Diagnostics and synchronization (emphasis on ERL)

Ph. Piot, Fermilab/NICADD Photoinjector Laboratory (FNPL)

Outline

- introduction
- •Transverse diagnostics
- Longitudinal diagnostics
- •Synchronization issues

Some considerations

•ERL

- •High average current, CW operation,
- •Precise knowledge of longitudinal transfer functions
- •Non-interceptive monitors
- •Some diagnostics need to resolve both accelerated ("fresh") and decelerated ("used") beams

•Pulsed mode "tune-up"

- •Transverse parameters, emittance
- •Bunch length, energy spread
- •Beam halo

•CW operation

•Diagnostics should be non-interceptive

transverse phase space measurements

Device Type	Invasive	Single shot	measurement	resolution
OTR	Yes but high power OK	Yes	2D density	diffraction limited
SR	No but δp/p mainly	Yes	2D density, beam size (slits)	?
ODR	No	Yes	Beam size	few microns
Residual gas monitor	No	Yes	Beam profile	few microns
Wire (scanner, laser, Shintake)	Yes	No	Beam profile	few microns
90deg Compton scattering	No	Yes	2D density	few microns

Transverse phase space measurements

•Lattice measurement (BPM)

- •Transverse phase space parameters:
 - •Slits technique
 - •Envelope fitting technique:
 - •Quad. scan/tomography
 - •Multi-monitor

M. Geitz et al. (EPAC1998)

TTF-2 / XFEL design (2001)

Transverse beam position

- •In an energy recovering linac there can be locations with both fresh and used beam.
- •Low repetition rate recirculating linacs with long recirculation path length (CEBAF), electronic needs to have a response time shorter than the once-around time
- •For CW ERL, double frequency BPMs seem to be the easiest: measurements of fundamental and 2nd harmonic can provide both position of the "fresh" and "used" beam

G. Krafft et J.-C. Denard (BIW2002)

Transverse beam 2nd order moments

•Old idea (1983) by R. Miller *et al.*: using beam position monitor to infer beam second order moments, implemented at Los Alamos

$$\left\langle x^{2} \right\rangle - \left\langle y^{2} \right\rangle + \left\langle x \right\rangle^{2} - \left\langle y \right\rangle^{2} \propto$$

$$\frac{V_{R} + V_{L} - V_{T} - V_{B}}{V_{R} + V_{L} + V_{T} + V_{B}}$$

T,B,L,R: top, bottom, left right electrodes

Figure 1: Quadrupole cavity a) 2-D geometry with field pattern and b) 3-D geometry with waveguide network. a) b)

Bend Angle (Degrees)

•Specially designed TM220 cavity (f=11.4 GHz) is being tested by SLAC/FarTech

C. Nantista et al. (LINAC2002)

Transverse beam density

•OTR can be non-interceptive: either by using very thin, low Z, radiators (CEBAF uses 0.25 μ m C-foil) or grid wires (recent measurements at ATF Maryland/BNL, ATF Newsletter feb05)

Measurement at CEBAF (1996)

Transverse beam density

0.45

0.4 0.35

0.3

0.25

0.2 0.15 0.1

0.05

•The C-foil-based OTR diagnostics was verified to be non-interceptive, could also measure CW beam with 200µA at CEBAF

- •Used from 800 MeV
- •Higher current should in principle be possible (depending on spot size)

•Special care, e.g. using of band pass filter because black body radiation

Entries

97/01/08 14.02

27-12-1

COMPARISON BETWEEN BUN13174 (OTB IN) AND BUN 13175 (OTB OUT)

Measurement at CEBAF/Hall C (1998)

Residual gas monitors

- •Non-invasive profile monitor
- •Electrons ionize residual gas molecules in vacuum H2, O2, N2,...
- •Ions (or electrons) drifte toward an MCP by applying a DC voltage,
- •signal is recorded by a video camera

Babarin et al. EPAC 2004

Halo monitors

•A series of OTR radiator with bored hole with different diameter are mounted on an insertion device

- •Non-bored radiator provides the core beam density
- •Bored radiators intercept particle at larger radius

Electron Density (a.u.

•Sensitivity depends on average current (number of bunch) used

Halo monitors

longitudinal phase space measurements

Device Type	Invasive	Single shot	Abs. or rel.	Timing	Min bunch length
Deflecting Cavity	Yes: 3 pulses or tomo.	No	Absolute	No	300 fs (JLab)
Zero-phasing	Yes: 3 pulses or tomo	No	Absolute	No	82 fs (JLab)
Streak camera	No, CSR Yes: 3 pulses	Yes	Absolute	No	200 fs
Coh. Rad. power	<mark>No, CSR</mark> Yes, CTR	Yes	Relative	No	few fs
Coherent radiation autocorrelation	No, CSR Yes, CTR	No	Absolute	No	50 fs (SSRL)
Fluctuation technique	No, CSR Yes, CTR	No	Absolute	No	?
Electro Optic Sampling	No	Yes	Absolute	Yes	20-50 fs (theo.)

Adapted from P. Krejcik (SLAC)

Longitudinal lattice

Measurement of time-of-flight provide a way to quantity the longitudinal transfer function of a lattice (by doing difference measurement corresponding to response to impress excitations) like, for instance, R₅₆ and R₅₅ but also nonlinear coefficients, e.g. T₅₆₆
Signal can be picked-up by cavities (IRDEMO) or ring-type pickup (TTF-2)

Longitudinal lattice

•Difference measurement provides a way to check if the longitudinal lattice performed as devised from simulations

•For day-to-day operation it also provide a method to recover nominal longitudinal lattice settings

•One cavity located where the "fresh" and "used" beam are present provide a way to tune the path length

Measurement on IR-Demo (1998)

ω-domain

•Beam radiate e.m. field (e.g. via transition, synchrotron,... radiation)

10

10¹⁰

adiated power (arb. units) ಕ್ಲಕ್ಕ್ ತೈ ತ

10²

10-3

10⁻²

10-1

10²

10¹

ω (THz)

•1st order correlation of Fourier transform

$$\langle I(\omega)I^*(\omega)\rangle \propto \left[N\overline{\Lambda}(\omega-\omega)+N(N-1)\overline{\Lambda}(\omega)\overline{\Lambda}^*(\omega)\right]$$

Coherent radiation Incoherent radiation •Time autocorrelation of coherent radiation provides:

$$\langle I(\omega)I^*(\omega)\rangle \propto \left[N(N-1)|\overline{\Lambda}(\omega)|^2\right]$$

•Incoherent radiation:

Ne-

$$\langle I(\omega)I^*(\omega)\rangle = e^2 N \overline{\Lambda}(\omega - \omega)$$

ω -domain: coherent radiation $P(\omega) \propto N^2 \left| \overline{\Lambda}(\omega) \right|^2$ close to best compres

•Detecting coherent radiation emitted by the bunch provide a bunch length monitor

•Calibration with other technique may provide a bunch length measurement

•This technique is usually used to phase an upstream linac located prior to a non-isochronous section (bunch compressor chicane)

Detection of coherent transition radiation vs LINAC phase at JLAB IRDEMO (1997)

ω -domain: coherent radiation

•Multi-frequency coherent radiation **monitor** can provide a way to monitor drift in the system and on-set of instability (μ bunching), feedback on bunching

ω -domain: coherent radiation

In the sub-mm regime Martin-Puplett autocorrelation
Information on the bunch form factor theoretically can recover the time-profile

Experimentally: frequency response of radiation beamline needs to be well known
Low frequencies are not transmitted (e.g. due to diffraction)
Technique easier to implement for short bunches

ω -domain: fluctuation technique

•Incoherent "chaotic" light still provides information on the bunch

•Second order spectrum autocorrelation

$$\left\langle \left| I(\omega) \right|^2 \left| I(\omega) \right|^2 \right\rangle = e^4 N^2 \left[1 + \left| \overline{\Lambda}(\omega - \omega) \right|^2 \right]$$

•Variance of the Fourier transform of the spectrum provides the convolution function of the charge distribution

Zolotorev/Stupakov PAC97, Krzwinsky et al TESLA-FEL97-03 (1997)

ω -domain: fluctuation technique

•Proof-of-principle measurement at ATF/BNL

t-domain: streak "cameras"

•best streak cameras have 200 fs resolution (HAMAMATSU fesca-200)

•e- converted to photon (e.g. TR, SR,...)

• streak camera: photons \rightarrow e- \rightarrow streak the e- beam \rightarrow photons \rightarrow imaging on a CCD

•Used of a rf accelerating cavity to directly streak the beam ("0-phasing")

t-domain: streak "cameras" •Used of a rf deflecting cavity to directly streak the beam deflector •rf-deflecting cavity TM110 streaks the beam 15 OFF •Observe streaked beam downstream 0.5 0.2 artical distance [mn deflecto ON 40 $x'(t) \approx \frac{2\pi c}{\lambda_{rf}}$ 20 $x(t) = R_{11}x_0 + R_{12}x'_0(t)$ 02 0.4 horizontal distance [mm] al FPAC2002 •Can also quantify longitudinal phase space shape: (LOLA cavity) hor. deflection + vertical spectrometer $x(t) = R_{11}x_0 + R_{12}x'_0(t)$ $y(\delta) = R_{33}y_0 + R_{34}y'_0 + R_{16}\delta$

Simulations using a 3.9 GHz dipole cavity

t-domain: electro-optics sampling

•Single-shot using t-x chirp (Cavalieri et al. SLAC/SPPS)

•Single-shot using ribbon laser (proposal BNL)

Synchronization aspects

J. Corlett et al. CERN Courrier (2003)

synchronization aspects

•Example of LUX (LBNL)

•master oscillator designed around a laser oscillator stabilized by an rf oscillator

•Expect stabilization at 10-50 fs

J. Corlett et al. PAC2003 (2003)

Synchronization aspects Femtosecond x-ray stopwatch A. Cavalieri, D. Fritz, S. Lee, P. Bucksbaum, D. Reis and SPPS

Collaboration

Single-Shot Electron Beam Timing Jitter (20 timing measurement shots) Strong Correlation between measured Electron Beam and X-ray beam timing

Summary

•I have tried to summarize possible beam diagnostics for ERL, especially non or quasi-non interceptive diagnostics

•I have not addressed "fancy" diagnostics: Compton scattering, Shintake interferometer, etc...

Acknowledgments

•I have freely borrowed material from many people cited in the previous slides...