CRONIN EFFECT
AND ENERGY CONSERVATION

s ( A. Accardi, E. Cattaruzza and D.T. )

A very general approach to hadron-nucleus interactions
is through the Reggeon diagram technique, where at high
energies the interaction is described by the exchange of
many Pomerons, including

- Independent exchanges with different nucleons
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A partonic interaction corresponds to a fluctuation with
large p; inside the structure of an exchanged Pomeron
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Lowest order diagrams for a quark-quark interaction,
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Color factors:
TRp(z) Born — term
TA T @) box — diagram
1l Bl el crossed — box — diagram

(1)
By introducing the commutators, [T}, 73], and the anti-
commutators, {T,,T}}, one may write:

1 1 2
L, T HIE, TP} x (M + M)

—2TOTA x (M~ M)

the term with color T,EUT,EE) corrects the propagator of
the lowest order Born diagram, is dominantly real and
grows as a Ins. The term with the symmetrized color
factor is analogous to the abelian case (proportional to

(M + M')) and is mainly imaginary.



Simplest case of a three-body collision:
abelian interaction, massless particles, neglect transverse

as compared with longitudinal momentum components
whenever possible

Forward amplitude
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Leading contribution:
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B;: scaled light cone components of exchanged momenta
in the direction of the target

— All horizontal propagators on mass shell
Analogously for the cuts of the forward amplitude:
Leading contribution to the two-box cut
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Sub-leading contribution to the two-box cut:
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As a result one obtains that the leading contribution to
the forward amplitude and all its leading cuts are all pro-
portional one to another and the proportionality factors
are the AGK weights.

For a leading cut of the 3 — 3 amplitude one has more-
over

AB—=3)04*(3—-3)=|42—=2) 0|42 —>2) |

One may argue that the whole semi-hard N A cross sec-
tion can be expressed in terms of two-body partonic in-
teraction probabilities:

G;; : elementary interaction probability between %
and j

[Ti=, ITj~; (1 = 64;) : probability of NO interaction
between two configurations with n and m partons

1-[T2; [T5~; (1 — 65) : probability to have at least
one interaction between two configurations with n
and m partons.

Expression analogous to that of the production cross sec-

. d . #
tion o}/ 4" in the Glauber-Gribov approach
d -
(o g = oRYy — o34, where o3¢§'= cross section of all

quasielastic processes where the nucleus gets excited to
any A* state, including the elastic)



One needs then to introduce P/ (z;, b;), the probability of
- finding the nucleus (and the projectile proton) in a config-
uration with n partons with fractional momenta z; ...z,
and transverse coordinates by ...b,.

Simplest case (NO correlations)

PA = Poissonian :

P‘;:l(mi: bﬁ) = %FA (ﬁ]_: b]_) T PA(",L‘”: bn)e_f dzdbl’ 4 (z,b)

I'(z, b)= average number of partons with momentum frac-
tion z and transverse coordinate b

Plz;b) = G(z)T(b)
G(z): nucleon distributions

T'4(b): nuclear thickness function.

Semi-hard cross section

. f @B PN (z;,b:)PA(x;,b; — B)

n,m

T m
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B: nuclear impact parameter



Notice that the average number of collisions (N(B)) is
given gy the single scattering expression (AGK cancella-
tion)

(N(B)) =/ dzdz'Gn(z)o(zz )T a(z’, B)

Pt >Po

which may be understood as

(V(B)) = [ doGr(@)(na(e, B)

where G (z) is the average number of N-partons and

(na(z, B)) Efdm’a(mmf)rﬂ(m’,B)

the average number of collisions of each /N-parton against
the nucleus.

Notice that the average number of collisions of a projec-
tile parton is evaluated without any free parameter.

The scattering centers of a Pb target, as seen at the LHC
by a projectile parton with z = .1, for partonic colli-
sions with p; > 5GeV, are shown in the figure. The dots
have the size of the partonic cross section. The figure
is obtained by projecting in transverse space a random
distribution generated inside the volume of a sphere.



The interaction includes both disconnected collisions and
rescatterings, neglects parton fusion.

By replacing the average number of collisions one obtains
the average number of wounded partons Wy (z, B):

(na(z,B)) — [1 — exp{ — (na(z, B)}}}

Wx(z, B) = Gn (@) |1 - exp{ = (na(z. B))}

Notice that Wy (z, B) is still meaningful in the black disk
limit:

W (z, B) = Gy (2)0(Ra — B)
Each wounded parton is a minijet in the final state so

that the number of minijets produced is limited by the
number of initial state partons.

When (n4) is small the projectile interacts with at most
a target parton, when (n4) is large many target partons
are involved in the interaction and one recovers the initial
state isotropy in transverse space.
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Clusters of target partons

Parton fusion

. Projectile partons

. Target partons

Disconnected collisions

Rescatterings




DOUBLE PARTON SCATTERING

A peculiar feature is that disconnected collisions allow
to probe the hadron structure at different points at the
same time. The case of N A interactions is particularly
interesting.

The simplest possibility is the double parton collisions.
The process has been searched in pp and pp interactions.
The cross section in the interaction of two hadrons N and
N’ is expresses as

1

op =3 /Fw(ml,mg; b)o(z1,21)

X6 (o, 5T (2, 23 b)dz1dzy dzodrhd?d

The non perturbative input to the double parton collision
process are the two-body parton distribution I'(z1, z2;b)
which depend on the two fractional momenta z; and z»
of the two partons and on their distance in transverse
space b.

If the two partons are not correlated in z and if the de-
pendence on b can be factorized one may write

I'(z1,z2;b) = G(z1)G(z2) F(b)

and the inclusive cross section for a double parton col-
lision is expressed, in the case of two indistinguishable
parton interactions, as follows:









Expansion of Wy (z, B) in number of collisions

WN(iI}‘,B) = GN(ﬁ) i <nz‘-1($ B)) —(n(z,B))
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Differential distribution in p;:

dWN_ Ht_ I‘A:c B) (na(z,B
e GN(@Z/ A(2,3))
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Dependence on the cutoff

- One rescattering (all terms of O(c?))

do do do do
dk —
Edpe=R " dps) a™

Power divergences (k — 0, k — p;) are cancelled and one
is left with a logarithmic dependence on the cutoff.

If longitudinal and transverse degrees of freedom are de-
coupled the sum can be done by introducing the Fourier
transforms in the transverse variables
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where

T 4(z}, B) = Ga(z')Ta(B)

and

d*py dé
F4(z,b) = dz'G o (z") —e'Pt®
4(20) = [ GR5de'Ca@) o
This expression of the cross section is obtained in
different approaches (dipole cross-section, color glass)

The expression however is derived with approximate
kinematics: the longitudinal momentum of the projectile
is conserved in the interaction and final state partons are
hence more energetic than the initial ones, the effect be-
ing emphasized when the number of re-scatterings grows.

The final p; spectrum gets hence shifted towards
larger transverse momenta and the Cronin ratio is ap-
preciably modified.

When using exact kinematics the series cannot be
summed any more and each multiple scattering term has
to be evaluated separately.
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is the single scattering term (the projectile parton interacts with a single parton
of the target and vice-versa),
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is the rescattering term (the projectile parton interacts with two different par-
tons of the target), and

dot® 1 1 " 2
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is the double rescattering term (the projectile parton interacts with three dif-
ferent partons of the target).
' The subtraction terms, in the rescattering and in the double rescattering terms,
are a direct consequence of the implementation of unitarity in the process.
The sums run over the different species of target partons. The quantities
f i (z', Qgee) represent the nuclear parton distributions.



The multiparton interaction cross sections are given by:
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where the parton;-parton; differential cross sections dé;;/dt are evaluated at
the lowest order in pQCD by making use of exact kinematics. The kinematical
constraints are implemented through the quantities &9,
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SUMMARY

Multiple parton collisions are greatly enhanced in nuclear
interactions at high energies.

One may distinguish two different kinds of multiparton
interactions: disconnected collisions (independent par-
tonic interactions in different points in transverse space)
and rescatterings (three or more partons interact at the
same point in transverse space)

All these interactions may be taken into account in a sim-
plest model where unitarity and the AGK cutting rules
are explicitly implemented

A resulting feature is a less singular behavior as a function
of the cutoff.

The deformation of the transverse spectrum corresponds
to the Glauber picture of independent multiple scatter-

ings.

The steepness of the parton distributions at small z does
not allow to use the standard approximation of conserv-
ing the longitudinal momentum component of the pro-
jectile during the interaction.

Using exact kinematics a reasonable agreement with ex-
perimental observations is obtained both at small and at

large rapidity values.



