

Start-to-End Simulations

Motivation, Methods, and Examples

Michael Borland
Operations Analysis Group
APS Operations Division
March 20, 2005

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Motivation

- In the early stages of an idea, we do estimates
 - Use approximate expressions
 - Use rms or FWHM parameters for beam
- Later we move on to simulations
- Complex work gets compartmentalized, e.g.,
 - Drive laser
 - Gun/injector
 - Linac and bunch compressor
 - FEL
- This approach holds the potential for disaster

Risks of Compartmentalized Approach

- Tendancy to give upstream performance in simplified terms
 - Rms beam properties
 - Ideal performance instead of realistic performance
- Use of simplified beam properties can hide vital details
 - Complex correlations in phase space
 - Spikes or modulations in distributions
 - Correlations that show up when errors are added
- S2E simulation preserves physics details of upstream systems
 - Can result in major design changes
 - S2E now common in FEL community

Some Specific Risks

- Beams from rf linacs are rarely smooth or gaussian
 - Rf photoinjectors particularly bad
- Many processes make matters worse
 - Wakefields
 - Rf curvature
 - Nonlinear terms in beam transport
 - Coherent synchrotron radiation
 - Longitudinal space charge
- Linac-driven light sources are uniquely sensitive to spoiling of initial beam brightness

LCLS Configuration (06Dec00)

CSR simulations with gaussian beams and low longitudinal resolution predicted 5% projected emittance growth due to cancellation in double-chicanes, but ...

Graphic courtesy P. Emma (SLAC)

Emittance Growth from S2E Simulation

CSR Microbunching Instability in LCLS

LSC Microbunching Instability in LCLS

Goals for S2E

- Make use of existing codes
 - Different codes are suited to different regimes and problems
 - Different disciplines continue to develop their own codes
- Requirements
 - Preserve maximal information in going from one code to next
 - Rapidly make changes to any input and rerun
 - Do analysis across all stages, e.g., correlate drive laser parameters with FEL output
 - Do full-system error simulations
 - Do full-system optimization
- Everything exists to do this now

A Partial List of S2E Projects and Codes

- Boeing group: PARMELA and FELIX
- LEUTL group: PARMELA, elegant, and GENESIS
- SLAC/APS group: PARMELA, elegant, and GENESIS for LCLS jitter simulations
- SLAC/UCLA group: PARMELA, elegant, and GENESIS for LCLS time-dependent FEL simulations
- TTF group: ASTRA, TraFiC⁴, elegant, and FAST
- VISA group: PARMELA, elegant, and GENESIS

Code Issues

- Every code has its own data format(s)
 - Must write a translator between each code pair!
- Data formats may change when either code is upgraded (e.g., PARMELA V2 vs V3)
 - Must rewrite the translator for new data
 - Must keep the old one for use with old data
- If you aren't a programmer, it may be too much trouble
 - Uncooperative codes encourage sloppy simulation
- APS-developed SDDS file protocol is a solution

SDDS Protocol

- SDDS = Self Describing Data Sets
- File protocol
 - A way to describe parameters, columns, and arrays in a file
 - Includes units, data types, description, etc.
- Programs detect what's in the input
 - Inform user if input is incomplete/inappropriate
 - Supply defaults for missing data
 - Detect/convert wrong units
- SDDS makes programs hard to break and easy to upgrade

SDDS Toolkit

SDDS Toolkit

- Suite of generic programs that read and write SDDS files
- Data analysis, manipulation, and display
- Comparable to MATLAB plus a database
- SDDS programs are like operators
 - Apply sequentially to dataset for arbitrary transformation
 - Use from command-line or in scripts
 - Open architecture: anyone can add a private operator
- Open source
- Well supported (vital part of the APS control system)

SDDS Advantage for Simulations

Developer

- Ready-made post-processing suite for any compliant code
- No code-specific post-processor to maintain
- Separate graphics from the physics code
- Upgrade (e.g., add output) without hurting users

User

- Supports scripting and automation
- Ideal for concurrent simulation using a cluster
- Use to create translators between codes (even non-SDDS codes)
- Don't have to learn a new post-processor for each code

SDDS Compliant Codes

- elegant (M. Borland)
 - 6 D tracking code
 - Canonical integration or matrices
 - Rf cavities, deflectors, time-dependent kickers, etc.
 - Wakefields (short and long-range)
 - Incoherent and coherent synchrotron radiation
 - Longitudinal space charge
 - Can run other programs as modules in a beamline (Linux only)
 - Open source
 - Core of APS-developed simulation suite

SDDS Compliant Codes

- spiffe (M. Borland)
 - 2.5 D particle-in-cell code for rf gun simulation
 - Particle output read directly by elegant
- shower (L. Emery)
 - EGS4 wrapper code for electron-gamma showers
 - shower2elegant and elegant2shower scripts provide coordinate transformations
- Brightness curves: sddsbrightness (H. Shang, R. Dejus)
- Intrabeam scattering: ibsEmittance (L. Emery, M. Borland)
- Potential well distortion: haissinski (L. Emery, M. Borland)
- Beam lifetime: beamLifetimeCalc (M. Borland)

SDDS Compliant Codes

- ABCI/APS and MAFIA/APS
 - Provide wakefield data in form used by elegant
- URMEL/APS
 - Provides rf mode data in form used by elegant
- Our goal is a complete suite of accelerator-related codes with minimal barriers to cooperative use
 - We welcome collaborators on this!
 - Tell your favorite code author to get with it!

Full-System Optimization

- SDDS-based optimization (H. Shang, APS)
 - Generic SDDS-configured sequential optimizer
 - Parallel genetic optimizer for Linux cluster
 - Parallel Simplex optimizer for Linux cluster
- Can optimize the results of running any program or sequence of programs
- User supplies two scripts
 - Script that accepts input parameters and runs simulation program(s)
 - Script that processes output and returns penalty function
- Linux only

LCLS S2E Simulation Components

LCLS S2E Simulation Components

LCLS S2E Simulation Components

LCLS S2E Jitter Simulations

- "Jitter" refers to any error that we can't correct with alignment, tuning, feedback, etc.
- We assume that the machine is tuned to ideal performance on average
- We simulated jitter, including
 - drive laser timing and energy
 - photoinjector and linac rf voltages and phases
 - bunch compressor power supplies

LCLS S2E Jitter Simulations

Correction Quads On	Current	Bunch length	Frac. mom. Spread	Norm. x emit.	Gain Length	Wavelength	Power
?	kA	ps	10-4	μm	m	A	GW
yes	3.32 ±0.18	0.185 ± 0.013	0.817 ± 0.043	0.791 ± 0.012	3.44 ±0.16	1.4991 ±0.0013	7.1 ±1.4
no	3.27 ±0.17	0.188 ± 0.013	0.806 ± 0.033	0.789 ±0.011	3.53 ±0.13	1.4987 ±0.0012	6.6 ±1.0

- Correction quads in chicanes remove dispersion-like correlations due to CSR and should reduce projected emittance.
 - Surprise: makes power jitter 40% worse
- 230 seeds used.

LCLS S2E Jitter Simulations

• Correlation analysis can explain the causes of variation in FEL power

Quantity	Responsibility (%)		
laser phase	22%		
L1 phase	19%		

and wavelength variation

Quantity	Responsibility (%)			
laser phase	17%			
L1 phase	17%			
L0 voltage	16%			
L1 voltage	15%			

• "Responsibility" is the correlation coefficient squared.

Conclusion

- S2E simulation has made significant contributions to FEL projects, including
 - Discovery of CSR microbunching instability in compressors and validation of cure
 - Verification of LSC instability and cure
 - Refinement of jitter specifications
 - Discovery of unintended consequence of correction quads
- Software tools well-developed, available now
- If you aren't doing S2E simulation for your FEL or ERL proposal, you may get an unpleasant surprise

Contributors

- GENESIS setup: Y.-C. Chae
- LCLS linac design: P. Emma, M. Woodley
- Photoinjector design: P. Krejcik, C. Limborg
- PARMELA setup: J. Lewellen, C. Limborg
- Start-to-end scripts and tools:
 M. Borland, Y.-C. Chae, J. Lewellen, R. Soliday
- Suggestions, motivation, and ideas:
 V. Bharadwaj, W.M. Fawley, H.-D. Nuhn, S.V. Milton
- Created with open source software

