Novel, Hybrid RF Injector as a High-average-current Electron Source

Dinh Nguyen

Los Alamos National Laboratory

Lloyd Young

TechSource

Energy Recovery Linac Workshop
Thomas Jefferson National Accelerator Facility
March 19-23, 2005

Outline

- Normal-Conducting RF Gun Problems
- Superconducting RF Gun Problems
- Hybrid RF Photoinjector
 - Normal-conducting 1½-cell + SRF cells
 - How might it solve the above problems?
- Preliminary Cavity Design
- Preliminary PARMELA Simulation Results
- Summary

Normal-Conducting RF Gun Problems

- Ohmic loss scales with (gradient)². Using a high gradient multi-cell cavity leads to large ohmic losses and requires careful thermal management.
- Thermal distortion in a multi-cell cavity leads to cavity detuning and loss of RF field flatness.
- High Q.E. photocathodes are poisoned by contaminations desorbed from the heated cavity walls.

Superconducting RF Gun Problems

Magnetic field for emittance compensation near the cathode is incompatible with SRF cavities.

Operating a semiconductor cathode at low temperature in an SRF cavity leads to low Q.E.

 Debris released from semiconductor cathodes could quench the SRF cavities.

Hybrid, NC-SRF Gun Concept

How the hybrid gun may solve the NC or SRF gun problems

- Solutions to NC gun problems
 - Cryo-pumping reduces cathode contamination
 - Ohmic loss is reduced with only 1.5-cell NC injector
- Solutions to SRF gun problems
 - NC gun can admit solenoid field for emittance compensation at high bunch charge
 - NC cathode is isolated from SRF cavities
 - Allows semiconductor cathode to operate at RT
 - Protect SRF cavities

Basic Injector Design Physics

Gradients

■ Image charge field

$$E_z(0,\phi_{inj}) \ge 2E_{IC}$$

■ Invariant Envelope

$$\sigma_i = \left(\frac{2}{\gamma'}\right) \sqrt{\frac{I}{3I_0 \gamma}}$$

$$E_{IC} = \frac{q}{\varepsilon_0 A}$$

Space-charge emittance growth in drift

$$\varepsilon_{SC} = \left(\frac{I}{I_0}\right) \frac{G(\frac{L}{A})}{(\beta \gamma)^2} D$$

 Keep the thermal standoff relatively short to reduce emittance growth in drift

$$E_z(z,t) = E_0 \cos(kz) \sin(\omega t)$$

q = Bunch charge A = Emission area $E_z = \text{Cathode cell gradient}$ $E_{IC} = \text{Image charge field}$ $\sigma_i = \text{input rms radius}$ $\gamma = \text{beam's gamma}$ $\gamma' = \text{gradient } (\text{d}\gamma/\text{d}z)$ I = peak current $I_0 = \text{Alvén current}$ $I_0 = \text{Alvén current}$ $I_0 = \text{Cathode cell gradient}$ $I_0 = \text{comparabolic}$ I = peak current $I_0 = \text{current}$ $I_0 = \text$

Example Parameter Set

■ Frequency f 700 MHz

■ Bunch charge q 1 nC

Beam energy E_k 5 MeV

Emission area A 1.13 cm²

■ Image charge field E_{IC} 1 MV/m

■ Injection phase ϕ_{inj} 15°

 \blacksquare Cathode cell gradient E_C 5 MV/m

■ Drift distance D 0.7 m

 \blacksquare SRF cell gradient E_{SRF} 10 MV/m

Invariant rms radius σ_i 2.6 mm

Minimizing Emittance

■ Thermal emittance

 $\epsilon_{n,T}$

scales with radius

Space charge emittance $\varepsilon_{n,SC}$

scales with radius-1

RF-induced emittance

 $\varepsilon_{n,RF}$

scales with radius²

Total emittance

 ϵ_n

Thermal emittance

$$\varepsilon_{n,T} = \sigma_r \sqrt{\frac{kT}{mc^2}}$$

Space-charge emittance

$$\varepsilon_{n,SC} = \frac{I}{\gamma I_A \left(\frac{3\sigma_r}{\sigma_z} + 5\right)}$$

RF induced emittance

$$\varepsilon_{n,RF} = \gamma k_{RF}^2 \sigma_r^2 \sigma_z^2$$

Total emittance

$$\varepsilon_n = \sqrt{\varepsilon_{n,SC}^2 + \varepsilon_{n,RF}^2 + \varepsilon_{n,T}^2}$$

Preliminary Design of 1.5-cell Normal-conducting Injector

RF Loss in RT Cu 1.5-cell Gun

Ohmic loss (kW)

Gradient (MV/m)

Total RF consumption = Ohmic loss + Beam power
At 5 MV/m and 100 mA 139 kW 100 kW
At 5 MV/m and 1 A 139 kW 1 MW

The calculated power density at 7 MV/m is ~100 W/cm²

On-axis Magnetic Fields for Emittance Compensation

A magnetic shield is used to reduce stray magnetic field in SRF region All solenoids have to be off when SRF cavities are being cooled down

A similar 2.5-cell NC injector is in fabrication at AES with 9/05 delivery

Preliminary Design of SRF Cavity

RF Field Plots

Hybrid injector at 5 MV/m NC and 10 MV/m SRF yields >5 MeV

PARMELA Simulations Phase-space Plots at z = 43.5 cm

PARMELA Simulations Phase-space Plots at z = 423 cm

PARMELA simulation for 1 nC shows rms emittance <3 microns

Summary

- A novel hybrid injector with 1½-cell normal-conducting gun and 3 independently powered superconducting RF cells is presented.
- The hybrid injector admits an external magnetic field near the cathode for emittance compensation.
- PARMELA simulations show the feasibility of achieving 5 MeV energy from 1½-cell NC at 5 MV/m and 3 SRF cells at 10 MV/m.
- Preliminary simulations show emittance from the hybrid injector is less than 3 microns for 1 nC.

