State-of-the-Art of Electron Guns and Injector Designs

32nd ICFA Advanced Beam Dynamics Workshop on Energy Recovery Linacs

Newport News, VA – March 19, 2005

Acknowledgement for AES Programs

AES	BNL	JLAB	LANL
A. Todd	I. Ben-Zvi	S. Benson	P. Cole
A. Ambrosio	A. Burrill	D. Douglas	S. Kur
H. Bluem	R. Calaga	F. Dylla	D. Ngu
A. Burger	P. Cameron	W. Funk	W. Rea
V. Christina	X. Chang	C. Hernandez-Garcia	D. Ree
M. Cole	H. Hahn	J. Hogan	D. Sch
A. Favale	D. Kayran	P. Kneisel	R. Wo
M. Falletta	J. Kewisch	J. Mammosser	
D. Holmes	V. Litvinenko	G. Neil	TechS
E. Peterson	G. McIntyre	L. Phillips	L. You
J. Rathke	A. Nicoletti	J. Preble	
T. Schultheiss	J. Rank	R. Rimmer	
R. Wong	J. Scaduto	C. Rode	
C	T. Srivinvasan-Rao		
ANL	K. Wu		

A. Zaltsman

Y. Zhao

ANL

J. Lewellen

Tunnel Dust

V. Nguyen-Tuong

FZR

D. Janssen

- estock
- ennoy
- uyen
- ass
- es
- irage
- od

ource

ung

Energy Systems, Inc. Advanced

AMMT - ERL W/S - 03/05 - 2

Other Acknowledgements

Boeing Gun Material: David Dowell & John Adamski JLAB FEL Material: George Neil & Carlos Hernandez-Garcia Cornell ERLP Material: Charles Sinclair et al. 4 GLS Material: Elaine Seddon & Michael Dykes BINP Recuperator Material: Nikolay Vinokurov JAERI FEL Material: Eisuke Minehara et al. "LUX" Gun Material: Robert Rimmer

The US projects reported in this paper were supported by the US Department of Energy, the National Science Foundation, Cornell University, the Naval Sea Systems Command, the Office of Naval Research, the DOD Joint Technology Office, the Missile Defense Agency and their predecessors. The International projects were supported by the cognoscent UK, Japanese and Russian Government Agencies.

Outline

• ERL Injector Requirements

• Active Injector Programs

(With Exceptions: Photocathode Injectors > 100 mA)

- > DC Guns
 - JLAB IR FEL Injector (10 mA)
 - 4GLS ERLP Injector (6.5 mA)
 - Cornell ERL Prototype Injector
 - AES/JLAB 100 mA FEL Injector
 - BINP FEL Injector (Thermionic)
 - JAERI FEL Injector (Thermionic 40 mA)
- > Normal-Conducting Guns
 - Boeing RF Gun (32 mA and Retired but Still the State-of-the-Art)
 - LANL/AES RF Gun
 - "LUX" Gun
- > SRF Guns
 - AES/BNL SRF Gun
- > Other Concepts and Issues (Not Explicitly Addressed)
 - Cathodes and Drive Lasers
 - Doubly Resonant Guns
 - Coaxial Coupling (TU-Eindhoven, FZ-Rossendorf, AES)

Conclusions

Active ERL & Gun Performance Summary

DEVICE	JLAB	AES/JLAB	Cornell	Daresbury	JAERI	BINP	Boeing	LANL/AES	LUX	BNL/AES	4GLS
PARAMETER	ERL FEL	Injector	ERLP	ERLP	ERL	ERL FEL	Injector	Gun	Gun	Gun/ERL	ERL
Gun Type	DC	DC	DC	DC	DC	DC	NCRF	NCRF	NCRF	SRF	SRF (NCRF)
Injector and ERL											
RF Frequency (MHz)	1497	748.5	1300	1300	499.8	180	433	700	1300	703.75	1300
PRF (MHz)	74.85	748.5	1300	81.25	10.41 (83.3)	11.2 (90)	27	33.3 (350)	1300	351.88	1300 (0.001)
Charge/Bunch (nC)	0.133	0.133	0.077	0.080	0.5	1.7	4.75	3.0	1.0	1.4	0.080 (1.0)
Current (mA)	10	100	100	6.5	5 (40)	20 (150)	32 (132 Peak)	100 (1050)	1300	500	100 (0.001)
Injector Energy (MeV)	7	7	5 - 15	8.35	2.5	2	5	2.5		2	10 (150)
Transverse RMS Normalized Emittance	< 7 (7)	1.2	< 1.0	1.5	30	32 (15)	~ 7	6		5.5	0.5
Longitudinal RMS Emittance (keV-psec)	17 (80)	44	21	13.3				145		42	
RMS Bunch Length (psec)	3.2 (0.35)	6.3	2.0	4.0		50				7.2	
RMS Energy Spread (%)	0.1 (0.13)	0.5	0.12	0.24		< 1	~ 3	0.5		3.1	
ERLP Energy (MeV)	160	N/A	? 100 ?	35	17	12.8 (14)	N/A	N/A	N/A	20	
ERL Energy Goal (MeV)	200	N/A	5000	35		40	N/A	N/A	N/A	40	600 (1000)
Electron Gun											
DC Gun Voltage (kV)	350	500	500 - 750	350	230	300	N/A	N/A	N/A	N/A	N/A
Gun Accelerating Field (MV/m)	4	7	8	4		1		7/7/5	20/13/13	20	25 (TBD)
Cathode Material	GaAs	GaAs	GaAs	GaAs	Thermionic	Thermionic	CsKSb	Multi-Alkali	TBD	Diamond/Alkali	Diamond/Alkali
Drive Laser FWHM Pulse Length (psec)	44	44	30	20	N/A	N/A	53	16		TBD	10
Laser Wavelength (nm)	527	527	527	527	N/A	N/A	527	527		527	527
Laser Power at 5% QE (W)	0.5	5	5	0.325	N/A	N/A		5 (53)		0.2 / 25	5 (~0)
Booster (DC) / Gun (RF) Parameters											
Туре	SRF	SRF	SRF	SRF	SRF	NCRF	N/A	N/A	N/A	N/A	N/A
Geometry (Cavities x Cells)	2 x 5	4 x 1	5 x 2	2 x 9	2 x 1	3 x 1	1 x 1.5 + 1 x 3	1 x 2.5	1 x 2.5	1 x 0.5	1 x 3.5 (TBD)
Couplers per Cavity / Type	1 / WG	1/COAX:1/WG	2 / COAX	2 / WG		1 / COAX	2 / WG	2 / WG	3 / WG	2 / COAX	TBD
Coupler Power (kW)	50	350	50			50 (200)		500		500	TBD
Status	Operational	Assembly	Fabrication	Fabrication	Operational	Operational	Retired	Fabrication	Analysis	Design/Fab	Analysis
Comments	Measured	3rd Harmonic	May go straight	Performance is	(Upgrade)	(Upgrade)	Results are for	(Higher PRF)	Performance	Diamond Gain=125	CW (Pulsed)
	Performance at	Linearizer	to 5 GeV ERL from	after the Injector			25% Duty Factor		at CW Rating	ERL will have	
	the Wiggler	Cavity Not	NSF-Funded		Photocathode	1st Cavity Buncher			Not Analyzed	Solenoid - Analysis	Performance is
	Projected Injector	Used in Analysis	Injector Demo		Under					has NO Emittance	after the Injector
	Performance				Development					Compensation	

KEK ERLP and ERL have parameters similar to the Cornell devices but propose an RF gun

RHIC electron cooling seeks 20 nC bunches at 9.4 MHz for an average current of ~200 mA => 1.5 cell gun (1 MW RF) to ~ 5 MeV and no booster

AES/JLAB injector is a suitable driver for a 100 kW IR FEL

AMMT - ERL W/S - 03/05 - 5

High-Current ERL Injector Requirements

- Output energy ~ 7 MeV (2 15)
- CW average current ~ 200 mA (100 500)
- Transverse emittance < 6 microns rms normalized (2 6)
- Longitudinal emittance < 145 keV-psec rms (25 145)
- Bunch length ~ 4 psec (2 7)
- Energy spread < 0.5 % (0.1 0.5) @ 7 MeV
- RF frequency ~ 700 MHz (500 1300)
- 500 kW RF feedthroughs (50 500)
- Photocathode with visible response

AMMT - ERL W/S - 03/05 - 6

The Boeing Gun: Still the Demonstrated State-of-the Art

Material Courtesy David Dowell and John Adamski

AMMT - ERL W/S - 03/05 - 7

High-Current Electron Injector Options

AMMT - ERL W/S - 03/05 - 8

Photo-Injector Technology Issues (Personal View)

DC Guns with SRF Boosters

- Maximum achievable gradient & voltage (~ 7 MV/m & ~ 500 kV) wrt. field emission and breakdown
- Maximum achievable bunch charge (~ 1 nC) wrt. performance requirements due to reduced initial accelerating gradient and space charge effects
- Ion backbombardment and GaAs (or other) cathode performance/lifetime
- That said: relatively mature technology that will likely deliver 100+ mA injectors

NC RF Guns

- Maximum achievable gradient (~ 10 MV/m) wrt. thermal stress limits
- Efficiency penalty and cost due to impedance and ohmic losses
- Achievable vacuum conditions & visible cathode selection (multi-alkali?)/performance/lifetime
- That said: uncertain path forward largely because of cathode issues but still the state-of-the-art

SRF Guns

- Maximum achievable gradient (~ 20 MV/m) wrt. peak gun fields
- Viable choke joint design and cathode compatibility with SRF environment and contamination
- Cathode selection (diamond?)/performance/lifetime but excellent vacuum properties
- Least mature but most desirable option delivering RF gun performance with DC gun efficiency

All Technologies

- Dark current limit
- RF power delivery
- HOM, wakefield and BBU issues at high beam power
- CSR in compression sections

JLab 10 kW Upgrade IR FEL Injector demonstrated

performance

Gun Type	DC
Injector and ERL	
RF Frequency (MHz)	1497
PRF (MHz)	74.85
Charge/Bunch (nC)	0.133
Current (mA)	10
Injector Energy (MeV)	7
Transverse RMS Normalized Emittance	< 7 (7)
Longitudinal RMS Emittance (keV-psec)	17 (80)
RMS Bunch Length (psec)	3.2 (0.35)
RMS Energy Spread (%)	0.1 (0.13)
ERLP Energy (MeV)	160
ERL Energy Goal (MeV)	200
Electron Gun	
DC Gun Voltage (kV)	350
Gun Accelerating Field (MV/m)	4
Cathode Material	GaAs
Drive Laser FWHM Pulse Length (psec)	44
Laser Wavelength (nm)	527
Laser Power at 5% QE (W)	0.5
Booster Accelerator	
Туре	SRF
Geometry (Cavities x Cells)	2 x 5
Couplers per Cavity / Type	1 / WG
Coupler Power (kW)	50
Status	Operational

- Pulsed operation at 8 mA/pulse (110 pC/bunch) in 16 ms-long pulses at 2 Hz repetition rate
- CW operation at 9.1 mA (75 MHz) with 122 pC/bunch
- Routinely delivers 5 mA CW and pulse current at 135 pC/bunch for FEL operations
- 400 A peak current at wiggler

350 kV DC GaAs Photocathode Gun

Material courtesy Carlos Hernandez-Garcia

flerson C

PARMELA-based calculations* through the first cryo-module show that the longitudinal emittance grows independently of energy due to longitudinal space charge effects

The intrinsic longitudinal emittance keeps increasing with higher energy, but is smaller at the end of the cryo-module for the longest injected bunch

efferson (

LINERI

JAERI ERL FEL

AMMT - ERL W/S - 03/05 - 12

Material Courtesy E. J. Minehara et al.

BINP Recuperator FEL

		7	6	5		4 3	
Gun Type	DC	12	Ī	Ī	-		
Injector and ERL							1
RF Frequency (MHz)	180	▏ <u>┣</u> ╏╌ <u></u> ┛┛┛┙	┣═╕┽╘╕┽╘╕┽╢	╕┽╘╕┽╘╕┽╘	╡┥ <mark>╘</mark> ╡┥ <mark>╘</mark> Ҩ┍┷ <mark>┙</mark> ᢂ╴Ӎ	┍_┲╼ ╸ݖ ┍ ╗╷╷╔───	-
PRF (MHz)	11.2 (90)						
Charge/Bunch (nC)	1.7					10	
Current (mA)	20 (150)	11	8	9		10	
Injector Energy (MeV)	2			12 14	-		
Transverse RMS Normalized Emittance	32 (15)		Contraction in the second				
Longitudinal RMS Emittance (keV-psec)							X
RMS Bunch Length (psec)	50		~				
RMS Energy Spread (%)	< 1				7115		-5-
ERLP Energy (MeV)	12.8 (14)				A CAR		0
ERL Energy Goal (MeV)	40			PA PA		Staller.	10
Electron Gun				1.71		7 19 11	
DC Gun Voltage (kV)	300		- 18				15
Gun Accelerating Field (MV/m)	1		1 6	A 25			1
Cathode Material	Thermionic					- blood and and and	
Drive Laser FWHM Pulse Length (psec)	N/A		HIM	A Dente			1
Laser Wavelength (nm)	N/A			K-J Rak		And the second s	224
Laser Power at 5% QE (W)	N/A					Contraction in the local division in the loc	
Booster Accelerator						The Course	
Туре	NCRF						
Geometry (Cavities x Cells)	3 x 1						_
Couplers per Cavity / Type	1 / COAX						
Coupler Power (kW)	50 (200)						
Status	Operational	~			N		
BDCM : beam current monito	or	H Z O H	78 BW	7 m v 😢 🕈			2 00
MS · focusing solonoid		MS: MXY MXY MS: MA	MX) MS				N N
IVID . IUCUSING SUICHUIU							
wikit : steering magnet	GUN		<mark>∙</mark>			$\longrightarrow $ $ \longrightarrow $ $ \longrightarrow $	
RFC : RF cavity			┶╹┓┲╎	᠆ᠾ᠊ᢦ᠇ᠴᠿ			7
BWBM : strip line monitor			/ \	\	/		
BPM : bean position monitor			/	\	/	$\backslash / \langle \rangle$	
			L		L		

AMMT - ERL W/S - 03/05 - 13

Material Courtesy Nikolai Vinokurov

Daresbury ERLP Injector

Gun Type	DC
Injector and ERL	
RF Frequency (MHz)	1300
PRF (MHz)	81.25
Charge/Bunch (nC)	0.080
Current (mA)	6.5
Injector Energy (MeV)	8.35
Transverse RMS Normalized Emittance	1.5
Longitudinal RMS Emittance (keV-psec)	13.3
RMS Bunch Length (psec)	4.0
RMS Energy Spread (%)	0.24
ERLP Energy (MeV)	35
ERL Energy Goal (MeV)	35
Electron Gun	
DC Gun Voltage (kV)	350
Gun Accelerating Field (MV/m)	4
Cathode Material	GaAs
Drive Laser FWHM Pulse Length (psec)	20
Laser Wavelength (nm)	527
Laser Power at 5% QE (W)	0.325
Booster Accelerator	
Туре	SRF
Geometry (Cavities x Cells)	2 x 9
Couplers per Cavity / Type	2 / WG
Coupler Power (kW)	
Status	Fabrication

Material Courtesy Elaine Seddon and Michael Dykes

AMMT - ERL W/S - 03/05 - 14

Cornell University Cornell ERL Prototype Injector

Gun Type	DC	
Injector and ERL		
RF Frequency (MHz)	1300	
PRF (MHz)	1300	
Charge/Bunch (nC)	0.077	
Current (mA)	100	
Injector Energy (MeV)	5 - 15	D10
Transverse RMS Normalized Emittance	< 1.0	
Longitudinal RMS Emittance (keV-psec)	21	
RMS Bunch Length (psec)	59.7	
RMS Energy Spread (%)	0.12	
ERLP Energy (MeV)	? 100 ?	
ERL Energy Goal (MeV)	5000	
Electron Gun		
DC Gun Voltage (kV)	500 - 750	
Gun Accelerating Field (MV/m)	8	
Cathode Material	GaAs	
Drive Laser FWHM Pulse Length (psec)	30	
Laser Wavelength (nm)	527	Injector Cavity Geometry
Laser Power at 5% QE (W)	5	and Counter Detail
Booster Accelerator		
Туре	SRF	
Geometry (Cavities x Cells)	5 x 2	
Couplers per Cavity / Type	2 / COAX	
Coupler Power (kW)	50	
Status	Fabrication	1 📕
Dump	ector and	d Insertion Bend Gun
Received and the second		Linac
Pro	posed El	RL Prototype Layout
Return arc	A 1	2345
Marine Con	0	
/ 100-0		······································

Injector Performance

Material Courtesy Charles Sinclair et al.

100 mA DC Gun & SRF Injector

Objectives & Comments

- Design and fabricate a 100 mA-capable SRF Injector for integration with a JLAB DC Gun.
- Test the device at the JLAB ITS
- JLAB Injector Test Stand (ITS) facility mods have begun with beam tests complete ~ 10/08
- RF procurement is schedule driver

Projected Parameters

Frequency	748.5	MHz
Energy	7	MeV
Current*	100	mA
Bunch Charge	0.133	nC
Transverse Emittance	1.2	mm-mrad rms normalized
Longitudinal Emittance	44	keV-psec rms
Energy Spread	0.5	%
Bunch Length	6.3	psec rms

Schedule

- Vacuum vessel, 30 mA RF couplers and four fundamental cavities at JLAB
- Remaining hardware including 100 mA couplers to JLAB by 9/05
- AES will support subsequent assembly & testing

efferson (

AMMT - ERL W/S - 03/05 - 17

DC Gun & SRF Booster Injector

efferson Par

Putting Accelerator Technology to Work

Advance

Harmonic Cavity SRF Injector

NODAL SOLUTION STEP=1 SUB =1 TIME=1 UX (AVG) RSYS=0 DMX =.020369 SMN =-.01473 SMX =.014773

-.01473 -.001452 -.004896 -.001617 .004939 .008217 .011495 .014773

Putting Accelerator Technology to Work

AMMT - ERL W/S - 03/05 - 19

Revised Injector With 3rd Harmonic

Revised DC Injector Schedule

Activity Namo	2004		2005 200	06 2007	2008	
Activity Name	1st 2nd 3r	d 4th 1	st 2nd 3rd 4th 1st 2nd	3rd 4th 1st 2nd 3rd 4th 1	st 2nd 3r	
Task 3 High Current Injector for 100			Harmonic Cavity & RF Couplers	Couplers Must be	Gun Type Injector and ERL	DC
kW			Needed	Processed	RF Frequency (MHz)	748.5
3.1 AES Cryounit				First	PRF (MHZ)	/48.5
Finish cryounit fab			γ	at SNS	Current (mA)	100
Assemble			↓		Injector Energy (MeV)	7
Test			↓		Transverse RMS Normalized Emittance	1.2
3.2 RF/HV/Gun HVPS					Longitudinal RMS Emittance (keV-psec)	44
Low power IOT					RMS Bunch Length (psec)	6.3
High power IOT		1		- T	RMS Energy Spread (%)	0.5
rf high voltage					ERLP Energy (MeV)	N/A
Gun HVPS					Electron Gun	N/A
Gun modifications					DC Gun Voltage (kV)	500
3.3 Installation Activities					Gun Accelerating Field (MV/m)	7
Install rf					Cathode Material	GaAs
Install run HVPS					Drive Laser FWHM Pulse Length (psec)	44
Commission HVPS		-			Laser Wavelength (nm)	527
Modify facility				-	Laser Power at 5% QE (VV)	5
Install Cur						SRE
Anna a start anna a Taata		_			Geometry (Cavities x Cells)	4 x 1
Gun performance Tests		_			Couplers per Cavity / Type	1/COAX:1/W0
750 MHz Cryounit Integration				└── ◆	Coupler Power (kW)	350
Low Power Characterization					Status	Assembly
High Power Characterization						

Putting Accelerator Technology to Work

AMMT - ERL W/S - 03/05 - 21

100 mA Normal-Conducting Injector

٠

٠

Projected Parameters

Frequency	700	MHz
Energy	2.54	MeV
Current @ 33.3 MHz*	100	mA
Bunch Charge*	3	nC
Transverse Emittance	6	mm-mrad rms normalized
Longitudinal Emittance	145	keV-psec rms
Energy Spread	0.5	%
Bunch Length		psec rms

* > 100 mA-capable but no cathode at present.

Schedule

yet funded)

• Design fully developed

MV/m (no cathode)

- Drawings completed explicitly include all machining and process steps
- AES fabrication operations complete 7/05
- AES stack tune complete 8/05

Objectives & Comments

Design and fabricate a 100 mA-capable

Los Alamos (1 A potential @ 350 MHz)

Normal-Conducting Injector for delivery to

Demonstrate CW thermal performance at 7

Demonstrate 100 mA beam performance (not

- AES stack braze complete 9/05
- AES deliver cavity to LANL 9/05
- Thermal test complete ~ 12/05
- Beam test possible by ~ 6/07

CHINOLOGY CALL

V

Waveguide Halves with Brazed on Coolant Covers

3 of 4 halves other half in machining

Coolant covers

Energy Advanced

AMMT - ERL W/S - 03/05 - 24

Cells Plated and Ready For Brazing

Cell 2

Cell 1

Cell 3

Putting Accelerator Technology to Work

AMMT - ERL W/S - 03/05 - 25

Brazed Manifolds

Septum Manifolds

Cell and Waveguide Manifolds

AMMT - ERL W/S - 03/05 - 27

Waveguide Iris Machining

Coolant Channels

Cover

Ready for Plating

NATIONAL LABOR

RF Photoinjector Summary

	Gun Type	RF
	Injector and ERL	
	RF Frequency (MHz)	700
	PRF (MHz)	33.3 (350)
	Charge/Bunch (nC)	3.0
	Current (mA)	100 (1050)
	Injector Energy (MeV)	2.5
	Transverse RMS Normalized Emittance	6
	Longitudinal RMS Emittance (keV-psec)	145
	RMS Bunch Length (psec)	
	RMS Energy Spread (%)	0.5
	ERLP Energy (MeV)	N/A
	ERL Energy Goal (MeV)	N/A
	Electron Gun	
	DC Gun Voltage (kV)	N/A
	Gun Accelerating Field (MV/m)	7/7/5
	Cathode Material	Multi-Alkali
	Drive Laser FWHM Pulse Length (psec)	16
	Laser Wavelength (nm)	527
	Laser Power at 5% QE (W)	5 (53)
	Booster Accelerator	
É.	Туре	N/A
L	Geometry (Cavities x Cells)	1 x 2.5
ŀ	Couplers per Cavity / Type	2 / WG
	Coupler Power (kW)	500
	Status	Fabrication

Putting Accelerator Technology to Work

105 amos ۲ AMMT - ERL W/S - 03/05 - 28

The "LUX" Gun

Material Courtesy Robert Rimmer

RF

1300

1300

1.0 1300

N/A

N/A

N/A 20/13/13

TBD

N/A

1 x 2.5

3/WG

Analysis

AMMT - ERL W/S - 03/05 - 29

BNL ERL

AMMT - ERL W/S - 03/05 - 30

2

SRF Injector Design

reconducting Cavity at 748.5 MHz w TD Choke F = 748.51983 MHz

Projected Parameters

Frequency	703.75	MHz
Energy	2	MeV
Current	500	mA with PRF of 352 MHz
Bunch Charge	1.33	nC
Transverse Emittance*	5.5	mm-mrad rms normalized
Longitudinal Emittance*	42	keV-psec rms
Energy Spread*	3.1	%
Bunch Length*	7.2	psec rms

* No emittance compensation in analysis solenoid will be used

Objectives & Comments

- Design & fabricate a 0.5-cell Superconducting RF gun & choke joint fed by two 0.5 MW RF power couplers
- Test device on the BNL ERL
- Collaboration with JLAB, BNL, FZR & other FEL stakeholders

Schedule

- Choke configuration downselected 6/04
- Preliminary design review 1/05
- Niobium ordered 12/04
- Testing alternate choke joint completed 2/05
- Fabrication completed by ~ 3/07
- Initial testing completed at BNL by ~ 12/07

SRF Gun Performance Goals

- 703.75 MHz
- 1.42 nC @ 703.75 MHz => 1 A
- For $1 \text{ A} \Rightarrow 2 \text{ MeV}$ delivered
- 2 MW into ¹/₂ cell
- 2 opposed 1 MW couplers
- $\frac{1}{2}$ cell => ~ 0.1 m
- $2 \text{ MeV} / 0.1 \text{ m} \Rightarrow ~ 20 \text{ MV/m}$

Jefferson C

Gun Type	SRF
Injector and ERL	
RF Frequency (MHz)	703.75
PRF (MHz)	351.88
Charge/Bunch (nC)	1.4
Current (mA)	500
Injector Energy (MeV)	2
Transverse RMS Normalized Emittance	5.5
Longitudinal RMS Emittance (keV-psec)	42
RMS Bunch Length (psec)	7.2
RMS Energy Spread (%)	3.1
ERLP Energy (MeV)	20
ERL Energy Goal (MeV)	40
Electron Gun	
DC Gun Voltage (kV)	N/A
Gun Accelerating Field (MV/m)	20
Cathode Material	Diamond/Alkali
Drive Laser FWHM Pulse Length (psec)	TBD
Laser Wavelength (nm)	527
Laser Power at 5% QE (W)	0.2 / 25
Booster Accelerator	
Туре	N/A
Geometry (Cavities x Cells)	1 x 0.5
Couplers per Cavity / Type	2 / COAX
Coupler Power (kW)	500
Status	Design/Fab

Putting Accelerator Technology to Work

AMMT - ERL W/S - 03/05 - 32

Thermal Load Estimates

RF & Passive Thermal Load (W)	FZR Choke	QW Choke	
For Representative Field Gradients	11	140	
QW Choke Thermal Load	Conventional	Diamond	
For 1 A CW Current	Cathode	Cathode	
QE (%)	5	625 (125 Gain)	
Photocathode Laser Power (W)	50	0.4	
Laser Power Deposited (W)	25	0.2	
RF & Passive Thermal Load (W)	140	140	
Primary Electrons (W)	0	50	
Secondary Electrons (W)	0	34	
Total Thermal Load @ 1 A (W)	165	224	
Total Thermal Load @ 0.5 A (W)	153	182	

Cryomodule Cutaway

Putting Accelerator Technology to Work

Advanced

Cathodes and Drive Lasers

Ċ.

Putting Accelerator Technology to Work

5

5

Material	QE Range	Drive Laser Wavelength	<i>ithode Fa</i>	^{ncuum} Re	rive Lase
Thermie vie Ewitters			ິບັ		Q
Inermionic Emitters	N/A	N/A	Easy	10 1	N/A
Metal (Cu, Mo)	~0.02-0.06%	260 nm, UV	None	10 ⁻⁷ T	Very Difficult
CsTe	1 0-14%	260 nm, UV	Easy	10 ⁻⁹ T	Difficult
LaB ₆	~0.1%	355 nm, UV	Easy	10 ⁻⁷ T	Very Difficult
GaAs (Cs)	1-5%	532 nm	Moderate	10 ⁻¹⁰ T	Moderate
CsK ₂ Sb	10-14%	532 nm	Difficult	10 ⁻¹⁰ T	Moderate
Dispenser (Multi-Alkali)) 10-14%	532 nm	Difficult	10 ⁻¹⁰ T	Moderate
Diamond (Multi-Alkali)	< ~ 1000%	532 nm	Very Difficult	10 ⁻⁷ T	Easy
Carbon Nanotube	TBD	260 nm	Difficult	10 ⁻⁷ T	Difficult
Field Emitters (Ti)	0.1-1%	260 nm	Difficult	10 ⁻⁷ T	Difficult

Modification of a David Dowell Chart

AMMT - ERL W/S - 03/05 - 38

High-Current Injector Option Summary

Performance

- Output energy ~ 7 MeV (2 15)
- CW average current ~ 200 mA (100 500)
- Transverse emittance < 6 microns rms normalized (2 6)
- Longitudinal emittance < 145 keV-psec rms (25 145)
- Bunch length < 4 psec (2 7)
- Energy spread < 0.5 % (0.1 0.5) @ 7 MeV
- RF frequency ~ 700 MHz (500 1300)
- 500 kW RF feedthroughs (50 500)
- Photocathode with visible response

AMMT - ERL W/S - 03/05 - 39

AES Programs and Status

High-current injector development is a key technology issue for ERL devices

- JLAB: DC Gun & SRF Cryomodule at 748.5 MHz Most SRF booster components at JLAB
 Cleaning and assembly has begun at JLAB with AES participation
 JLAB Injector Test Stand has been authorized
 RF delivery leads to high-current testing in 2008
- Los Alamos: Normal-Conducting Gun at 700 MHz AES will deliver gun to Los Alamos in 2005 Available 1 MW of RF will deliver thermal test in late 2005 Beam test with 2 or 3 MW of RF is not presently funded
- BNL: Superconducting RF Gun at 703.75 MHz

Least mature option

Final design proceeding for delivery to BNL in early 2007 BNL ERL facility will demonstrate 0.5A operation in late 2007

Conclusions

Three technology options for > 100 mA ERL injectors:

√ DC Guns with SRF Boosters

- Will deliver the required performance at 100 mA current level but may not extrapolate to the Ampere-level
- Relatively mature approach and suitable for near-term deployment
- Cathode issue is largely solved for this technology at the 100 mA current level

✓ Normal Conducting RF Injectors

- Still the state-of-the-average-current-art (Boeing Gun)
- Will deliver the required performance at 100 mA current level and is extrapolable to the Ampere-level
- Multi-alkali approach probable but cathode solution is still uncertain
- Achievable gradient limited by thermal constraints
- Least attractive option because the associated inefficiency is undesirable

? Superconducting RF (SRF) Injectors

- Least mature option and unproven at high-average current
- The most desirable approach if it works, since, in principle, it delivers the better RF performance at DC gun efficiency levels
- Highest accelerating gradient and thus potentially compact option
- Must demonstrate a compatible cathode technology and power handling

Must demonstrate practical, compatible cathode and drive laser options for each injector type

Must pay attention to HOM, BBU and CSR issues in injectors

Must successfully demonstrate high RF power handling

AMMT - ERL W/S - 03/05 - 40

Advanced Energy Systems

Mission Statement

AES seeks to be the supplier of choice for advanced radiation sources based on high-brightness electron accelerator technology.

Product Areas

• Advanced Radiation Sources

- Free Electron Lasers (FEL)
- High-Power Microwaves (HPM)
- High-Power TeraHertz (THz) Sources
- Tunable, Monochromatic X-Ray Sources

• Turnkey Accelerator Systems & Components

- Photocathode Injectors
- Superconducting RF (SRF) Accelerators
- Normal-Conducting Accelerators
- Beam & Optical Transport Systems
- Turnkey Beamlines

• Integrated Engineering & Physics Services

Backup Material

AMMT - ERL W/S - 03/05 - 42

SRF Gun Physics Design - I

2×101

1×10-3

AES analysis (0.5 cell gun and 3 cell SRF booster with no solenoid) yields 4.1 mm-mrad rms transverse emittance, 47 keV-psec rms longitudinal emittance with 1.4% rms energy spread at 7 MeV and 1 A

Diamond-Amplified Photocathode

Material Courtesy Ilan Ben-Zvi

