Study of Secondary Emission Enhanced Photoinjector

Xiangyun Chang, Ilan Ben-Zvi, Andrew Burrill, Peter D. Johnson, Jörg Kewisch, Triveni S. Rao, Zvi Segalov, John Smedley and YongXiang Zhao

Introduction

Schematic diagram of a secondary emission enhanced photoinjector

Temperature distribution for Cooling

Charge=20nC/bunch
Repetition frequency=9.4MHz
Radius R>10mm
Primary electron energy EPri=10keV
Diamond thickness rDmd=30 µ m
Al thickness tAl=800nm
Peak RF field on cathode
E0=15MV/m
SEY=300
Temperature on diamond edge
Tedge=80K
Primary electron pulse length

PlsPri=10deg

R		10mm	12.5mm	15mm
Primary	power=	6.3(W)	6.3(W)	6.3(W)
Secondary	power=	7.6(W)	7.6(W)	7.6(W)
RF	power=	7.5(W)	20.0(W)	48. 6(W)
Replenishment	power=	0.04(W)	0.05(W)	0.05(W)
Total	power=	21.4(W)	33. 9(W)	62. 5(W)

Edge Temperature effects

Temperature distribution for e-cooling (tAl=800nm)

diamond thickness effects

Electron and hole transmission measurements

The sample holder

Experiments

Main results

- Polycrystalline diamond ($200\,\mu\text{m} \times \phi6mm$). 0eV<Epri<6keV, 0<Ipri<5 μ A. No transmission is observed ($I_{Sec} < 1nA$) Presumably due to the poor diamond quality and very high concentration of charge carrier traps.
- "Single-crystal" diamond ($200 \mu m \times \phi 6mm$). Primary current amplification from 2 to more than 200.

The current gain increased with time (of the order of minutes) presumably due to temperature rise in the diamond

At LN temperature (80K) the gain is 3 orders of magnitude lower than at room T (300K)

SEM picture

Electron transmission

Similar transmission gain was obtained for electrons and for holes under similar conditions (low primary energy and current, same electric field but at different polarities).

Summary

- Simulations show the feasibility of the Secondary Emission Enhanced Photoinjector.
- We measured transmission current through 200µm "single-crystal" diamond. The amplification of primary current is in excess of 200.
- Transmission is strongly dependent on diamond temperature. Poor diamond (too many traps and small grain size) was used. Better diamond quality is required.

Future Plans

- > Improve sample quality
- > Use thinner sample
- > Measure electron transmission and emission
- > High charge measurement
- > Temperature dependence
- > RF test
- > Capsule design and test

Trapping

Pulsed primary electron beam, Hydrogenated surface

Copper Film (Primary)
248 nm Laser
Electrons

Measurements

Sample:

Polycrystalline,

30 μm thick, 1 cm diameter on Si ring

Optically transparent

Undoped, $50 \text{ M}\Omega$ across

Cu on incident face

Primary electron:

Pb photocathode biasable

12 ns, 248 nm laser

Measurement:

Charge sensitive preamp.

Integration time of 1 µs

Charge vs Cathode Bias

No bias across diamond

Electron emission through hydrogenated surface Electron gain modulated by induced charge