Differential Study of Nuclear Effects in Hadronization by DIS

K. Wang University of Virginia

ECT* Workshop, Trento (Parton propagation through strongly interacting matter)

(September, 2005)

Overview:

Study hadronization in A($e, e'[\pi, K]$)X, on ²H, ¹²C, ⁶⁴Cu, and ¹⁸⁴W, by the attenuation of hadron yield

$$R(\nu, z, P_T, Q^2) = \frac{\frac{dN^h(A)}{N_e(A)dz}}{\frac{dN^h(D)}{N_e(D)dz}}.$$

* Main objective-

Provide precise data for understanding hadronization mechanism, study propagation of quarks and hadrons under specific kinematic conditions.

- \rightarrow small acceptance detectors;
- \rightarrow essential to QCD.

* Additional objective-

Input to RHIC data interpretation, jet quenching

 \rightarrow Is QGP recreated at RHIC?

Hadronization by DIS

Multi-variable process

Multi-mechanism and multi-effect process

Space-time evolution of hot matter

High P_T suppression in Au-Au collision, in comparison with dA data. Bathe (PHENIX). PRL 91(2003)072303.

Previous data:

data	beam	E ₀	ν	Q^2
		(GeV)	(GeV)	$(GeV/c)^2$
FNL	μ	490	>100	0.1-150
EMC	μ	175	>10	> 2
SLAC	e-	20.5	>4	0.35-5
HERMES	e ⁺	27	7-23	< 2.5 >
HERMES	e+	12	2.5-9	< 0.9 >
CLAS	e^-	5.7	3-5	1.5-5
HRS*	e^-	6	4	2.8, 4.2

Data required at lower ν AND higher Q^2 's: DIS is dominating and factorization is valid. Data required on larger A nuclei (¹⁸⁴W): stronger attenuation and test of models. Data required at various P_T 's and high z: sensitive to different dynamics.

Sources of the attenuation? HERMES hadronization inside nucleus; Wang quark-medium interaction; Kopeliovich colorless pre-hadronic state. Flavor dependence is required.

Higher precision at large z is required.

The first major goal:

Determine

Whether the hadron is produced inside the nucleus.

Lower ν - shorter formation length; larger difference in σ_{π} and σ_{K} . Larger A- longer traversing path. PID- Different attenuation for π^{+} and K^{+} if they are formed inside the medium.

Kopeliovich: Data required on variation with z, direct measure of formation length. Large A - stronger effect.

Dynamic features

Multi-variable (Q^2 , ν , z, P_T , A); Multi-mechanism (quark, color-dipole, and hadron propagation); Multi-effects (gluon radiation, LPM, P_T broadening).

Requirements: Higher Q^2 and larger Q^2 range; Large $z = E_h/\nu$; Data at smaller bins; Particle ID.

Kinematic selectivity

In order to -

disentangle the dependence on each varible, distinguish one effect from the other, identify one mechanism from the other,

Specific data sets are required concentrated at a fixed selective kinematic region with small bins. These data will be complementary to that from large acceptance detector.

Dilema

On one hand, we like to selectively take data at higher Q^2 , this will require to measure electrons at larger angle;

On the other hand, at high Q^2 , the leading hadron will favor smaller forward angles.

Solution:

Using separate detectors for electrons and hadrons. While setting the electron arm at larger angle, leaving the hadron arm more toward forward diection.

Detector setup

Detector Description

	Hall A		Hall C	
	HRS	MAD	HMS	SHMS
P_c (GeV/c)	4.3	7.5	7.3	11
ΔP (%)	± 5	± 15	± 10	-15 to 25
δ P (%)	0.02	0.1	0.1	0.2
$\Delta\Omega$ (msr)	12	28	8.1	4

Projected attenuation ratio $R(\nu)$ with 12 GeV beam, at different Q^2 , z and PID; HERMES data: z > 0.5, all Q^2 and P_T (blue).

Summary:

Hadronization can be studied with small acceptance detectors by SIDIS from light to heavy nuclei at high Q^2 , large z.

Select data at isolated high Q^2 ; Select data at large z; Select data at large P_T ;

More sensitive to different effects; More sensitive to the response of variable change.