WG3: Superconducting RF and RF Control

M. Dykes, J. Knobloch and M. Liepe

WG3: Superconducting RF and RF Control

■ ... to identify critical SRF related items for the construction of ERLs, evaluate the readiness of the related science and technology, and to lay out an R&D path for solving remaining open issues.

Charge

- Review parameter space covered by ERLs, concentrate on the "tough ones" C. Beard, DL
- What are the SRF-related ERL-specific challenges?
- What solutions have already been developed?
- Which components still need more R&D work?
- Organize R&D effort, develop a roadmap to coordinate studies and identify collaborative possibilities

Thematic Areas

- Main Linac Module Development
 - Cavity
 - HOM coupler
 - Tuner
 - Power Coupler
 - **...**
- Injection Linac Issues
- RF System
 - Transmitter
 - RF Distribution
 - RF Control
 - ...
- CW Cryogenics
- Transfer of Technology to Industry

Module Designs

Many types of SRF modules available as baseline design

for ERLs

CEBAF upgrade

W. Funk, T. Grimm, R. Calaga, J. Teichner, J. Knobloch

- ELBE
- BNL
- TESLA
- **...**
- Overview presentations of several systems
- Identify the critical components to be discussed

Cavity Design for ERLs

- Which parameters should one consider?
 - Frequency
 - Shape
 - Number of cells
 - R/Q
 - Beam-tube diameter
- What drives these parameters?
- Which are the most critical?
- Overview of designs, suitability

RHIC electron cooler, 704 MHz

Cornell ERL Injection Linac, 1.3 GHz

HOMs

M. Dolus, DESY

- 100 mA x 2, 77 pC, 0.6 mm bunch
- $\overline{ \cdot P_{\text{total}}} = 160 \text{ W}$
- Also must consider BBU limit and effect on emittance!

HOMs

- How accurately can we predict?
 - HOM Power
 - Cavity spectrum
 - Trapped modes
 - HOM extraction efficiency
 - BBU limit
 - **.**..

HOMs

B. Rimmer, JLAB

- Types of HOM couplers
 - Loop coupler
 - Waveguide coupler
 - Ferrite load
 - Radial transmission line

Kensei Umemori, JAERI

CEBAF

9

Cavity Preparation/QFactor

- For CW operation, *Q* factor is critical
- Overview of cavity production techniques
 - BCP, EP
 - High-pressure rinsing
 - RF/He processing
 - Bakeout
 - Niobium quality
 - **...**
- What else impacts the quality (magnetic shielding, bath temperature, bakeout ...)
- Recipe for cavity production for CW applications
- What *Q* factors can we expect *in a module*? How long is this maintained? What recovery options are there?

P. Kneisel, JLAB

Microphonics

- By definition, ERL cavities are narrow bandwidth
- → Microphonic detuning dominates the power budget

§ 12

- Peak RF power
 - → Cost of RF Transmitter installation
- Average power
 - Thermal aspects of the RF system TESLA, 1.3 GHz
 - → AC operating power of the RF system 30 40 50

No beam loading

Microphonics

Microphonic detuning impacts RF control

Microphonics

M. Liepe, Cornell

- How much microphonics?
- How much can we afford?
 - Installed RF Power
 - Trip Rate
 - **...**
- Spectrum?
 - Identify sources
 - Damping schemes

Damping Microphonics

Passive means of damping microphonic detuning

Mechanical mode no.	With present ring (Ø110) - Hz	With additional ring (Ø180) - Hz
1	33.6	122.9
2	85.7	222.1
3	125.1	425.6
4	152	695.7
5	222.5	830.3
6	248.1	- not given -

Compensating Microphonics

Active means of reducing microphonics T. Grimm, MSU

Piezo compensation

Magnetostrictive Tuner

CARE (JRA-SRF)

R. Carcagno et. al, Fermilab

Tuner Systems

- Overview of existing systems,
 properties E. Daley, JLAB
- Design requirements, mechanical design, resolutions, spectrum
- Reliability issues

RF Control

- Requirements
 - 10⁻⁴, 0.01 deg?
- What drives the requirements
 - Recovery efficiency
 - Bunch jitter and synchronization
- Noise sources
- Overview of options for RF control, simulations,
 hardware performance
 S. Simrock, DESY
- Hardware design (digital, analog, I/Q, A/Phi, sampling frequency, filters etc)
- Feedforward
- Limit on cavity bandwidth, $Q_{\rm L}$ M. Liepe, Cornell

Power Couplers

- Requirements
 - SW ave power, peak power
 - coupler kicks
 - cryogenic losses ...

R. Campisi, SNS

- Overview of existing systems that can serve as baseline designs
 - Coax
 - Waveguide, ...
- Layout
 - Adjustibility
 - Windows
 - Multipacting

RF Sources

- Overview of requirements
 - CW operation
 - Pulsed operation
 - Efficiency
 - Reliability

RF Distribution

- One transmitter per cavity?
 - Expensive
 - Flexible
 - Reliable
- One transmitter for several cavities?
 - Vector sum operation
 - Active modulators in the transmission lines

Cryogenics

- Requirements/loads
 - Per cavity/module/linac
 - Stability
- Optimization of cryogenics/layout B. Petersen, DESY
- Module design/linac layout for ERLs from a cryogenic point of view

Eisuke Minehara, JAERI & J. Knobloch, BESSY

Transfer of Technology

- Overview of industrial capabilities
 H.P. Vogel, ACCEL
 - Present
 - Near-term plans
- Model for industrial production, quality assurance
- Optimization of module design from point of view of:
 - Production/Assembly
 - Alignment
 - Transport
 - Cost
 - ...

Injector Modules

- Requirements and differences to main linac modules
 - Beam loading
 - Emittance dilution
 - Reliability and required redundance
 - **I**...
- Revisit subsystems from point of view of injector modules
- Overview of current designs
- S. Belomestnykh, Cornell

Injector Modules

