

Optimum Electron Distribution for Space Charge Dominated Beams

C.Limborg-Deprey, SLAC

- Minimum emittance
- 3D-Ellipsoidal electron bunch
 - Emittance performances compared to "Beer Can"
 - Linear Longitudinal Phase Space
 - Optimization for S-Band and L-Band guns
 - Sensitivity
- Generation of 3D-ellipsoidal laser pulse
 - "First thoughts"
- Conclusions

Intrinsic Limits of Minimum emittance

$$\varepsilon_{tot} = \sqrt{\varepsilon_{cathode}^2 + \varepsilon_{RF}^2 + \varepsilon_{space\,ch\,arg\,e}^2}$$

- Cathode "Intrinsic" emittance
 - for copper measured 0.6 mm.mrad per mm of r_{laser} [1,2,3] theoretical is 0.3 mm.mrad per mm of r_{laser}

$$\varepsilon_{cathode} = \sqrt{\varepsilon_{thermal}^2 + \varepsilon_{roughness}^2 + ??}$$

$$\varepsilon_{cathode} \alpha r_{laserspot}$$

- Minimum r_{laser} set by "Space Charge Limit"
 Minimum r_{laser} or electrons cannot leave cathode (for metal cathodes)
 - R_{min.} = 0.82 mm at 54 MV/m for a 1nC
 - R_{min} = 1.34 mm at 20 MV/m for a 1nC

$$E = \frac{\sigma}{\varepsilon_o} = \frac{Q}{\pi r^2 \varepsilon_o} < E_{peak} \sin \phi$$

- RF emittance
 - $\,\blacksquare\,$ small ϵ_{RF} (10 °,r = 1.2mm,Q = 1nC) < 0.15 mm.mrad for S-Band gun
- Space Charge
 - Emittance copensation to correct for linear space charge effects;
 - Non-linear components of SC forces can not be compensated for with linear optics elements

Uniform charge density inside 3D-Ellipsoid volume = Ideal Emitted pulse

- Charge density remains uniform over volume as the space charge force is linear
- Perfect emittance compensation is achieved with linear optics elements
- $\Rightarrow \epsilon_{\text{space charge}} == 0$

$$\mathcal{E}_{tot} \sim \mathcal{E}_{cathode}$$

Ellipsoidal Emission pulse

- "Beer Can" shape is NOT the optimum shape
- Ideal Emitted pulse = Ellipsoid
 Electrons are uniformly distributed inside a 3D ellipsoid volume

Line Density

Pulse length Pulse length

Comparison between "beer can" & "3D ellipsoid"

Stanford

Accelerator Center

Comparison between "beer can" & "3D ellipsoid"

3D ellipsoid is even better optimized with $r_{max} = 1$ mm

 ϵ = 1.02 mm.mrad; ϵ _{80%} = 0.95 mm.mrad (with standard ϵ _{"cathode"} =0.6)

 ε = 0.71 mm.mrad; ε _{80%} = 0.71 mm.mrad (with overestimated ε _{"cathode"} = 0.7)

Linear Longitudinal Phase Space

- The longitudinal phase space gets linear
- Unfortunately, in the LCLS, does not prevent the production of large spikes after bunch compressor
 - \leftarrow those spikes come from wakefield which follow λ '
 - ☆ LCLS would benefit from lower slice emittance, better matching and lower sensitivity to parameters

Optimization

After scanning solenoid and $\phi_{RF,injection}$

$$\xi = \frac{1}{2}(\beta_0 \gamma - 2\alpha_0 \alpha + \beta \gamma_0)$$

Too small r or too small length ⇒ more mismatch

Optimization vs pulse length and radius

Vs laser pulse length

Vs laser spot size radius

- Increasing pulse length reduces emittances
 - limited by ϵ_{RF} and desired pulse length before compressors
- Optimum radius would be between 0.8 and 1mm
 - unfortunately at 0.8 mm, too strong image charge distorts bunch profile;
 - 1mm gives better matching

Much less sensitive!

"Beer can"

Ellipsoid

Tuning will be much easier in 19D-parameter space

How much distorsion on that perfect shape until we start losing this low sensitivity?

Optimization for L-Band Gun

1nC, with little effort in optimizing/retuning

<u>L-Band gun 40MV/m</u>, ϕ = 33 °

ε at 140 MeV

 ϵ =1.42 mm.mrad; ϵ _{80%} = 1.34 mm.mrad

 ϵ = 0.93 mm.mrad ; ϵ $_{80\%}$ = 0.96 mm.mrad

 ϵ = 1.02 mm.mrad; ϵ _{80%} = 1.03 mm.mrad

Stacking pulses

6+6 beamlets of different radii

Gaussians Wash out discrete steps of rms value

Fighting interferences in Stacker

Alternating polarization + appropriate choice of σ , interference effect is minimized

$$E_{p} = \sum_{i} A_{2i} e^{\frac{-(t-t_{2i})^{2}}{4\sigma^{2}}} e^{i2\pi\varphi_{i}}$$

$$E_{s} = \sum_{i} A_{2i+1} e^{\frac{-(t-t_{2i+1})^{2}}{4\sigma^{2}}} e^{i2\pi\varphi_{i}}$$

$$I = I_p + I_s$$

$$I_p = E_p . E_p *$$

$$I_s = E_s . E_s *$$

~<15 %

for all draws

Interferences random phases

PARMELA simulations using stacker distributions

IDEAL

Beer Can

Direct beer can

Ellipsoid ideal

IDEAL

50 Beamlets no interference Stacker

12 Beamlets and random phase

NOT IDEAL

```
\epsilon = 1.02 mm.mrad; \epsilon <sub>80%</sub> = 0.95 mm.mrad
```

$$\epsilon$$
 = 0.71 mm.mrad ; ϵ _{80%} = 0.71 mm.mrad

$$\epsilon$$
 = 0.80 mm.mrad; ϵ _{80%} = 0.80 mm.mrad

Stacker Layout

"what to try to avoid..." from P.Bolton

Spectral Control Principle

Production of the 3D ellipsoidal pulse

Two solutions proposed

Pulse Stacker

- Too complex
- Too lossy
- Uses too much space
- Technically feasible with many \$\$\$\$\$ for
 - controls, to achieve alignment, timing
 - measurement to adjust amplitude coefficient

Spectral Control technique

UV shaping using Four-gratings with masking array in dispersive environment

- Principle :
 - for highly chirp beam ,projects (t,x) into a 2D surface , use masking matrix (2D)
 - A second pair of gratings : same for (t,y)
- masking technology for IR exists
 - but given present difficulties direct UV might be more appropriate; masking technilogy needs to be developed (transmissive or reflective scheme)
- fluence limits on optics (even worse upstream)
- efficiency low
- probably better for space and money than previous solution

Conclusion

- Ideal emission pulse = "3d-ellipsoid" not "beer can"
 - Perfect emittance compensation in high charge regime
 - Impressively less sensitive to tuning parameter
 - tolerances are 1 order of magnitude above those defined for "beer can" pulse
 - More exploration required for L-Band gun
 - Exploration for low gradient gun (10MV/m)
- Ellipsoidal Laser Pulse is a Technical challenge
 - maybe slightly more challenging than "beer can" generation?
 - if direct UV shaping is considered for "beer can", the "ellipsoid generation" shares many of the same difficulties

References

- [1] Yang, Sumitomo Industries
- [2] B.Graves, DUVFEL
- [3] J.Schmerge, GTF
- [4] O.J.Luiten, et al. "How to realize uniform 3-dimensional ellipsoidal electron bunches", Phys.Rev. August 2004

