excitations
 \& Chiral Symmetry

(Maris, Roberts, Tandy
nu-th/9707003)

- Pseudoscalar projection of BS wave function at $x=0$

Radial Excitations

(Maris, Roberts, Tandy
nu-th/9707003)

- Light-quarks; i.e., $m_{q} \sim 0$
- $f_{H} \rightarrow f_{H}^{0} \& \rho_{\zeta}^{\boldsymbol{H}} \rightarrow \frac{-\langle\bar{q} q\rangle_{\zeta}^{0}}{f_{\boldsymbol{H}}^{0}}$, Independent of m_{q}

Hence $m_{H}^{2}=\frac{-\langle\bar{q} q\rangle_{\zeta}^{0}}{\left(f_{H}^{0}\right)^{2}} m_{q} \ldots$ GMOR relation, a corollary

Argonne

Radial Excitations
 \& Chiral Symmetry

(Maris, Roberts, Tandy
nu-th/9707003)

- Light-quarks; i.e., $m_{q} \sim 0$
- $f_{H} \rightarrow f_{\boldsymbol{H}}^{0} \& \rho_{\zeta}^{\boldsymbol{H}} \rightarrow \frac{-\langle\bar{q} q\rangle_{\zeta}^{0}}{f_{\boldsymbol{H}}^{0}}$, Independent of m_{q}

Hence $m_{H}^{2}=\frac{-\langle\bar{q} q\rangle_{\zeta}^{0}}{\left(f_{H}^{0}\right)^{2}} m_{q} \ldots$ GMOR relation, a corollary

- Heavy-quark + light-quark
$\Rightarrow f_{H} \propto \frac{\mathbf{1}}{\sqrt{\boldsymbol{m}_{\boldsymbol{H}}}}$ and $\rho_{\zeta}^{H} \propto \sqrt{\boldsymbol{m}_{\boldsymbol{H}}}$
Hence, $\boldsymbol{m}_{\boldsymbol{H}} \propto \boldsymbol{m}_{\boldsymbol{q}}$

. . . QCD Proof of Potential Model result | Contents | Back | Conclusion |
| :--- | :--- | :--- |

Radial Excitations \& Chiral Symmetry

- Valid for ALL Pseudoscalar mesons

Radial Excitations \& Chiral Symmetry

- Valid for ALL Pseudoscalar mesons
- $\rho_{H} \Rightarrow$ finite, nonzero value in chiral limit, $\mathcal{M}_{H} \rightarrow 0$

Radial Excitations \& Chiral Symmetry

Höll, Krassnigg, Roberts

nu-th/0406030

$$
f_{H} \quad m_{H}^{2}=-\rho_{\zeta}^{H} \quad \mathcal{M}_{H}
$$

- Valid for ALL Pseudoscalar mesons
- $\rho_{H} \Rightarrow$ finite, nonzero value in chiral limit, $\mathcal{M}_{H} \rightarrow 0$
- "radial" excitation of π-meson, not the ground state, so $m_{\pi_{n \neq 0}}^{2}>m_{\pi_{n=0}}^{2}=0$, in chiral limit

Radial Excitations \& Chiral Symmetry

Höll, Krassnigg, Roberts

nu-th/0406030

$$
f_{H} \quad m_{H}^{2}=-\rho_{\zeta}^{H} \quad \mathcal{M}_{H}
$$

- Valid for ALL Pseudoscalar mesons
- $\rho_{H} \Rightarrow$ finite, nonzero value in chiral limit, $\mathcal{M}_{H} \rightarrow 0$
- "radial" excitation of π-meson, not the ground state, so $m_{\pi_{n \neq 0}}^{2}>m_{\pi_{n=0}}^{2}=0$, in chiral limit
- $\Rightarrow f_{H}=0$

ALL pseudoscalar mesons except $\pi(140)$ in chiral limit

Argonne
national
\square

Radial Excitations \& Chiral Symmetry

Höll, Krassnigg, Roberts

nu-th/0406030

$$
f_{H} \quad m_{H}^{2}=-\rho_{\zeta}^{H} \quad \mathcal{M}_{H}
$$

- Valid for ALL Pseudoscalar mesons
- $\rho_{H} \Rightarrow$ finite, nonzero value in chiral limit, $\mathcal{M}_{H} \rightarrow 0$
- "radial" excitation of π-meson, not the ground state, so $m_{\pi_{n \neq 0}}^{2}>m_{\pi_{n=0}}^{2}=0$, in chiral limit
- $\Rightarrow f_{H}=0$

ALL pseudoscalar mesons except $\pi(140)$ in chiral limit

- Dynamical Chiral Symmetry Breaking
- Goldstone's Theorem impacts upon every pseudoscalar meson

Radial Excitations
 \& Lattice-QCD

McNeile and Michael he-la/0607032

Radial Excitations

McNeile and Michael he-la/0607032

\& Lattice-QCD

- When we first heard about [this result] our first reaction was a combination of "that is remarkable" and "unbelievable".

Radial Excitations

McNeile and Michael he-la/0607032

\& Lattice-QCD

- When we first heard about [this result] our first reaction was a combination of "that is remarkable" and "unbelievable".
- CLEO: $\tau \rightarrow \pi(1300)+\nu_{\tau}$
$\Rightarrow f_{\pi_{1}}<8.4 \mathrm{MeV}$
Diehl \& Hiller he-ph/0105194

Radial Excitations
 \& Lattice-QCD

McNeile and Michael he-la/0607032

- When we first heard about [this result] our first reaction was a combination of "that is remarkable" and "unbelievable".
- CLEO: $\tau \rightarrow \pi(1300)+\nu_{\tau}$ $\Rightarrow f_{\pi_{1}}<8.4 \mathrm{MeV}$ Diehl \& Hiller he-ph/0105194
- Lattice-QCD check:
$16^{3} \times 32$, $a \sim 0.1 \mathrm{fm}$, two-flavour, unquenched

$$
\Rightarrow \frac{f_{\pi_{1}}}{f_{\pi}}=0.078(93)
$$

Radial Excitations
 \& Lattice-QCD

McNeile and Michael he-la/0607032

- When we first heard about [this result] our first reaction was a combination of "that is remarkable" and "unbelievable".
- CLEO: $\tau \rightarrow \pi(1300)+\nu_{\tau}$ $\Rightarrow f_{\pi_{1}}<8.4 \mathrm{MeV}$ Diehl \& Hiller he-ph/0105194
- Lattice-QCD check:

Office of
Science
35%

Argonne
NATIONAL
$16^{3} \times 32$, $a \sim 0.1 \mathrm{fm}$, two-flavour, unquenched

$$
\Rightarrow \frac{f_{\pi_{1}}}{f_{\pi}}=0.078(93)
$$

- Full ALPHA formulation is required to see suppression, because PCAC relation is at the heart of the conditions imposed for improvement (determining coefficients of imrelevant operators)

Radial Excitations
 \& Lattice-QCD

McNeile and Michael he-la/0607032

- When we first heard about [this result] our first reaction was a combination of "that is remarkable" and "unbelievable".
- CLEO: $\tau \rightarrow \pi(1300)+\nu_{\tau}$ $\Rightarrow f_{\pi_{1}}<8.4 \mathrm{MeV}$ Diehl \& Hiller he-ph/0105194
- Lattice-QCD check:

Office of
Science

Argonne
$16^{3} \times 32$, $a \sim 0.1 \mathrm{fm}$, two-flavour, unquenched

$$
\Rightarrow \frac{f_{\pi_{1}}}{f_{\pi}}=0.078(93)
$$

- The suppression of $f_{\pi_{1}}$ is a useful benchmark that can be used to tune and validate lattice QCD techniques that try to determine the

Pion Form Factor

Procedure Now Straightforward

Pion Form Factor

- Solve Gap Equation
\Rightarrow Dressed-Quark Propagator, $S(p)$

Pion Form Factor

- Use that to Complete Bethe Salpeter Kernel, K
- Solve Homogeneous Bethe-Salpeter Equation for Pion Bethe-Salpeter Amplitude, Γ_{π}

Pion Form Factor

- Use that to Complete Bethe Salpeter Kernel, K
- Solve Homogeneous Bethe-Salpeter Equation for Pion Bethe-Salpeter Amplitude, Γ_{π}
- Solve Inhomogeneous Bethe-Salpeter Equation for Dressed-Quark-Photon Vertex, Γ_{μ}

Pion Form Factor

- Now have all elements for Impulse Approximation to Electromagnetic Pion Form factor

Argonne
national
laboratory

Pion Form Factor

- Now have all elements for Impulse Approximation to Electromagnetic Pion Form factor

Calculated Pion Form Factor

Calculation first published in 1999; No Parameters Varied

Numerical method improved in 2005

Argonne

Calculated Pion Form Factor

Calculation first published in 1999; No Parameters Varied

Numerical method improved in 2005'

Timelike Pion Form Factor

First

$A b$ initio calculation into
 timelike region. Deeper than ground-state ρ-meson poleTimelike Pion Form Factor

Ab initio calculation into timelike region. Deeper than ground-state ρ-meson poleTimelike Pion Form Factor

\qquad Craig Roberts: Unifying description of mesons and baryons

Ab initio calculation into

 timelike region. Deeper thanground-state ρ-meson poleTimelike Pion Form Factor
ρ-meson not put in "by hand" - generated dynamically as a boundstate of dressed-quark and dressed-antiquark

\square
\square

Pion Form Factors

u.s. defantment of enerar
oftice of Nuclear Ph $h_{S_{i_{c_{s}}}}$

Argonne
national
laboratory

Pion Form Factors

- There is a sense in which it is easy to fabricate a model that can reproduce the elastic electromagnetic pion form factor
\square

Pion Form Factors

- There is a sense in which it is easy to fabricate a model that can reproduce the elastic electromagnetic pion form factor
- However, a veracious description of the pion will simultaneously predict the elastic electromagnetic form factor, $F_{\pi}\left(Q^{2}\right)$ AND the $\gamma^{*} \pi \rightarrow \gamma$ transition form factor

Pion Form Factors

Infidelity without simultaneity

- There is a sense in which it is easy to fabricate a model that can reproduce the elastic electromagnetic pion form factor
- However, a veracious description of the pion will simultaneously predict the elastic electromagnetic form factor, $F_{\pi}\left(Q^{2}\right)$ AND the $\gamma^{*} \pi \rightarrow \gamma$ transition form factor

Office of Science

(2u9

Argonne

- The latter is connected with the Abelian anomaly therefore fundamentally connected with chiral symmetry and its dynamical breaking - no mere model can successfully describe this without fine tuning

Pion Form Factors

Infidelity without simultaneity

- There is a sense in which it is easy to fabricate a model that can reproduce the elastic electromagnetic pion form factor
- However, a veracious description of the pion will simultaneously predict the elastic electromagnetic form factor, $F_{\pi}\left(Q^{2}\right)$ AND the $\gamma^{*} \pi \rightarrow \gamma$ transition form factor

Office of Science ment of emenay

- The latter is connected with the Abelian anomaly therefore fundamentally connected with chiral symmetry and its dynamical breaking - no mere model can successfully describe this without fine tuning
- Must similarly require prediction of $\gamma^{*} \pi \rightarrow \pi \pi$ and all other anomalous processes

Answer for the pion

Answer for the pion

Two \rightarrow Infinitely many ...

\square

Answer for the pion

Office of
Science
Science
u.s. defartument of inenay
of fice of Nuclear $P h_{1} s_{i_{i_{s}}}$

Answer for the pion

Two \rightarrow Infinitely many ...

 Handle that properly in quantum field theory

 oftice of Nuclear $P h_{i s i_{i c s}}$
momentum
-dependent dressing

\square
\square Conclusion

Answer for the pion

\square First

New Challenges

u.s. difantment of inenay
oftice of Nuclear $P_{h y s}$

Argonne
national
laboratory

New Challenges

- Next Steps ... Applications to excited states and axial-vector mesons, e.g., will improve understanding of confinement interaction between light-quarks.

New Challenges

- Next Steps ... Applications to excited states and axial-vector mesons, e.g., will improve understanding of confinement interaction between light-quarks.
- Move on to the problem of a symmetry preserving treatment of hybrids and exotics.

\square | Contents | Back | Conclusior |
| :--- | :--- | :--- |

New Challenges

- Another Direction ... Also want/need information about three-quark systems

New Challenges

- Another Direction ... Also want/need information about three-quark systems
- With this problem ... most wide-ranging studies employ expertise familiar from meson applications circa ~ 1995.

New Challenges

- Another Direction ... Also want/need information about three-quark systems
- With this problem ... most wide-ranging studies employ expertise familiar from meson applications circa ~ 1995.
- Namely ... Model-building and Phenomenology, constrained by the DSE results outlined already.

New Challenges

- Another Direction ... Also want/need information about three-quark systems
- With this problem ... most wide-ranging studies employ expertise familiar from meson applications circa ~ 1995.
- However, that is beginningto change...

Office of
Science 3. defabthent of eneagy
oftice of Nuclear $P h_{1 / 2}$

\square
\square

New Challenges

- Another Direction ... Also want/need information about three-quark systems
- With this problem ... most wide-ranging studies employ expertise familiar from meson applications circa ~ 1995.
- However, that is beginningto change...

(1)

Three-body Problem?

Three-body Problem?

- What is the picture in quantum field theory?

Office of
Science
4. ompartment of enenay

Ofice of Nuclear $\mathrm{Ph}_{\mathrm{h}_{\mathrm{SiCl}_{\mathrm{C}}}}$

Argonne
national

Nucleon ...

Three-body Problem?

- What is the picture inquantum field theory?
- Three \rightarrow infinitely many!
\square

Unifying Study of Mesons and Baryons

us. ompantment of enenay
office of Nuclear Phisics

Argonne
national
laborator

Unifying Study of Mesons and Baryons

- How does one incorporate dressed-quark mass function, $M\left(p^{2}\right)$, in study of baryons?

Unifying Study of Mesons and Baryons

- How does one incorporate dressed-quark mass function, $\boldsymbol{M}\left(\boldsymbol{p}^{2}\right)$, in study of baryons? Behaviour of $M\left(p^{2}\right)$ is essentially a quantum field theoretical effect.

Unifying Study

 of Mesons and Baryons- How does one incorporate dressed-quark mass function, $M\left(\boldsymbol{p}^{2}\right)$, in study of baryons? Behaviour of $M\left(p^{2}\right)$ is essentially a quantum field theoretical effect.
- In quantum field theory a nucleon appears as a pole in a sixpoint quark Green function.
\square Conclusior

Unifying Study

 of Mesons and Baryons- How does one incorporate dressed-quark mass function, $M\left(\boldsymbol{p}^{2}\right)$, in study of baryons? Behaviour of $M\left(p^{2}\right)$ is essentially a quantum field theoretical effect.
- In quantum field theory a nucleon appears as a pole in a sixpoint quark Green function.
- Residue is proportional to nucleon's Faddeev amplitude
\square

Unifying Study

 of Mesons and Baryons- How does one incorporate dressed-quark mass function, $\boldsymbol{M}\left(\boldsymbol{p}^{2}\right)$, in study of baryons? Behaviour of $M\left(p^{2}\right)$ is essentially a quantum field theoretical effect.
- In quantum field theory a nucleon appears as a pole in a sixpoint quark Green function.
- Residue is proportional to nucleon's Faddeev amplitude
- Poincaré covariant Faddeev equation sums all possible exchanges and interactions that can take place between three dressed-quarks
\square Conclusion

Unifying Study

of Mesons and Baryons

- How does one incorporate dressed-quark mass function, $M\left(p^{2}\right)$, in study of baryons? Behaviour of $M\left(p^{2}\right)$ is essentially a quantum field theoretical effect.
- In quantum field theory a nucleon appears as a pole in a sixpoint quark Green function.
- Residue is proportional to nucleon's Faddeev amplitude
- Poincaré covariant Faddeev equation sums all possible exchanges and interactions that can take place between three dressed-quarks
- Tractable equation is founded on observation that an interaction which describes colour-singlet mesons also generates quark-quark (diquark) correlations in the colour- $\overline{3}$ (antitriplet) channel

Faddeev equation

Faddeev equation

Faddeev equation

- Linear, Homogeneous Matrix equation
- Yields wave function (Poincaré Covariant Faddeev Amplitude) that describes quark-diquark relative motion within the nucleon
- Scalar and Axial-Vector Diquarks ... In Nucleon’s Rest Frame Amplitude has ...s-, $p-\& d$-wave correlations

Diquark correlations

(0) Office of Science u. difahtment of eneray

 Argonne
 national Laboratory

QUARK-QUARK
\square

- Same interaction that

Diquark correlations

describes mesons also generates three coloured quark-quark correlations: blue-red, blue-green, green-red

- Confined ... Does not escape from within baryo
- Scalar is isosinglet, Axial-vector is isotriplet
- DSE and lattice-QCD
$m_{[u d]_{0+}}=0.74-0.82$
$m_{(u u)_{1+}}=m_{(u d)_{1+}}=m_{(d d)_{1+}}=0.95-1.02$
\square

Ab-initio study of mesons \& nucleons

u.s. defantment of enenay
office of Nuclear Ph ${ }_{\text {sic }}$

Argonne
national
laborator

Argonne
national

- Leading-order truncation of DSEs - rainbow-ladder
- Leading-order truncation of DSEs - rainbow-ladder
- Corrections vanish with increasing current-quark mass
- \Rightarrow rainbow-ladder exact in heavy-quark limit
- Leading-order truncation of DSEs - rainbow-ladder
- Corrections vanish with increasing current-quark mass

。 \Rightarrow rainbow-ladder exact in heavy-quark limit

- However, at physical light-quark mass, corrections to observables not protected by symmetries: uniformly $\approx 35 \%$
- Roughly 50/50-split between nonresonant and resonant (pseudoscalar meson loop) contributions
\square Conclusion
- Leading-order truncation of DSEs - rainbow-ladder
- Corrections vanish with increasing current-quark mass
- \Rightarrow rainbow-ladder exact in heavy-quark limit
- However, at physical light-quark mass, corrections to observables not protected by symmetries: uniformly $\approx 35 \%$
- Roughly 50/50-split between nonresonant and resonant (pseudoscalar meson loop) contributions
- Symmetry preserving and systematic approach can elucidate and account for these effects
- Leading-order truncation of DSEs - rainbow-ladder
- Corrections vanish with increasing current-quark mass
- \Rightarrow rainbow-ladder exact in heavy-quark limit
- However, at physical light-quark mass, corrections to observables not protected by symmetries: uniformly $\approx 35 \%$
- Roughly 50/50-split between nonresonant and resonant (pseudoscalar meson loop) contributions
- Symmetry preserving and systematic approach can elucidate and account for these effects
- Use this knowledge to constrain interaction in infrared
- Interaction in ultraviolet predicted by perturbative expansion of DSEs

of mesons \& nucleons

Conclusion

- Rainbow-Ladder DSE result

$$
m_{\mathbb{T}}^{2}\left[G e V^{2}\right]
$$

one parameter for IR - "confinement radius"

Results insensitive to value on material domain

- Numerical simulations of lattice-QCD
- Rainbow-Ladder DSEI result $\quad \begin{gathered}0.0 \\ m_{\pi}^{2} \\ {\left[\mathrm{GeV}^{2}\right]}\end{gathered}$ one parameter for IR + "confinemeṇt radius" Results insensitive to value on material domain
- Numerical simulation's of lattice-QCD
- Precisely the same interaction

Eichmann et al.

- arXiv:0802.1948 [nucl-th]
- arXiv:0810.1222 [nucl-th]

Ab-initio study of mesons \& nucleons

- Precisely the same interaction
- Same ρ-meson curve

- Precisely the same interaction
- Same ρ-meson curve
- m_{π}^{2}-dependence of 0^{+}and 1^{+}diquark masses
- "unobservable" - show marked sensitivity to single model parameter; viz., confinement radius

- Precisely the same interaction
- Same ρ-meson curve
- m_{π}^{2}-dependence of 0^{+}and 1^{+}diquark masses
- "unobservable" - show marked sensitivity to single model parameter; viz., confinement radius
- But... $\left[m_{a v}-m_{s c}\right], m_{\rho}$ \& $\boldsymbol{M}_{\boldsymbol{N}} \ldots$ are independent of that parameter

- Parameter-independent RL-DSE predictions, with veracious description of Goldstone mode
\square
- Parameter-independent RL-DSE predictions, with veracious description of Goldstone mode
- DSE and lattice agree on heavy-quark domain

- Parameter-independent RL-DSE predictions, with veracious description of Goldstone mode
- DSE and lattice agree on heavy-quark domain
- Prediction: at physical m_{π}^{2}, $M_{N}^{\text {quark-core }}=1.26(2) \mathrm{GeV}$ cf. FRR+lattice-QCD, $M_{N}^{\text {quark-core }}=1.27(2) \mathrm{GeV}$
\Rightarrow subleading corrections, including 0^{-}-meson loops, $\delta M_{N}=-320 \mathrm{MeV}$,

- Bethe-Salpeter \& Faddeev equations built from same
RG-improved rainbow-ladder interaction

- Bethe-Salpeter \& Faddeev equations built from same RG-improved rainbow-ladder interaction
- Simultaneous calculation of baryon \& meson properties, \& prediction of their correlation ${ }^{1}$

of mesons \& nucleons

- Bethe-Salpeter \& Faddeev equations built from same RG-improved rainbow-ladder interaction
- Simultaneous calculation of baryon \& meson properties, \& prediction of their correlation ${ }^{1}$
- Continuum prediction for evolution of $m_{\rho} \& M_{N}$ with quantity that can methodically ${ }_{0.8}$ be connected with the current-quark mass in QCD

- Bethe-Salpeter \& Faddeev equations built from same RG-improved rainbow-ladder interaction
- Simultaneous calculation of baryon \& meson properties, \& prediction of their correlation ${ }^{1}$
- Continuum prediction for evolution of $m_{\rho} \& M_{N}$ with quantity that can methodically ${ }_{0.8}$ be connected with the current-quark mass in QCD

- Systematically improvable

Dimensionless product: $r_{\pi} f_{\pi}$

u.s. difahthent of enenay
office of Nuclear Ph ${ }_{\text {sic }}$

Argonne
national
laborator

Dimensionless product: $r_{\pi} f_{\pi}$

u.s. defahtment of anenay
oftice of Nuclear $\mathrm{Ph}_{\mathrm{SS}_{\mathrm{S}_{\mathrm{s}}}}$

Argonne
national
laboratory

Dimensionless product: $r_{\pi} f_{\pi}$

- Improved rainbow-ladder interaction
u.s. defahtment of anenay
office of Nuclear Ph_{1} Sic $_{\mathrm{C}_{s}}$

Argonne
national
haboratory

Dimensionless product: $r_{\pi} f_{\pi}$

- Improved rainbow-ladder interaction

Repeating $F_{\pi}\left(Q^{2}\right)$ calculation

Dimensionless product: $r_{\pi} f_{\pi}$

- Improved rainbow-ladder interaction

Repeating $F_{\pi}\left(Q^{2}\right)$ calculation
Experimentally: $r_{\pi} f_{\pi}=0.315 \pm 0.005$

Dimensionless product: $r_{\pi} f_{\pi}$

- Improved rainbow-ladder interaction
- Repeating $F_{\pi}\left(Q^{2}\right)$ calculation
- Experimentally: $r_{\pi} f_{\pi}=0.315 \pm 0.005$
- DSE prediction

Dimensionless product: $r_{\pi} f_{\pi}$

- Improved rainbow-ladder interaction
- Repeating $F_{\pi}\left(Q^{2}\right)$ calculation
- Experimentally: $r_{\pi} f_{\pi}=0.315 \pm 0.005$
- DSE prediction
- Lattice results
- James Zanotti [UK QCDis.

Dimensionless product: $r_{\pi} f_{\pi}$

- Improved rainbow-ladder interaction
- Repeating $F_{\pi}\left(Q^{2}\right)$ calculation
- Experimentally: $r_{\pi} f_{\pi}=0.315 \pm 0.005$
- DSE prediction
- Lattice results
- Fascinating result: DSE and Lattice
- Experimental value obtains independent of current-quark mass.

Dimensionless product: $r_{\pi} f_{\pi}$

- Improved rainbow-ladder interaction
- Repeating $F_{\pi}\left(Q^{2}\right)$ calculation
- Experimentally: $r_{\pi} f_{\pi}=0.315 \pm 0.005$
- DSE prediction
- Fascinating result:

DSE and Lattice

- Experimental value obtains independent of current-quark mass.
- We have understood this, S_{0}

Implications far-reaching.

Nucleon-Photon Vertex

constructed systematically . . . current conserved automatically for on-shell nucleons described by Faddeev Amplitude

Nucleon-Photon Vertex

constructed systematically ... current conserved automaticaliy for on-shell nucleons described by Faddeev Amplitude

Faddeev Equation

us. offahtiment of enenay
office of Nuclear $\mathrm{Ph}_{\mathrm{H}_{3} \text { sic }}$

Argonne
national
laboratory

Argonne
national
laboratory

Faddeev Equation

- Faddeev equation input algebraic parametrisations of DSE results, constrained by π and \boldsymbol{K} observables

Faddeev Equation

- Faddeev equation input algebraic parametrisations of DSE results, constrained by π and \boldsymbol{K} observables
- Two parameters
$-M_{0+}=0.8 \mathrm{GeV}$,
$M_{1+}=0.9 \mathrm{GeV}$
- chosen to give
$M_{N}=1.18, M_{\Delta}=1.33$
- allow for pseudoscalar meson contributions

Faddeev Equation

- Faddeev equation input algebraic parametrisations of DSE results, constrained by π and \boldsymbol{K} observables
- Two parameters
$-M_{0+}=0.8 \mathrm{GeV}$, $M_{1+}=0.9 \mathrm{GeV}$
- chosen to give
$M_{N}=1.18, M_{\Delta}=1.33$
- allow for pseudoscalar meson contributions
- Sensitivity to details of the current - expressed through diquark radius

DSE-based

Faddeev Equation

- Faddeev equation input algebraic parametrisations of DSE results, constrained by π and \boldsymbol{K} observables
-

Two parameters
$-M_{0+}=0.8 \mathrm{GeV}$, $M_{1+}=0.9 \mathrm{GeV}$ - chosen to give $M_{N}=1.18, M_{\Delta}=1.33$ - allow for pseudoscalar meson contributions

- Sensitivity to details of the current - expressed through diquark radius
- On $Q^{2} \lesssim 4 \mathrm{GeV}^{2}$ result lies below experiment. This can be attributed to omission of pseudoscalar-meson-cloud contributions
\square Conclusion

DSE-based

Faddeev Equation

- Faddeev equation input algebraic parametrisations of DSE results, constrained by π and \boldsymbol{K} observables
-

Two parameters
$-M_{0+}=0.8 \mathrm{GeV}$, $M_{1+}=0.9 \mathrm{GeV}$ - chosen to give $M_{N}=1.18, M_{\Delta}=1.33$ - allow for pseudoscalar meson contributions

- Sensitivity to details of the current - expressed through diquark radius
- On $Q^{2} \lesssim 4 \mathrm{GeV}^{2}$ result lies below experiment. This can be attributed to omission of pseudoscalar-meson-cloud contributions
- Always a zero but position depends on details of current
\square Conclusion
oftice of Nuclear Ph_{1} si
$\therefore 2)^{2}$

Argonne
national
laboratory

Eichmann et al. ab initio

- arXiv:0802.1948 [nucl-th]
- arXiv:0810.1222 [nucl-th]

Faddeev Equation

Faddeev Equation

- Parameter-free rainbow-ladder Faddeev equation - result

Argonne

Faddeev Equation

Faddeev Equation

- Parameter-free rainbow-ladder Faddeev equation - result 1.2 qualitatively identical and in semiquantitative agreement
- Improved numerical algorithm. 8 needed to extend calculation to larger $\boldsymbol{Q}^{\mathbf{2}}$
- Calculation unifies π, ρ and nucleon properties - keystone is behaviour of dressed-quark mass function and hence veracious description of QCD's Goldstone mode

Pauli \& Dirac Form Factors

$$
\begin{gathered}
-\frac{\hat{Q}^{2}}{\left(\ln \hat{Q}^{2} / \hat{\Lambda}\right)^{2}} \frac{F_{2}^{n}\left(\hat{Q}^{2}\right)}{F_{1}^{n}\left(\hat{Q}^{2}\right)} \\
\hat{\Lambda}=\Lambda / M_{N}=0.44
\end{gathered}
$$

Ensures proton ratio constant for $\hat{Q}^{2} \geq 4$

Pauli \& Dirac Form Factors

- $\frac{\hat{Q}^{2}}{\left(\ln \hat{Q}^{2} / \hat{\Lambda}\right)^{2}} \frac{F_{2}^{n}\left(\hat{Q}^{2}\right)}{F_{1}^{n}\left(\hat{Q}^{2}\right)}$
$\hat{\Lambda}=\Lambda / M_{N}=0.44$
Ensures proton ratio constant for $\hat{Q}^{2} \geq 4$

Ratio of Neutron

Pauli \& Dirac Form Factors

$$
\begin{gathered}
-\frac{\hat{Q}^{2}}{\left(\ln \hat{Q}^{2} / \hat{\Lambda}\right)^{2}} \frac{F_{2}^{n}\left(\hat{Q}^{2}\right)}{F_{1}^{n}\left(\hat{Q}^{2}\right)} \\
\hat{\Lambda}=\Lambda / M_{N}=0.44
\end{gathered}
$$

Ensures proton ratio constant for $\hat{Q}^{2} \geq 4$

- Brown band
- ab initio RL result

Pion Cloud

Pion Cloud

F2 - neutron

- Comparison between Faddeev equation result and Kelly's parametrisation
- Faddeev equation set-up to describe dressed-quark core

F2 - neutron

- Comparison between Faddeev equation result and Kelly's parametrisation
- Faddeev
equation set-up to describe dressed-quark core

- Pseudoscalar meson cloud (and related effects) significant for $Q^{2} \lesssim 3-4 M_{N}^{2}$

Epilogue

u.s. defantment of inenay
office of Nuclear $P_{h} \boldsymbol{s}_{\text {s }}$

Argonne
national
laboratory

Epilogue

u.s. defantment of inenay
office of Nuclear $P_{h} \boldsymbol{s}_{\text {s }}$

Argonne
national
laboratory

Epilogue

- DCSB exists in QCD.

office of Nuclear $\mathrm{Ph}_{\mathrm{hs}_{\mathrm{Si}_{c_{s}}}}$

Argonne
national
laboratory

Epilogue

- DCSB exists in QCD.

- It is manifest in dressed propagators and vertices

Epilogue

- DCSB exists in QCD.
- It is manifest in dressed propagators and vertices
- It predicts, amongst other things, that
- light current-quarks become heavy constituent-quarks
- pseudoscalar mesons are unnaturally light
- pseudoscalar mesons couple unnaturally strongly to light-quarks
- pseudscalar mesons couple unnaturally strongly to the lightest baryons

Epilogue

- DCSB exists in QCD.
- It is manifest in dressed propagators and vertices
- It predicts, amongst other things, that
- light current-quarks become heavy constituent-quarks
- pseudoscalar mesons are unnaturally light
- pseudoscalar mesons couple unnaturally strongly to light-quarks
- pseudscalar mesons couple unnaturally strongly to the lightest baryons
- It impacts dramatically upon observables.

Epilogue

- Dyson-Schwinger Equations
- Poincaré covariant unification of meson and baryon observables

Epilogue

- Dyson-Schwinger Equations
- Poincaré covariant unification of meson and baryon observables
- All global and pointwise corollaries of DCSB are manifested naturally without fine-tuning
\square

Epilogue

- Dyson-Schwinger Equations
- Poincaré covariant unification of meson and baryon observables
- All global and pointwise corollaries of DCSB are manifested naturally without fine-tuning
- Excited states:
- Mesons already being studied
- Baryons are within practical reach

Epilogue

- Dyson-Schwinger Equations
- Poincaré covariant unification of meson and baryon observables
- All global and pointwise corollaries of DCSB are manifested naturally without fine-tuning
- Excited states:
- Mesons already being studied
- Baryons are within practical reach
- Ab-initio study of $\boldsymbol{N} \rightarrow \boldsymbol{\Delta}$ transition underway
\square

Epilogue

- Dyson-Schwinger Equations
- Poincaré covariant unification of meson and baryon observables
- All global and pointwise corollaries of DCSB are manifested naturally without fine-tuning
- Excited states:
- Mesons already being studied
- Baryons are within practical reach
- Ab-initio study of $N \rightarrow \Delta$ transition underway
- Tool enabling insight to be drawn from experiment into long-range piece of interaction between light-quarks

Contents

1. Universall Truths
2. QCD's Challenges
3. Dichotomy of the Pion
4. Dressed-Quark Propagator
5. Frontiers of Nuclear Science
6. Hadrons
7. Confinement
8. Bethe-Salpeter Kernel
9. Persistent Challenge
10. Radial Excitations
11. Radial Excitations \& Lattice-QCD
12. Pion FF
13. Calculated Pion FF
14. All Pion Form Factors
15. Nucleon Challenge
16. Unifying Meson \& Nucleon
17. Faddeev equation
18. Diquark correlations
19. Ab-initio study of mesons \& nucleons
20. $r_{\pi} f_{\pi}$
21. Nucleon-Photon Vertex
22. DSE-based Faddeev Equation
23. Ratio of Neutron FFs
24. Pion Cloud
