Merger Design session

Emittance control \& multiple modes of operation

 Merger design exercise- merging energy
- high energy = smaller emittance
- low energy = better economics
- configuration
- 3-dipole, zigzag, multi-loop
- pros \& cons
- multiple merger
- how many ? configuration?
- simulation tools
- space charge, CSR in a curved path
- comparison : simulation / real machine

Merging Energy

- Energy balance

$$
E_{i n j}+\left(E_{\text {acc }}-E_{\text {dec }}\right)=E_{\text {loss }}+E_{\text {dump }}
$$

RF for the injector
RF for the main linac

- dump energy < 10 MeV to avoid neutron generation, but must have some amount of kinetic energy for easy handling.
dump current is important information in the operation.
- large RF sources for the main linac = large investment (source, circulator, coupler ...)

dose per unit beam power

SLAC-PUB 9557

Merging Energy (cont.)

- injected by small energy causes "phase slip" but rapid acceleration eliminates it.
for $5-\mathrm{GeV}$ light source (0.1% energy loss at most)

$$
\begin{gathered}
E_{\text {inj }}+\left(E_{\text {acc }}-E_{\text {dec }}\right)=E_{\text {loss }}+E_{\text {dump }} \\
5 \mathrm{MeV}+\frac{5 \mathrm{MeV}}{V}=5 \mathrm{MeV}+5 \mathrm{MeV}
\end{gathered}
$$

for 100 mA , additional 5 kW per 20 MV acceleration
$10 \mathrm{MeV}+0 \mathrm{MeV}=5 \mathrm{MeV}+5 \mathrm{MeV}$ need off-crest acc. for energy compression

Merging Energy (cont.)

for $50-\mathrm{MeV}$ FEL (1\% energy loss, 10\% energy spread)

$$
\begin{aligned}
& E_{i n j}+\left(E_{a c c}-E_{d e c}\right)=E_{\text {loss }}+E_{d u m p} \\
& 5 \mathrm{MeV}+0.5 \mathrm{MeV}=0.5 \mathrm{MeV}+5 \mathrm{MeV}
\end{aligned}
$$

for 100 mA , additional 10 kW per 10 MV acceleration, energy compression is possible, but maybe insufficient. $10 \mathrm{~kW} / 1 \mathrm{MW}=1 \%$ RF power budget.

$$
5 \mathrm{MeV}+\underset{\square}{0 \mathrm{MeV}}=0.5 \mathrm{MeV}+4.5 \mathrm{MeV}
$$

Merger Configuration

"slide injection"
injection / recirculation are tilted or shifted.
flexible BT for the high-E beam.

"in-line injection"
injection / recirculation are in line.
suitable for small E high ${ }^{*}$

Transverse emittance growth by Ex, Ey

$$
\sigma^{\prime \prime}-\frac{\left(I / 2 I_{0}\right)}{\sigma \beta^{3} \gamma^{3}}-\frac{\varepsilon_{n}^{2}}{\sigma^{3} \beta^{2} \gamma^{2}}=0
$$

in the limit of zero slice emittance

$$
\varepsilon_{n} \sim 0
$$

$$
\Delta \varepsilon_{n} \sim \delta \sigma^{\prime} \sigma \gamma \propto \gamma^{-2}
$$

focusing

emittance compensation by appropriate focusing

Transverse emittance growth by Ez

energy change

E_{z}

broken of achromatic property
see for example, B.E. Carlsten et al., IEEE QE 27, 2580 (1991).
assuming steady-state Ez $\quad \Delta E / E=\delta=\delta_{0}+\kappa\left(s-s_{0}\right)$
We can track bunch slice motion by linear matrix.

$$
\begin{array}{ll}
\varepsilon^{2}=\left(\varepsilon_{0} \beta_{x}+D^{2}\right)\left(\varepsilon_{0} \gamma_{x}+D^{\prime 2}\right)-\left(-\varepsilon_{0} \alpha_{x}+D D^{\prime}\right)^{2} & \text { similar to the } \\
\left(D, D^{\prime}\right)=\Delta \kappa_{r m s}\left(\zeta_{x}, \zeta_{x}{ }^{\prime}\right) & \Delta \varepsilon_{n} \propto \mathcal{\gamma}^{-3 / 2}
\end{array}
$$

similar to the CSR case

Optimum injection to a 3-dipole merger

calculate emittance growth with varying injection parameters $\left(\alpha_{x}, \beta_{x}\right)$
 only Ez (matrix)

only Er (simulation)

$\mathrm{Er}+\mathrm{Ez}$ (simulation)

0.35
0.3
0.25
0.2 0.35
0.3
0.25
0.2

Optimum injection to a 3-dipole merger

optimum envelope is a function of bunch parameters.

3-dipole merger

$\mathrm{H}-\mathrm{H}$

longitudinal space charge dispersion

the bending angle should be small, and the total length should be short
for example,

	B1 / B3	B2
bending radius	1 m	1 m
bending angle	15 deg.	22 deg.
edge angle	0	-20 deg.

drift between bends $=0.316 \mathrm{~m}$
total path length $=1.54 \mathrm{~m}$
total deflection angle $=8$ deg.
total deflection angle is determined so that we can keep space for the cryomodule ($D=670 \mathrm{~mm}$).

zigzag merger

multi-merger for multi-injector

tandem configuration

symmetric configuration

Multi-merger example

Cryomodule
$\square=670 \mathrm{~mm}$
two magnets may be combined.

5x5 R-Matrix for the CSR Analysis

electron's motion in the bending plane is expressed by a vector

$$
\vec{x}(s)=\left(x, x^{\prime}, \delta_{0}, \kappa L_{b}, \kappa\right)^{T}
$$

$$
\delta_{C S R}(s)=\kappa L_{b}(s)
$$

sum of bending path length in the upstream
before the bend

$$
\vec{x}\left(s_{0}\right)=\left(x, x^{\prime}, \delta_{0}, \kappa L_{b}, \kappa\right)^{T}
$$

after the bend

$$
\vec{x}\left(s_{1}\right)=\left(x, x^{\prime}, \delta_{0}, \kappa L_{b}, \kappa\right)^{T}
$$

transfer matrix of the bend

$$
\vec{x}\left(s_{1}\right)=R_{\text {bend }} \vec{x}\left(s_{0}\right)
$$

5x5 R-matrix for a sector bending magnet
$R_{\text {bend }}=\left(\begin{array}{ccccc}\cos \theta & \rho \sin \theta & \rho(1-\cos \theta) & \rho(1-\cos \theta) & \rho^{2}(\theta-\sin \theta) \\ -\rho^{-1} \sin \theta & \cos \theta & \sin \theta & \sin \theta & \rho(1-\cos \theta) \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & \rho \theta \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$
extension of the conventional 3×3 R-matrix R. Hajima, JJAP 42, L974 (2003).

CSR-wake dispersion function

Following the momentum dispersion function " η ", we define the CSR wake dispersion function " ζ "
momentum dispersion function

$$
\left(\eta, \eta^{\prime}\right)
$$

$$
\left(\begin{array}{c}
\eta_{x}\left(s_{1}\right) \\
\eta_{x}^{\prime}\left(s_{1}\right) \\
1 \\
0 \\
0
\end{array}\right)=R_{0 \rightarrow 1}\left(\begin{array}{c}
\eta_{x}\left(s_{0}\right) \\
\eta_{x}^{\prime}\left(s_{0}\right) \\
1 \\
0 \\
0
\end{array}\right)
$$

$$
\left(\zeta, \zeta^{\prime}\right)\left(\begin{array}{c}
\zeta_{x}\left(s_{1}\right) \\
\zeta_{x}^{\prime}\left(s_{1}\right) \\
0 \\
L_{b}\left(s_{1}\right) \\
1
\end{array}\right)=R_{0 \rightarrow 1}\left(\begin{array}{c}
\zeta_{x}\left(s_{0}\right) \\
\zeta_{x}^{\prime}\left(s_{0}\right) \\
0 \\
L_{b}\left(s_{0}\right) \\
1
\end{array}\right)
$$

bunch slices align on a line :

$$
\zeta_{x} x^{\prime}-\zeta^{\prime}{ }_{x} x=0
$$

We can track the motion of bunch slices.

Emittance Growth by CSR, and its Compensation

coincidence between the CSR kick and the phase ellipse orientation.

∇

minimum emittance growth
projection emittance is evaluated by

$$
\begin{aligned}
& \varepsilon^{2}=\left(\varepsilon_{0} \beta_{x}+D^{2}\right)\left(\varepsilon_{0} \gamma_{x}+D^{\prime 2}\right)-\left(-\varepsilon_{0} \alpha_{x}+D D^{\prime}\right)^{2} \\
& \left(D, D^{\prime}\right)=\Delta \kappa_{r m s}\left(\zeta_{x}, \zeta_{x}^{\prime}\right) \\
& \Delta \kappa_{r m s}=\frac{\Delta E_{r m s}}{E_{0} L_{b}} \\
& \varepsilon^{2}-\varepsilon_{0}^{2}=\varepsilon_{0}\left(\Delta \kappa_{r m s}\right)^{2}\left(\beta_{x} \zeta^{\prime 2}+\gamma_{x} \zeta^{2}-2 \alpha_{x} \zeta \zeta^{\prime}\right)
\end{aligned}
$$

