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WG3: Superconducting RF and RF
Control

m ... to identify critical SRF related items for the
construction of ERI.s, evaluate the readiness of
the related science and technology, and to lay
out an R&D path for solving remaining open

1ssues.
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Charge

m Review parameter space covered by ERLs,
concentrate on the ,,tough ones* C. Beard, DL

m What are the SRF-related ERL-specific
challenges?

m What solutions have already been developed?
m Which components still need more R&D work?

m Organize R&D effort, develop a roadmap to
coordinate studies and identify collaborative
possibilities
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Thematic Areas

m Main Linac Module Development
Cavity

HOM coupler

Tuner

Power Coupler
_ I

m Injection Linac Issues
m RF System

m Transmitter
m RF Distribution
m RF Control

m ...
B CW Cryogenics
m Transfer of Technology to Industry
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Module Designs

m Many types of SRF modules avaﬂable as basehne design
for ERLs g —— g

\

= CEBAF upgrade
= ELBE

= BNL

m TESLA

: : i o, 25
B Overview presentationkjess everal S st‘e 1T4%

m [dentify the critical cof
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Cavity Design for ERLs

m Which parameters should one consider?

u Frequency RHIC eectron cooler, 704 MHz

. Shape \ R ,-""'I., Nhf‘»Ttl\'gutl;‘l:tnh. ;.—;is;ezlmgn
®m Number of cells "

= R/Q

B Beam-tube diameter

HOM filter
assembly

AN
¢ ™ HOM fitter
assembly

m What drives these parameters?
m Which are the most critical?

m Overview of designs, suitability

Cornell ERL main linac, 1.3 GHz
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* 100 mA x 2, 77 pC, 0.6 mm bunch
P =160 W

* Also must consider BBU limit and effect on emittance!
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HOMs

m How accurately can we predict?
= HOM Power
= Cavity spectrum
® Trapped modes
= HOM extraction efficiency
= BBU limit
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HOMs

B. Rimmer, JLAB

m Types of HOM couplers
® [.oop coupler

= Waveguide coupler

m Ferrite load

m Radial transmission line
Kenset Umemori, JAERI

| !

V. Shemelin, Cofnell
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Cavity Preparation/ Q Factor

m For CW operation, () factor is critical

m Overview of cavity production techniques P. Kneisel, JLAB
BCP, EP

High-pressure rinsing

RF/He processing

Bakeout

Niobium quality

m What else impacts the quality (magnetic shielding, bath
temperature, bakeout ...)

m Recipe for cavity production for CW applications

m What Q) factors can we expect # a module? How long 1s this
maintained? What recovery options are there?
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Microphonics

m By definition, ERL cavities are narrow band-

width

-> Microphonic detuning dominates the power

Monday

budget Lo/

14 ‘ No beam loading

=
N
L

m Peak RF power

(kw)

o .10

> Cost of RF Transniitter installation

6 F

B Average power

Required RF

4 F

- Thermal aspects of thie RE-system  tesia, 13 GHz

> AC operating power’of the RE system = »

Microphonic detuning (Hz) = Bandwidth/2

50
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Microphonics

= Microphonic detuning impacts REF control
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M. Liepe, Cornell MlcrOPhOSI(;l]-CS

= How much mictophonics? é Cavity5 T. Schilcher, DESY
60 | |
B How much can we afford? s G =7 Hz
©
40 | |
m [nstalled RF Power %
(@]
= Trip Rate % 20 L |
... Z 0
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— Spectrum. Microphonics (Hz)

® [dentify sources

= Damping schemes

M. Liepe, Cornell
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Damping Microphonics

m Passive means of damping

microphonic detuning

Mechanical With present ring With additional ring
mode no. (2110) - Hz (2180) - Hz
1 33.6 122.9
2 85.7 222.1
3 125.1 425.6
4 152 695.7
5 222.5 830.3
6 248.1 - not given -

G. Bisoffi

Monday
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Compensating Microphonics

m Active means of reducing microphonics . Grimm, MsU

Piezo compensation
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Tuner Systems

\T”? .

m Overview of existing systems, =

pProperties  E. Daley, JLAB

B Design requirements, mechanical
design, resolutions, spectrum

m Reliability issues

Cornell
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RF Control

B Requirements
= 104 0.01 deg?
m What drives the requirements

m Recovery etficiency
® Bunch jitter and synchronization

B Noise sources

m Overview of options for REF control, simulations,
hardware performance S. Simrock, DESY

m Hardware design (digital, analog, I/Q, A/Phi, sampling
frequency, filters etc)

m Feedforward
® Limit on cavity bandwidth, (J; M Liepe, Cornel
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Power Couplers

B Requirements
m SW ave power, peak power
= coupler kicks

m cryogenic losses ... R. Campisi, SNS

m Overview of existing systems that can
serve as baseline designs

m Coax

= Wavegude, ...
m [ayout

= Adjustibility

m Windows

= Multipacting
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RF Sources

m Overview of requirements
= CW operation

® Pulsed operation

= Efficiency

m Reliability 1.3 GHz g
m Overview of existing systems (klystron, IOT SS-

amphﬁer . .) Mike Dykes, DL & Masaru Sawamura, JAERI
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RF Distribution

m One transmitter per cavity?
= Expensive
m Flexible
m Reliable
B One transmitter for several cavities?
B Vector sum operation

m Active modulators in the transmission lines

20
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Cryogenics

m Requirements/loads

m Per cavity/module/linac

m Stability
m Optimization of cryogenics/layout s peessen DEsY
m Module design/linac layout for ERLs from a

cryogenic point of view

Eisuke Minehara, JAERI & J. Knobloch, BESSY
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Cryogenics
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Transfer of Technology

m Overview of industrial capabilities .. Vogel, ACCEL
m Present

= Near-term plans
m Model for industrial production, quality assurance

m Optimization of module design from point of view of:
® Production/Assembly
= Alignment
® Transport
m Cost
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Injector Modules

m Requirements and differences to main linac
modules

= Beam loading
= Emittance dilution
m Reliability and required redundance

m Revisit subsystems from point of view of
injector modules

m Overview of current designs S. Belomestnykh, Cornell
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Injector Modules

Cornell Injector
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