

Evaluation of the Possibility of Upgrading the APS to an ERL

Michael Borland
Operations Analysis Group
APS Operations Division
March 20, 2005

A U.S. Department of Energy
Office of Science Laboratory
Operated by The University of Chicago

Motivation

- Combined cost of APS beamlines exceeds cost of accelerator
 - Build-up of beamlines continues
- Upgrading the accelerator and keeping the beamlines is very cost-effective
- Injecting an ERL beam into existing APS is one option
- Another option is a replacement ring (next talk)

Concept: Stage 1

Concept: Stage 2

Lattices

- LE: Present low-emittance lattice
 - $-42 \mu m$ normalized equilibrium emittance
 - distributed dispersion
- ZD: zero-dispersion lattice
 - Original APS lattice with no dispersion at IDs
 - $-105 \mu m$ normalized equilibrium emittance
- ISO: Isochronous lattice
 - $-356 \mu m$ normalized equilibrium emittance

Simulations

- Tracked with **elegant** including
 - Coherent synchrotron radiation (CSR)
 - Incoherent SR (quantum excitation)
 - 1 million particles w/quiet start
- For lack of better input, used gaussian beam
 - Very optimistic assumption (see talk later today)
- Nominal rms parameters at 7 GeV
 - $-50 \mu m$ bunch length (170 fs)
 - $-1 \mu m$ normalized emittance
 - 0.01% momentum spread

Single Pass Results for Different Lattices

50 pC/bunch

Values sampled at the center of each straight section

Longitudinal Phase Space After One Pass

Effect of Number of Macroparticles

Longitudinal Phase Space Evolution for 100pC Case

Single Pass with Various Initial Bunch Lengths

100 pC/bunch

Apparent threshold for 50 μm bunch length

Comparison with Present APS

• Now:

- Typically 15 nC/bunch with ~10 mm rms bunch length
- Peak current of 170 A
- 100 mA with bunches typically 153 ns apart (24 bunch mode)
- Energy spread 0.1 %
- Horizontal emittance of 105 μ m with 1% coupling
- ERL: Mostly preserve beam properties for <100 pC and >100 μ m
 - Peak current of 120 A
 - Filling every 1300 GHz bucket gives 130 mA
 - Energy spread < 0.025 %
 - Emittance $<1.1 \mu m$

Average Brightness Improvement

Conclusions

- Appears feasible for <100 pC and >100 μ m
 - Average brightness improvement of about 10x
 assuming 130mA
 - Peak brightness improvement is less
- Doesn't look remarkable compared to
 - APS low coupling (0.3%) at 300mA
 - Possible ring upgrade
- Results may be much worse with realistic input beam
- May be better for lower charge, lower emittance

