Modified Fragmentation Functions due to Multiple Scattering in Nuclei

Ben-Wei Zhang

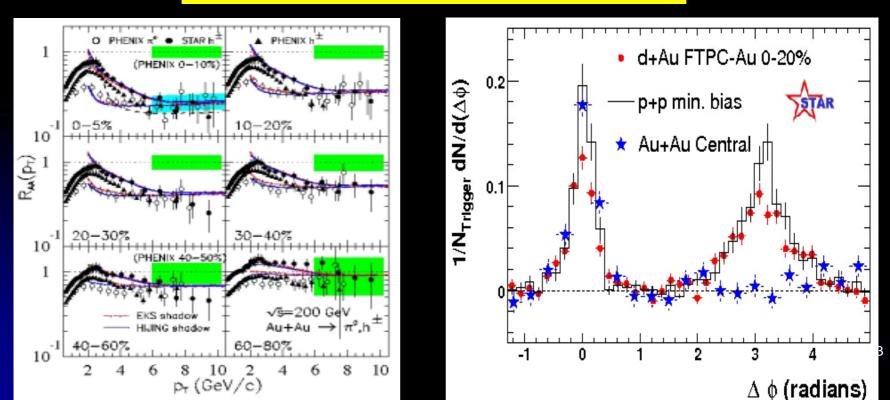
1. Regensburg University, Germany 2. Central China Normal University, China

ECT, Trento ---- October 4, 2005

- Introduction
- Modified heavy quark fragmentation function
- Modified FF due to quark-quark double scattering in nuclei
- Summary

Jet Quenching

X.N. Wang, Nucl.Phys. A750 (2005) 98



Theoretical approaches

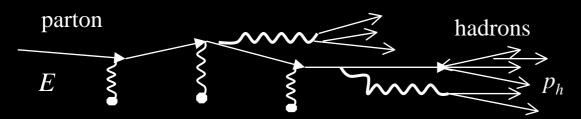
- M. Gyulassy, X.-N.Wang: GW model
- Baier, et al: BDMPS
- Gyulassy, Levai, Vitev: GLV
- Kovner, Wiedemann

.

Zakharov

Twist Expansion approach
 X. Guo, X.-N. Wang, Enke Wang, B.W.Zhang

Jet quenching with pQCD



How to measure the parton energy loss?
Direct measurement is impossible
Particle distributions within a jet
Modification to Fragmentation Function
Obtain the energy loss indirectly from measuring the modification of FF

$$D_{q \to h}(z_h, \mu^2)$$
 $\widetilde{D}_{q \to h}(z_h, \mu^2)$

Modified FF of the Light Quark(I)

$$\frac{dW_{\mu\nu}}{dz_h} = \sum_q \int dx \tilde{f}_q^A(x,\mu_I^2) H^{(0)}_{\mu\nu}(x,p,q) \widetilde{D}_{q\to h}(z_h,\mu^2)$$

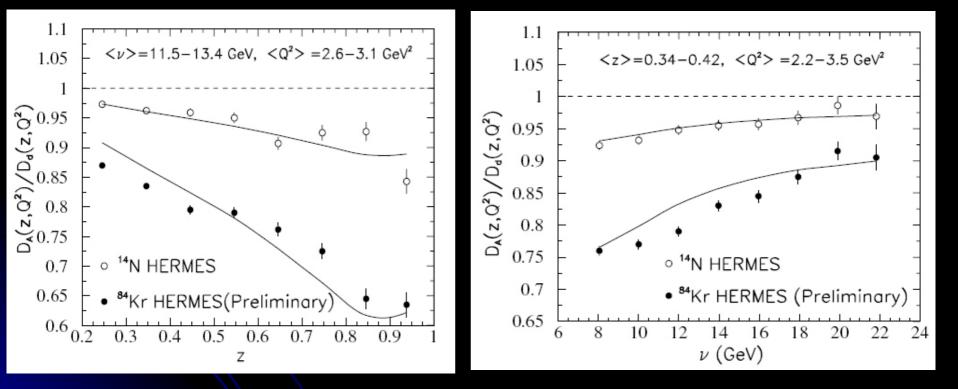
$$\begin{split} \widetilde{D}_{q \to h}(z_h, \mu^2) &\equiv D_{q \to h}(z_h, \mu^2) + \int_0^{\mu^2} \frac{d\ell_T^2}{\ell_T^2} \frac{\alpha_s}{2\pi} \int_{z_h}^1 \frac{dz}{z} \left[\Delta \gamma_{q \to qg}(z, x, x_L, \ell_T^2) D_{q \to h}(z_h/z) \right] \\ &+ \Delta \gamma_{q \to gq}(z, x, x_L, \ell_T^2) D_{g \to h}(z_h/z) \Big] \end{split}$$

$$\begin{split} \Delta \gamma_{q \to qg}(z, x, x_L, \ell_T^2) &= \left[\frac{1 + z^2}{(1 - z)_+} T_{qg}^{A(m)}(x, x_L) + \delta(1 - z) \Delta T_{qg}^{A(m)}(x, \ell_T^2) \right] \\ &\times \frac{2\pi \alpha_s C_A}{\ell_T^2 N_c \tilde{f}_q^A(x, \mu_I^2)} \,, \\ \Delta \gamma_{q \to gq}(z, x, x_L, \ell_T^2) &= \Delta \gamma_{q \to qg}(1 - z, x, x_L, \ell_T^2), \end{split}$$

Xiao-Feng Guo, Xin-Nian Wang, PRL 85 (2000) 3591; Xin-Nian Wang, Xiao-Feng Guo, NPA 696(2001) 788; Ben-Wei Zhang, Xin-Nian Wang, NPA 720(2003) 429.

Modified FF of light quark (II)

$$\widetilde{C}(Q^2) = 0.0060 \text{ GeV}^2$$



Enke Wang, Xin-Nian Wang, PRL 89(2000)162301

7

From Light to Heavy

Theory:

- Heavy quark energy loss can provide a further test of a uniform formalism of jet quenching.
- How does mass effect of heavy quark affect the pattern of energy loss?

Experiment:

• Open charm suppression, which can be measured at RHIC by comparing pt distributions of D-mesons in *D-Au* and *Au-Au* collisions, is a novel probe of QGP dynamics.

Heavy Quark Energy Loss

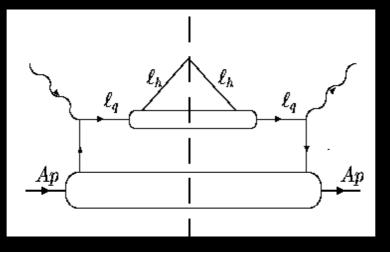
 There are several theoretical calculations to obtain the heavy quark energy loss:

> Dokshitzer and Kharzeev Djordjevic and Gyulassy Armesto, Salgado and Wiedemann G.D. Moore and D. Teaney

Twist Expansion approach

B.W. Zhang, E. Wang and X.N. Wang, PRL 93(2004)072301, B.W. Zhang, E. Wang and X.N. Wang, NPA 757(2005)493

• In parton model, for the heavy quark production we obtain :

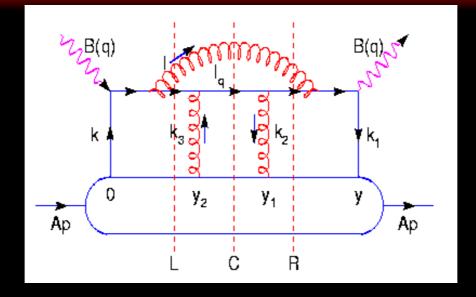


$$\frac{dW_{\mu\nu}^S}{dz_h} = \sum_q \int dx f_q^A(x, Q_1^2) H_{\mu\nu}^{(0)}(x, p, q, M) D_{Q \to h}(z_h, Q_2^2)$$

$$H_{\mu\nu}^{(0)}(k,q,M) = \frac{e_q^2}{2x} \operatorname{Tr}(\not\!\!\! k\gamma_\mu V(\not\!\!\! q + x \not\!\!\! p) V^{\dagger} \gamma_\nu) \frac{2\pi}{2p \cdot q} \delta(x - x_B - x_M)$$
$$x_M = \frac{M^2}{2p^+q^-}, \quad x_B = \frac{Q^2}{2p^+q^-}.$$

10

Mutiple Scattering in Nuclei



In order to calculate the heavy quark energy loss induced by gluon radiation in pQCD, we should separate the 'hard' part from the 'soft' part: factorizing.

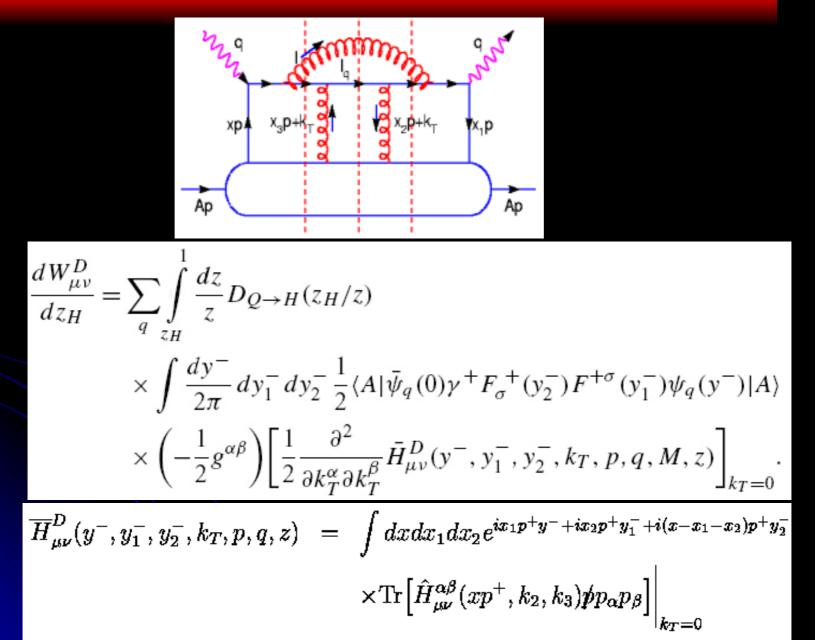
Factorization of Twist-4

$$W_{\mu\nu} = \int \frac{d^4k}{(2\pi)^4} \int \frac{d^4k_2}{(2\pi)^4} \int \frac{d^4k_3}{(2\pi)^4} \int d^4y \int d^4y_1 \int d^4y_2 e^{ik_1y+ik_2y_1-ik_3y_2} \\ \times \operatorname{Tr} \Big[\hat{H}^{\alpha\beta}_{\mu\nu}(k,k_1,k_2) \langle A | T[\bar{\psi}_q(0) A_\beta(y_2) A_\alpha(y_1) \psi_q(y)] | A \rangle \Big] .$$

$$\hat{H}^{\alpha\beta}_{\mu\nu}(xp^{+},k_{2},k_{3}) = \hat{H}^{\alpha\beta}_{\mu\nu}(xp^{+},x_{2}p^{+},x_{3}p^{+}) + \frac{\partial\hat{H}^{\alpha\beta}_{\mu\nu}(xp^{+},k_{2},k_{3})}{\partial k_{2\rho}} \bigg|_{\mathbf{k}_{2T}=0} (k_{2}-x_{2}p^{+})_{\rho} + \frac{\partial\hat{H}^{\alpha\beta}_{\mu\nu}(xp^{+},k_{2},k_{3})}{\partial k_{3\sigma}} \bigg|_{\mathbf{k}_{3T}=0} (k_{3}-x_{3}p^{+})_{\sigma} + \frac{1}{2} \frac{\partial^{2}\hat{H}^{\alpha\beta}_{\mu\nu}(xp^{+},k_{2},k_{3})}{\partial k_{2\rho}\partial k_{3\sigma}} \bigg|_{\mathbf{k}_{2T}=\mathbf{k}_{3T}=0} (k_{2}-x_{2}p^{+})_{\rho} (k_{3}-x_{3}p^{+})_{\sigma} + \dots .$$

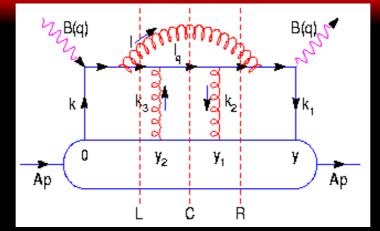
J. Qiu, G. Sterman, NPB 353(1991)105; NPB 353(1991)137.
M. Luo, J. Qiu, G. Sterman, PLB 279(1992)377;
M. Luo, J. Qiu, G. Sterman, PRD 49(1994)4493; PRD 50(1994)1951

Generalized Factorization



13

Quark-Gluon Double Scattering



$$\begin{split} \widehat{H}_{\sigma\rho} &= \frac{C_F}{2N_c} g^4 \frac{\gamma \cdot (q+k_1) + M}{(q+k_1)^2 - M^2 - i\epsilon} \, \gamma_\alpha \, \frac{\gamma \cdot (q+k_1-\ell) + M}{(q+k_1-\ell)^2 - M^2 - i\epsilon} \, \gamma_\sigma (\gamma \cdot \ell_q + M) \, \gamma_\rho \\ &\times \varepsilon^{\alpha\beta}(\ell) \frac{\gamma \cdot (q+k-\ell) + M}{(q+k-\ell)^2 - M^2 + i\epsilon} \, \gamma_\beta \, \frac{\gamma \cdot (q+k) + M}{(q+k)^2 - M^2 + i\epsilon} \, 2\pi \delta_+(\ell_q^2 - M^2) \,, \end{split}$$

$$n = [1, 0^-, \vec{0}_\perp]^{14}$$

Collinear Approximation

• Make a collinear approximation:

• The tensor structure can be factorized:

$$\overline{H}^{D}_{\mu\nu}(y^{-}, y^{-}_{1}, y^{-}_{2}, k_{T}, p, q, M, z) = \int dx H^{(0)}_{\mu\nu}(k, q, M) \ \overline{H}^{D}(y^{-}, y^{-}_{1}, y^{-}_{2}, k_{T}, x, p, q, M, z)$$

LPM Effect

 $egin{aligned} \overline{H}^D_{1,C}(y_i^-,k_T,x,p,q,m,z) &=& \int d\ell_T^2 \, rac{(1+z^2)\ell_T^2+(1-z)^4m^2}{(1-z)(\ell_T^2+(1-z)^2m^2)^2} \, rac{lpha_s}{2\pi} \ & imes \ C_F \, rac{2\pilpha_s}{N_c} \overline{I}_{1,C}(y_i^-,\ell_T,k_T,x,p,q,m,z) \end{aligned}$

$$\begin{split} \overline{I}_{1,C}(y_i^-,\ell_T,k_T,x,p,q,m,z) &= e^{i(x+x_L)p^+y^-+ix_Dp^+(y_1^--y_2^-)}\theta(-y_2^-)\theta(y^--y_1^-) \\ &\times (1-e^{-i(x_L+(1-z)x_M)p^+y_2^-}) \\ &\times (1-e^{-i(x_L+(1-z)x_M)p^+(y^--y_1^-)}) \,. \end{split}$$

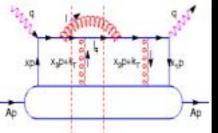
LMP interference effect.

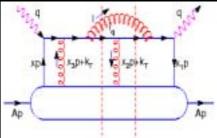
The formation time of gluon radiation.

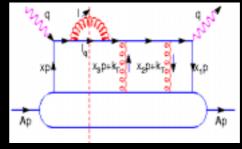
$$x_L = \frac{\ell_T^2}{2p^+ q^- z(1-z)}$$

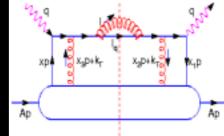
$$\tau_f^Q \equiv \frac{1}{(x_L + (1-z)x_M/z)p^+} < \tau_f^q \equiv \frac{1}{x_L p^+}$$

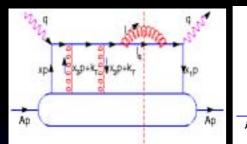
Other Processes

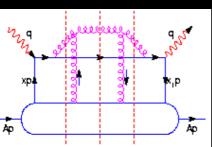


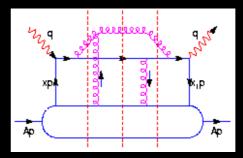


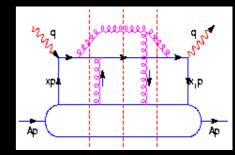


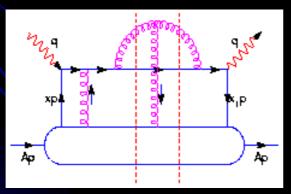


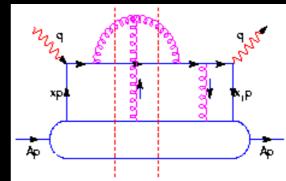












17

Hard Partonic Part

$$\nabla_{k_T}^2 H_{C(L,R)}^D|_{k_T=0} = 4C_A \frac{1+z^2}{1-z} \frac{\ell_T^4}{[\ell_T^2 + (1-z)^2 M^2]^4} \widetilde{H^D}_{C(L,R)} + \mathcal{O}(x_B/Q^2 \ell_T^2),$$

$$\begin{split} \widetilde{H_C^D} &= c_1(z, \ell_T^2, M^2) (1 - e^{-i(x_L + (1-z)x_M/z)p^+y_2^-}) (1 - e^{-i(x_L + (1-z)x_M/z)p^+(y^--y_1^-)}) \\ &+ c_2(z, \ell_T^2, M^2) [e^{-i(x_L + (1-z)x_M/z)p^+y_2^-} (1 - e^{-i(x_L + (1-z)x_M/z)p^+(y^--y_1^-)}) \\ &+ e^{-i(x_L + (1-z)x_M/z)p^+(y^--y_1^-)} (1 - e^{-i(x_L + (1-z)x_M/z)p^+y_2^-})] \\ &+ c_3(z, \ell_T^2, M^2) e^{-i(x_L + (1-z)x_M/z)p^+(y^--y_1^-)} e^{-i(x_L + (1-z)x_M/z)p^+y_2^-} \\ \widetilde{H_C^L} &= c_4(z, \ell_T^2, M^2) (e^{-i(x_L + (1-z)x_M/z)p^+(y^--y_1^-)} - e^{-i(x_L + (1-z)x_M/z)p^+(y^--y_2^-)}) \\ &+ c_5(z, \ell_T^2, M^2) (1 - e^{-i(x_L + (1-z)x_M/z)p^+(y^--y_1^-)}) \\ \widetilde{H_C^R} &= c_4(z, \ell_T^2, M^2) (e^{-i(x_L + (1-z)x_M/z)p^+y_2^-} - e^{-i(x_L + (1-z)x_M/z)p^+y_1^-})) \\ &+ c_5(z, \ell_T^2, M^2) (1 - e^{-i(x_L + (1-z)x_M/z)p^+y_2^-}). \end{split}$$

Dead-Cone effect of heavy quark propagating

$$f_{Q/q} = \left[\frac{\ell_T^2}{\ell_T^2 + (1-z)^2 M^2}\right]^4 = \left[1 + \frac{\theta_0^2}{\theta^2}\right]^{-4} \qquad \theta_0 = \frac{M}{q^-}, \ \theta$$

18

 ℓ_T

Modified FF of Heavy Quark

 With the generalized factorization theorem we obtain the semi- inclusive hadronic tensor:

$$\frac{dW_{\mu\nu}}{dz_h} = \sum_q \int dx \tilde{f}_q^A(x,\mu_I^2) H^{(0)}_{\mu\nu}(x,p,q,M) \widetilde{D}_{Q\to h}(z_h,\mu^2)$$

The modified effective fragmentation function is

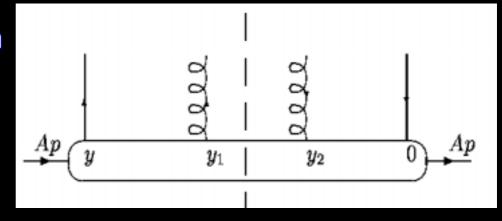
$$\begin{split} \widetilde{D}_{Q \to h}(z_h, \mu^2) &\equiv D_Q(z_h, \mu^2) \\ &+ \int_0^{\mu^2} \frac{d\ell_T^2}{\ell_T^2 + (1-z)^2 M^2} \frac{\alpha_s}{2\pi} \int_{z_h}^1 \frac{dz}{z} \Delta \gamma_{q \to qg}(z, x, x_L, \ell_T^2, M^2) D_{Q \to h}(z_h/z) \\ &+ \int_0^{\mu^2} \frac{d\ell_T^2}{\ell_T^2 + z^2 M^2} \frac{\alpha_s}{2\pi} \int_{z_h}^1 \frac{dz}{z} \Delta \gamma_{q \to gq}(z, x, x_L, \ell_T^2, M^2) D_{g \to h}(z_h/z) \,, \end{split}$$

Twist-4 Parton Correlation

$$\begin{split} \Delta\gamma_{q\to qg}(z,x,x_L,\ell_T^2,M^2) &= \left[\frac{1+z^2}{(1-z)_+}T_{qg}^{A,H}(x,x_L,M^2) + \delta(1-z)\Delta T_{qg}^{A,H}(x,\ell_T^2,M^2)\right] \\ &\times \frac{2\pi C_A \alpha_s \ell_T^A}{[\ell_T^2+(1-z)^2 M^2]^3 N_c \tilde{f}_q^A(x,\mu_T^2)}, \\ \Delta\gamma_{q\to gq}(z,x,x_L,\ell_T^2,M^2) &= \Delta\gamma_{q\to qg}(1-z,x,x_L,\ell_T^2,M^2), \\ \Delta T_{qg}^{A,Q}(x,\ell_T^2,M^2) &\equiv \int_0^1 dz \frac{1}{1-z} \left[2T_{qg}^{A,Q}(x,x_L,M^2)|_{z=1} - (1+z^2)T_{qg}^{A,Q}(x,x_L,M^2)\right] \\ T_{qg}^{A,Q}(x,x_L,M^2) &\equiv T_{qg}^{A,C}(x,x_L,M^2) + T_{qg}^{A,L}(x,x_L,M^2) + T_{qg}^{A,R}(x,x_L,M^2), \\ T_{qg}^{A,C}(x,x_L,M^2) &= \int \frac{dy^-}{2\pi} dy_1^- dy_2^- \widetilde{H_C^D} \frac{1}{2} \langle A|\bar{\psi}_q(0) \ \gamma^+ F_{\sigma}^+(y_2^-) \ F^{+\sigma}(y_1^-) \ \psi_q(y^-)|A\rangle \\ &\times e^{i(x+x_L)p^+y^-} \theta(-y_2^-) \theta(y^- - y_1^-), \\ T_{qg}^{A,R}(x,x_L,M^2) &= \int \frac{dy^-}{2\pi} dy_1^- dy_2^- \widetilde{H_L^D} \frac{1}{2} \langle A|\bar{\psi}_q(0) \ \gamma^+ F_{\sigma}^+(y_2^-) \ F^{+\sigma}(y_1^-) \ \psi_q(y^-)|A\rangle \\ &\times e^{i(x+x_L)p^+y^-} \theta(y^- - y_1^-) \theta(y_1^- - y_2^-), \\ T_{qg}^{A,R}(x,x_L,M^2) &= \int \frac{dy^-}{2\pi} dy_1^- dy_2^- \widetilde{H_R^D} \frac{1}{2} \langle A|\bar{\psi}_q(0) \ \gamma^+ F_{\sigma}^+(y_2^-) \ F^{+\sigma}(y_1^-) \ \psi_q(y^-)|A\rangle \\ &\times e^{i(x+x_L)p^+y^-} \theta(y^- - y_1^-) \theta(y_1^- - y_2^-), \end{split}$$

Two-parton Correlation Function

Twist-4 parton correlation function is in principle not calculable.



With some approximations we can estimate the twist-4 correlation functions approximated as

 $T_{qg}^{A,Q}(x,x_L,M^2) \approx \frac{\widetilde{C}}{x_A} f_q^A(x) [(1 - e^{-(x_L + (1-z)x_M/z)^2/x_A^2})a_1(z,\ell_T^2,M^2) + a_2(z,\ell_T^2,M^2)],$

$$\widetilde{C} \equiv 2Cx_T f_g^N(x_T) \qquad x_A = 1/m_N R_A$$

J. Osborne and Xin-Nian Wang, NPA 710(2002)281

Heavy Quark Energy Loss

Heavy quark energy loss can be derived as:

$$\begin{split} \langle \Delta z_g^Q \rangle (x_B, \mu^2) &= \int_0^{\mu^2} d\ell_T^2 \int_0^1 dz \frac{\alpha_s}{2\pi} (1-z) \, \frac{\Delta \gamma_{q \to qg}(z, x_B, x_L, \ell_T^2)}{\ell_T^2 + (1-z)^2 M^2} \\ \langle \Delta z_g^Q \rangle (x_B, \mu^2) &= \frac{\widetilde{C} C_A \alpha_s^2}{N_c \, x_A} \int_0^{Q^2} d\ell_T^2 \int_0^1 dz \frac{(1+z^2)\ell_T^4}{[\ell_T^2 + (1-z)^2 M^2]^4} \\ &\times [(1-e^{-(x_L + (1-z)x_M/z)^2/x_A^2}) a_1(z, \ell_T^2, M^2) + a_2(z, \ell_T^2, M^2)] \end{split}$$

When M=0, we will recover the result of the light quark energy loss.

Xiao-feng Guo, Xin-Nian Wang, PRL 85(2000)3591; Xin-Nian Wang, Xiao-feng Guo, NPA 696(2001) 788 Ben-Wei Zhang, Xin-Nian Wang, NPA 720(2003) 429

Two Limits

$$\frac{(x_L + (1-z)x_M/z)^2}{x_A^2} = \frac{L_A^-}{\tau_f} \sim \frac{x_B^2 M^4}{x_A^2 Q^4} \qquad L_A^- = R_A m_N/p^+$$

(1) When
$$x_B/Q^2 \gg x_A/M^2 \Longrightarrow (1 - e^{-(x_L + (1-z)x_M)^2/x_A^2}) \simeq 1$$

$$\langle \Delta z_g^Q \rangle \sim C_A \frac{\widetilde{C} \alpha_s^2}{N_c} \frac{x_B}{x_A Q^2} \propto \frac{\alpha}{R_A}$$

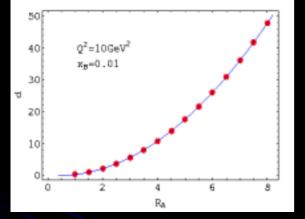
(2) For large values of Q^2 or small x_B , we have

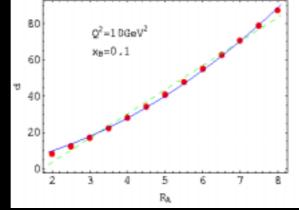
$$\langle \Delta z_g^Q \rangle \sim C_A \frac{\widetilde{C} \alpha_s^2}{N_c} \frac{x_B}{x_A^2 Q^2} \propto \frac{R_A^2}{R_A^2}$$

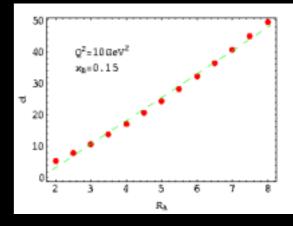
Nuclear Size Dependence

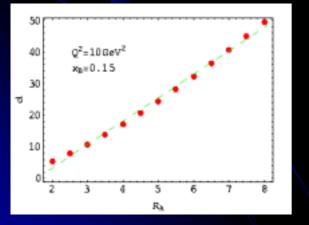
$$d = \langle \Delta z_g^Q \rangle \frac{N_C}{\widetilde{C}(Q^2) C_A \alpha_s^2(Q^2)}$$

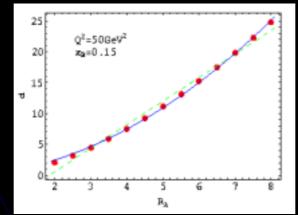
$$\widetilde{C}(Q^2) = 0.0060 \text{ GeV}^2$$

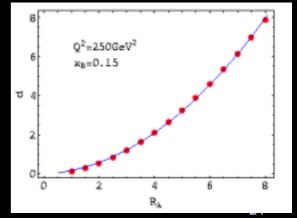






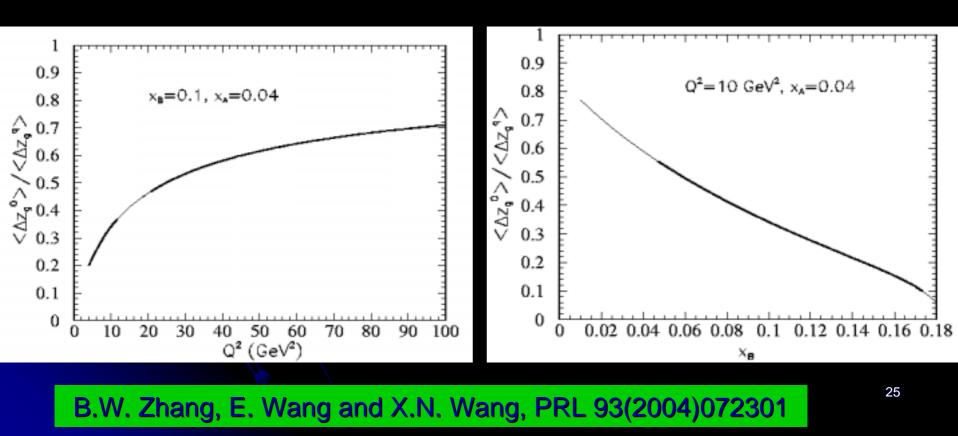






Heavy Quark VS. Light Quark

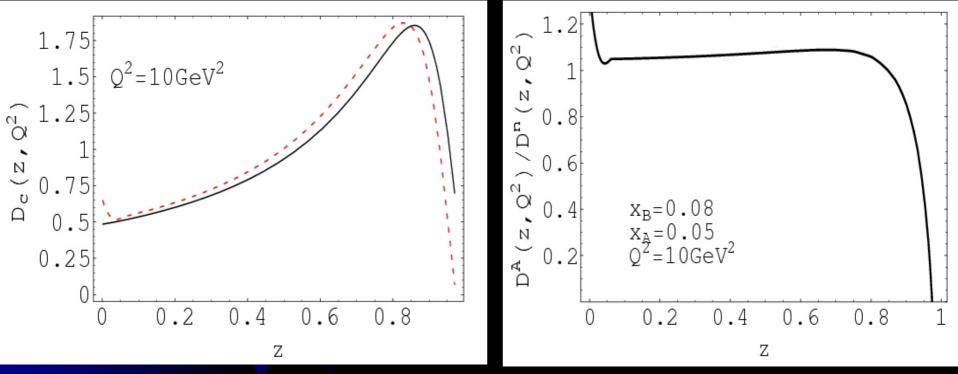
Energy loss of heavy quark is significantly suppressed due to mass effect, in particular, the dead-cone effect.



Modified heavy quark FF

Charm quark fragmentation function in vacuum:

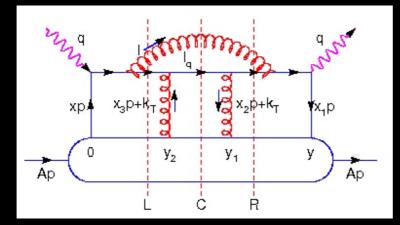
$$D_{c \to D}(z) = \frac{N}{z[1 - z^{-1} - \varepsilon_c/(1 - z)]}$$



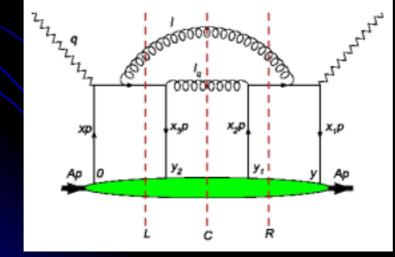
B.W. Zhang, E. Wang and X.N. Wang, NPA 757(2005)493

Quark-Quark Double Scattering

Two kinds of double scattering in eA DIS



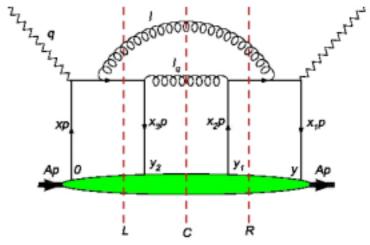
quark-gluon double scattering



quark-quark double scattering

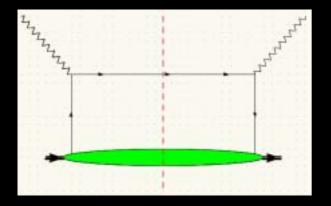
Properties of q-q double scattering

- The contributions of quark-quark double scattering are suppressed as compared to quark-gluon double scattering: quark density VS. gluon density
- Quark-quark double scattering will mix the quark and gluon fragmentation functions.
- Quark-quark double scattering may give different modifications to quark FF and anti-quark FF.



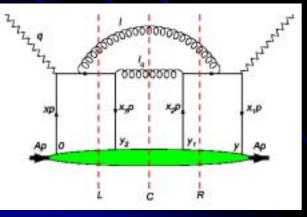
B.W.Zhang, X.N.Wang, A. Schaefer, in preparation

Quark-quark double scattering Single Scattering: leading twist contribution



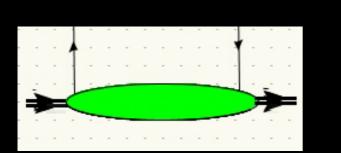
$$\propto f_q^A(x,\mu_I^2) \bigotimes H_{\mu\nu} \bigotimes D_{q\to h}(z_h,\mu^2)$$

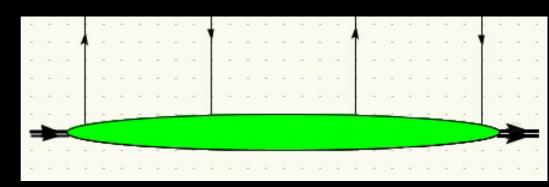
Double Scattering: twist-4 contribution

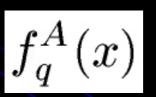


$$\propto T_{q\bar{q}}(x) \bigotimes H_{\mu\nu} \times C(z) \bigotimes D_{i\to h}(\frac{z_h}{z}, \mu^2)$$
$$= f_q^A(x, \mu_I^2) \bigotimes H_{\mu\nu} \bigotimes \Delta D_{q\to h}(z_h, \mu^2)$$
$$\Delta D_{q\to h}(z_h, \mu^2) \equiv C(z) \times D_{i\to h}(\frac{z_h}{z}) \bigotimes \frac{T_{q\bar{q}}(x)}{f_q^A(x, \mu_I^2)}$$

quark-quark correlation function







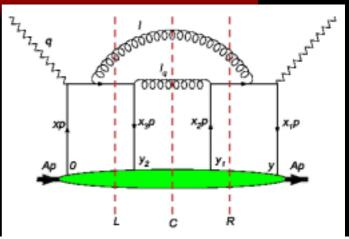
 $T_{q\bar{q}} \propto f_q^A(x_1) f_{\bar{q}}^N(x_2)$

$$\Delta D_{q \to h}(z_h, \mu^2) \propto \frac{T_{q\bar{q}}(x)}{f_q^A(x, \mu_I^2)} \propto f_{\bar{q}}^N(x_2)$$
$$\Delta D_{\bar{q} \to h}(z_h, \mu^2) \propto \frac{T_{\bar{q}q}(x)}{f_{\bar{q}}^A(x, \mu_I^2)} \propto f_q^N(x_2)$$

30

Generalized Factorization

Consider a typical quark-quark double scattering process in semi-inclusive eA DIS:



31

J. Qiu, G. Sterman, NPB 353(1991)105; NPB 353(1991)137.

Hard partonic part

Applying the collinear approximation:

$$\operatorname{Tr}\left[\frac{\not{p}}{2}\gamma_{\mu}\widehat{H}\gamma_{\nu}\right] \approx H_{1} \operatorname{Tr}\left[\frac{\not{p}}{2}\gamma_{\mu}(\gamma \cdot \ell_{q})\gamma_{\nu}\right]$$

• Semi-inclusive hadronic tensor can be given:

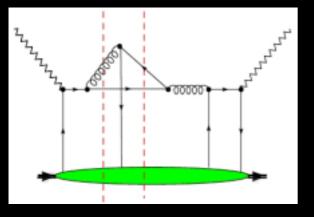
$$\frac{dW^{D}_{qq,\mu\nu}}{dz_{h}} = \sum_{q} \int dx H^{(0)}_{\mu\nu}(x,p,q) T^{A}_{q\bar{q}}(x) \overline{H}^{D}(y^{-},y_{1}^{-},y_{2}^{-},x,p,q,z)$$

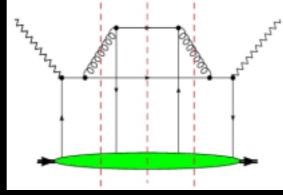
$$T^{A}_{q\bar{q}}(x) = \int \frac{p^{+}dy^{-}}{2\pi} dy^{-}_{1}dy^{-}_{2}\langle A|\bar{\psi}_{q}(0)\frac{\gamma^{+}}{2}\psi_{\bar{q}}(y^{-})\bar{\psi}_{q}(y^{-}_{1})\frac{\gamma^{+}}{2}\psi_{\bar{q}}(y^{-}_{2})|A\rangle$$

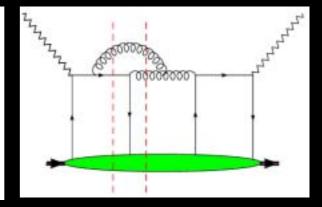
$$\overline{H}_{1,C}^{D} = \int_{z_{h}}^{1} \frac{dz}{z} D_{g \to h}(z_{h}/z) \int \frac{d\ell_{T}^{2}}{\ell_{T}^{2}} \frac{\alpha_{s}^{2} x_{B}}{Q^{2}} \frac{2(1+z^{2})}{z(1-z)} \\ \times \frac{C_{F}^{2}}{N_{c}} \overline{I}_{1,C}(y^{-}, y_{1}^{-}, y_{2}^{-}, \ell_{T}, x, p, q, z), \\ \overline{I}_{1,C} = e^{i(x+x_{L})p^{+}y^{-}} \theta(-y_{2}^{-})\theta(y^{-}-y_{1}^{-}) \\ \times [1-e^{-ix_{L}p^{+}y_{2}^{-}}][1-e^{-ix_{L}p^{+}(y^{-}-y_{1}^{-})}].$$

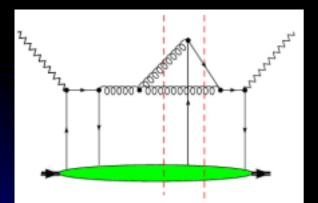
$$\overline{LPM \text{ effect}} \qquad x_{L} = \frac{\ell_{T}^{2}}{2p^{+}q^{-}z(1-z)} \\ \overline{H}_{1,L(R)}^{D} = \int_{z_{h}}^{1} \frac{dz}{z} D_{q \to h}(z_{h}/z) \int \frac{d\ell_{T}^{2}}{\ell_{T}^{2}} \frac{\alpha_{s}^{2} x_{B}}{Q^{2}} \frac{2(1+z^{2})}{z(1-z)} \\ \times \frac{C_{F}^{2}}{N_{c}} \overline{I}_{1,L(R)}(y^{-}, y_{1}^{-}, y_{2}^{-}, \ell_{T}, x, p, q, z), \\ \overline{I}_{1,L} = -e^{i(x+x_{L})p^{+}y^{-}} \theta(y_{1}^{-}-y_{2}^{-})\theta(y^{-}-y_{1}^{-}) \\ \times (1-e^{-ix_{L}p^{+}(y^{-}-y_{1}^{-})}), \end{cases}$$

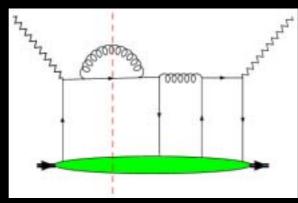
Other processes

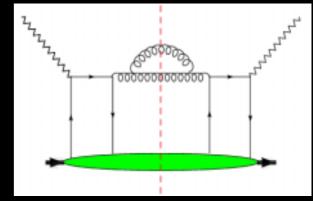










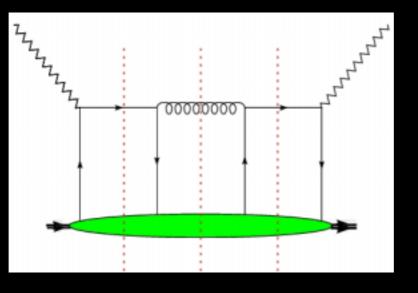


.

.

Q-Q Scattering without radiation

• Lowest order contribution:



$$\begin{split} \overline{H}_{0,C}^{D}(y^{-}, y_{1}^{-}, y_{2}^{-}, x, p, q, z) &= D_{g \to h}(z_{h}) \frac{2\pi\alpha_{s}}{N_{c}} 2C_{F} \frac{x_{B}}{Q^{2}} \theta(-y_{2}^{-})\theta(y^{-} - y_{1}^{-}), \\ \overline{H}_{0,L}^{D}(y^{-}, y_{1}^{-}, y_{2}^{-}, x, p, q, z) &= D_{q \to h}(z_{h}) \frac{2\pi\alpha_{s}}{N_{c}} 2C_{F} \frac{x_{B}}{Q^{2}} \theta(y_{1}^{-} - y_{2}^{-})\theta(y^{-} - y_{1}^{-}), \\ \overline{H}_{0,R}^{D}(y^{-}, y_{1}^{-}, y_{2}^{-}, x, p, q, z) &= D_{q \to h}(z_{h}) \frac{2\pi\alpha_{s}}{N_{c}} 2C_{F} \frac{x_{B}}{Q^{2}} \theta(-y_{2}^{-})\theta(y_{2}^{-} - y_{1}^{-}), \end{split}$$

Modified Fragmenation Function

Summing single and double scattering gives

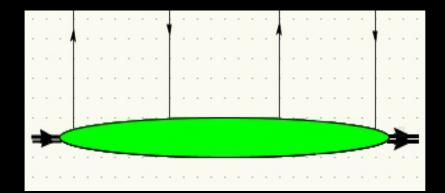
$$\frac{dW_{\mu\nu}}{dz_h} = \sum_q \int dx \tilde{f}_q^A(x,\mu_I^2) H^{(0)}_{\mu\nu}(x,p,q) \widetilde{D}_{q\to h}(z_h,\mu^2)$$

• We define the modified quark FF as:

$$\begin{split} \widetilde{D}_{q \to h}(z_h, \mu^2) &= D_{q \to h}(z_h, \mu^2) + \Delta \widetilde{D}_{q \to h}(z_h, \mu^2) ,\\ \Delta \widetilde{D}_{q \to h}(z_h, \mu^2) &\equiv \frac{2\pi \alpha_s x_B}{Q^2} \frac{2C_F}{N_C} \frac{T_{q\bar{q}}^{A(I)}(x, x_L) [D_{g \to h}(z_h/z, \mu^2) - D_{q \to h}(z_h/z, \mu^2)]}{\widetilde{f}_q^A(x, \mu_I^2)} \\ &+ \int_0^{\mu^2} \frac{d\ell_T^2}{\ell_T^2} \frac{\alpha_s^2 x_B}{Q^2} \int_{z_h}^1 \frac{dz}{z} D_{q \to h}(z_h/z, \mu^2) \frac{C_F}{N_C} \frac{1}{\widetilde{f}_q^A(x, \mu_I^2)} \\ &\times \left[\frac{1+z^2}{(1-z)_+^2} T_{q\bar{q}}^{A(II)}(x, x_L) + \delta(1-z) \Delta T_{q\bar{q}}^{A(II)}(x, \ell_T^2) \right] , \end{split}$$

36

Quark-quark correlation function



$$x_A = \frac{1}{m_N R_A}$$

 $T_{q\bar{q}} \propto f_q^A(x_1) f_{\bar{q}}^N(x_2)$

M. Luo, J. Qiu and G. Sterman, PRD50(1994)1951,

X.F. Guo and X.N. Wang, PRL85(2000)3591.

Quark and anti-quark FF(I)

• We get the modification to quark FF as:

$$\begin{split} \Delta \widetilde{D}_{q \to h}(z_h, \mu^2) &\approx \frac{2\pi \alpha_s x_B}{x_A Q^2} \frac{2C_F}{N_C} [D_{g \to h}(z_h/z, \mu^2) - D_{q \to h}(z_h/z, \mu^2)] C f_{\bar{q}}^N(x_T) \\ &+ \int_0^{\mu^2} \frac{d\ell_T^2}{\ell_T^2} \frac{\alpha_s^2 x_B}{x_A Q^2} \int_{z_h}^1 \frac{dz}{z} D_{q \to h}(z_h/z, \mu^2) \frac{1+z^2}{(1-z)_+^2} \frac{C_F}{N_C} [1-e^{-x_L^2/x_A^2}] C f_{\bar{q}}^N(x_T) \\ &- \int_0^{\mu^2} \frac{d\ell_T^2}{\ell_T^2} \frac{\alpha_s^2 x_B}{x_A Q^2} \int_0^1 dz D_{q \to h}(z_h, \mu^2) \frac{1+z^2}{(1-z)^2} \frac{C_F}{N_C} [1-e^{-x_L^2/x_A^2}] C f_{\bar{q}}^N(x_T). \end{split}$$

Similarly the modification to anti-quark FF is:

$$\begin{split} \widetilde{D}_{\bar{q} \to h}(z_h, \mu^2) &= D_{\bar{q} \to h}(z_h, \mu^2) + \Delta \widetilde{D}_{\bar{q} \to h}(z_h, \mu^2) ,\\ \Delta \widetilde{D}_{\bar{q} \to h}(z_h, \mu^2) &\approx \frac{2\pi\alpha_s x_B}{x_A Q^2} \frac{2C_F}{N_C} [D_{g \to h}(z_h/z, \mu^2) - D_{\bar{q} \to h}(z_h/z, \mu^2)] C f_q^N(x_T) \\ &+ \int_0^{\mu^2} \frac{d\ell_T^2}{\ell_T^2} \frac{\alpha_s^2 x_B}{x_A Q^2} \int_{z_h}^1 \frac{dz}{z} D_{\bar{q} \to h}(z_h/z, \mu^2) \frac{1+z^2}{(1-z)_+^2} \frac{C_F}{N_C} [1-e^{-x_L^2/x_A^2}] C f_q^N(x_T) \\ &- \int_0^{\mu^2} \frac{d\ell_T^2}{\ell_T^2} \frac{\alpha_s^2 x_B}{x_A Q^2} \int_0^1 dz D_{\bar{q} \to h}(z_h, \mu^2) \frac{1+z^2}{(1-z)^2} \frac{C_F}{N_C} [1-e^{-x_L^2/x_A^2}] C f_q^N(x_T) . \end{split}$$

Quark and anti-quark FF(II)

The difference between modified quark FF and modified anti-quark FF:

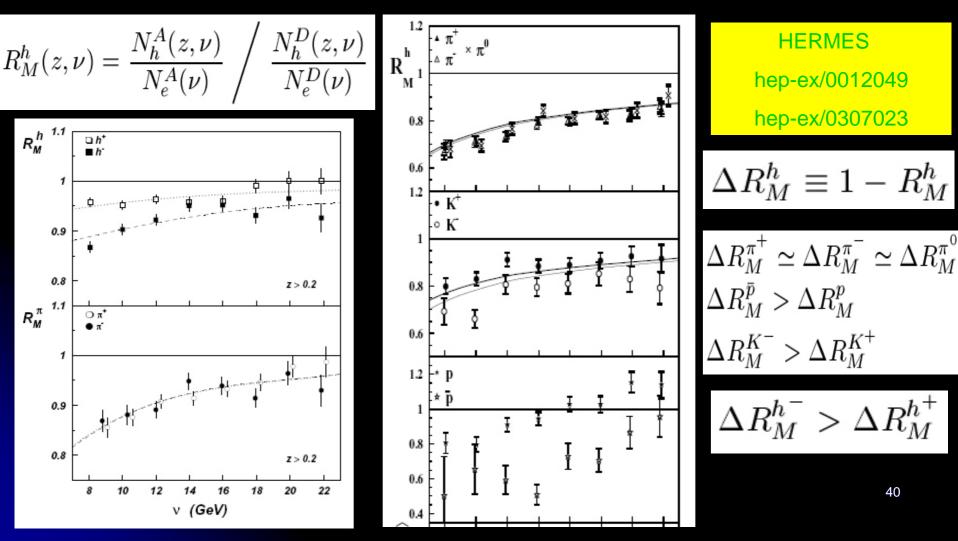
$$\Delta D_{q \to h}(z_h, \mu^2) \propto \frac{T_{q\bar{q}}(x)}{f_q^A(x, \mu_I^2)} \propto f_{\bar{q}}^N(x_2)$$
$$\Delta D_{\bar{q} \to h}(z_h, \mu^2) \propto \frac{T_{\bar{q}q}(x)}{f_{\bar{q}}^A(x, \mu_I^2)} \propto f_q^N(x_2)$$
$$D_{q \to h}(z_h, \mu^2) = D_{\bar{q} \to h}(z_h, \mu^2)$$

$$\frac{\Delta \widetilde{D}_{q \to h}(z_h, \mu^2)}{\Delta \widetilde{D}_{\bar{q} \to h}(z_h, \mu^2)} = \frac{f_{\bar{q}}^N(x_T)}{f_q^N(x_T)} < 1$$

B.W.Zhang, X.N.Wang, A. Schaefer, in preparation

Multiplicity ratios of hadrons

Multiplicity ratio measured at HERMES:



Theoretical explanation

• In the constituent quark model:

$\begin{array}{rcl} \pi &=& u \bar{d} \ , (u \bar{u} - d \bar{d}) / \sqrt{2} \ , d \bar{u} \ , \\ p &=& u u d \ , \bar{p} \ =& \bar{u} \bar{u} \bar{d} \ , \\ K^+ &=& u \bar{s} \ , K^- \ =& \bar{u} s \ . \end{array}$	$\Delta R^h_M(z,\nu) \approx \frac{1}{N} \sum_a \Delta \widetilde{D}_{a \to h}(z,\nu)$
$\begin{split} \Delta R_M^{\pi^+}(z,\nu) &\simeq \Delta R_M^{\pi^-} \simeq \Delta R_M^{\pi^0} \\ &\approx \frac{1}{2} (\Delta \widetilde{D}_{q \to h}(z,\nu) + \Delta \widetilde{D}_{\bar{q} \to h}(z,\nu)) \end{split}$	$\Delta R^p_M(z,\nu) \approx \Delta \widetilde{D}_{q \to h}(z,\nu) \propto f^N_{\bar{q}}(x_T)$ $\Delta R^{\bar{p}}_M(z,\nu) \approx \Delta \widetilde{D}_{\bar{q} \to h}(z,\nu) \propto f^N_q(x_T)$
$\propto \frac{1}{2} [f_{\bar{q}}^N(x_T) + f_q^N(x_T)] .$	
$\Delta R_M^{h^-} > \Delta R_M^{h^+}$	$\begin{split} \Delta R_M^{\bar{p}}(z,\nu) &> \Delta R_M^p(z,\nu) \\ \Delta R_M^{K^-}(z,\nu) &> \Delta R_M^{K^+}(z,\nu) \end{split}$

Summary(I)

 Heavy quark energy loss induced by gluon radiation is derived in terms of Modified FF with pQCD.

Two mass effects:

(I) Gluon formation time of the heavy quark is reduced relative to that of a light quark:

Medium size dependence of heavy quark enegy loss is found to change from a linear to a quadratic form when the initial energy and momentum scale are increasing.

(II) Dead-cone effect:

Heavy quark energy loss is significantly suppressed relative to a light quark.

- Quark-quark double scattering is eA DIS are studied.
- Modification to quark FF in nuclei is different from the modification to antiquark FF in nuclei.

 This difference may explain the multiplicity ratios of hadrons in nuclei observed at HERMES.

Thank you very much!

Heavy quark Frag. Func.

$$D_{i \to H}(z_H, \mu) = \int_{z_H}^1 \frac{dz}{z} D_i^Q(z, \mu) D_{Q \to H}(z_H/z),$$

$$D_{c \to D}(z) = \frac{N}{z[1 - z^{-1} - \varepsilon_c/(1 - z)]}$$

$$\begin{split} D_Q^Q(z,\mu_0) &= \delta(1-z) + \frac{\alpha_s(\mu_0)C_F}{2\pi} \bigg[\frac{1+z^2}{1-z} \bigg(\log \frac{\mu_0^2}{M^2} - 2\log(1-z) - 1 \bigg) \bigg]_+ \\ D_g^Q(z,\mu_0) &= \frac{\alpha_s(\mu_0)C_A}{2\pi} \big[z^2 + (1-z)^2 \big] \log \frac{\mu_0^2}{M^2}, \\ D_{q,\bar{q},\bar{Q}}^Q(z,\mu_0) &= 0. \end{split}$$