

Fundamental power couplers for superconducting cavities in ERL's

Isidoro E. Campisi SNS/ORNL

March 22, 2005

ERL 05 Workshop, TJNAF March 22, 2005

 The main purpose of couplers is to provide means of transferring power from a generator to a superconducting cavity

- DO NOT compromise the performance of the cavities they are connected to
- DO NOT negatively affect the beam

• The above are the first criteria for designing couplers

- Electromagnetic: provide appropriate transmission line/cavity field interface
- Thermal: sustain large thermal gradients without transferring large amounts of heat to the cryogenic environment
- Vacuum: provide one or more vacuum barriers to atmospheric pressure (windows are a critical component which are part of the coupler) and guarantee low pressure increases under the influence of electromagnetic fields, multipacting electrons, local heat dissipation etc.
- Do not exhibit negative features (e.g. multipacting)

 Simulations have become one of the most important tools in predicting complex behaviors of couplers/cavity systems and have enormously improved reliability and shortened the time necessary to achieve successful design solutions. Mechanical:

Structural interface with cavity and cryomodule and stability under predictable accelerations

Stresses at SNS ceramic window

Electromagnetic:

- Field configuration and interaction between field in the transmission line and in the cavity
- Predict matching and coupling coefficients
- Predict field asymmetries

injector

Figure 3: The undisturbed RF field of the last cavity cell

Figure 4: The field perturbation caused by the RF coupler

Figure 5: Electric fields in the coupler.

Multipacting simulations

SNS couplers

SPALLATION NEUTRON

Thermal simulations

SNS SPALLATION NEUTRON SOURCE

Thermal:

- •Evaluate heat leaks into cryogenic sink
- •Determine radiative and conductive losses which could disrupt the superconducting state

Table 4: Heat flow at coupler components.

Flange 210	0.17 W
Heat sink 5 K	3,53 W
Total loss at 30 K	70.6 W

Couplers for superconducting cavities

Successful CW coupler: waveguide

Successful CW coupler: coaxial

JLab FEL Injector warm window

Run to 50 kW in test stand Operated to 30 kW in ¹/₄ cryomodule

Design still maintains the CEBAF double window configuration

APT coupler configuration

APT Coupler details

High Power: > 400 kW CW 2,81 WINDOW SPACING Variable coupling: 2 - 6 E5 Window #1 Window #2 High-speed pumping 10,40 Double window Tested on CW stand to +8.44 •1 MW TW Stub TAPER 5.469 •850 kW SW 33.54

APT test stand and conditioning effects

Figure 4: Residual gas magnitude (right axis) and power level (left axis) versus time during a room temperature power level sweep to look for multipacting power levels.

Bellows are the weak area

Table 1: RF parameters of	ERL cavities.
---------------------------	---------------

	Buncher cavity	Injector cavity	Linac cavity
Frequency, MHz	1300	1300	1300
Energy of particles, MeV	0.5	0.5 to 5 (15)	5 (15) to 100
Number of cells per cavity	1	2	9
R/Q, Ohm	210.5	218.4	1036
Q_0	2×104	$\geq 5 \times 10^{\circ}$	$\geq 10^{10}$
$Q_{\rm ext}$ nominal	2×104	4.6×10^{4}	2.6×107
Q_{ext} range	_	$4.6{\times}10^4$ to $4.1{\times}10^5$	8×10 ⁵ to 4×10 ⁷
Cavity gap voltage, MV	0.12	1 (3)	20.8
Installed RF power per cavity, kW	20	150	20

SPALLATION NEL

Cornell ERL coupling scheme

 $1 \cdot 10^{6}$ Qext
3 \cdot 10^{5}
1 $\cdot 10^{5}$ 3 $\cdot 10^{4}$ -20 -15 -10 -5 0

Fig. 3. Dependence of Q_{ext} on the depth of antenna penetration measured relative to the inner cavity iris.

SPALLATIO

TTF 3 coupler

Modified TTF3 Coupler for Cornell Injector

Figure 3: 3D view of the injector cavity coupler.

Cornell ERL thermal and mechanical study

360

Cornell symmetric coupler configuration

Cornell coupler testing configuration

Figure 22: 3D view of resonant ring for coupler tests. 1: main directional coupler; 2: 3-stub transformer; 3: instrumentation directional coupler; 4, 6: couplers under test; 5: coupling cavity; 7: vacuum pump.

BESSY Test configuration

SPALLATION NEUTRON SOURCE

Rossendorf: CW test of TTFIII coupler to 4 kW at room temperature

BESSY: test in HoBiCaT at 10 kW

ERL 05 Workshop, TJNAF March 22, 2005

- Bellows: geometry changes, field enhancement, difficult to clean, source of multipacting, difficult to cool, typically made out of materials difficult to work with
- Window cooling: need simple, symmetrical geometries that distribute the losses uniformly and remove the heat effectively. Need improved dielectric materials
- Coaxial tip cooling: Stefan will get you!
- Complicated geometries: difficult to predict multipacting, difficult to clean.....
-discussion.....