ECT* workshop on Parton propagation through strongly interacting matter Trento, Italy, September 26 – October 7, 2005

Partonic Rescattering Effects in Strongly Interacting Matter

Jianwei Qiu Iowa State University

based work done with X. Guo, Ma Luo, G. Stermen, I. Vitev, X. Zhang, et al.

Outline of the Talk

- □ Is there an ideal probe for the strong interacting matter?
- □ Partonic multiple scatterings
- □ Collinear factorization is an approximation
- \Box Parton k_T is important
- \Box Can pQCD calculate the effects of parton k_T ?
- □ Difference between QED and QCD induced parton shower (energy lose)?
- **Given Summary and outlook**

Is there an ideal probe?

- **Basic requirements:**
 - Cleanly measurable experimentally
 - Reliably calculable theoretically
- □ Necessary conditions:
 - Sensitive to the scales and properties of strong interacting matter (SIM) – low momentum scale
 - Large momentum transfer to ensure pQCD calculation
 - a hard probe sensitive to low momentum physics
- Potentially good probes:
 - Have two observed scales (one hard and one soft)
 - Have one observed hard scale and a steeply falling distribution

Hard Probes

Partonic multiple scatterings

- Coherent many soft rescatterings
 LPM effect and energy lose
 No hard scale is required
- Coherent hard multiple scatterings
 power suppressed, pQCD factorization
 A hard scale is required
 most relevant for inclusive observables
- A complete analysis of hard probe in a strong interaction matter should involve both coherent (energy lose and hard momentum transfer) and incoherent scattering

Coherent hard multiple scattering

□ Predictive power:

- factorization approach enables us to quantify the high order corrections
- express non-perturbative quantities in terms of matrix
 - elements of well-defined operators universality

Relevance:

- Hard probe might limit the region of coherence small target
- Power corrections suppressed at large momentum transfer
- Good for inclusive observables

□ Helper:

Hard probe at small x could cover a large nuclear target

and enhance power corrections

Small-x and coherence length

□ Hard probe – process with a large momentum transfer:

$$q^{\mu}$$
 with $Q \equiv \sqrt{|q^2|} \gg \Lambda_{\rm QCD}$

□ Size of a hard probe is very localized and much smaller than a typical hadron at rest:

$$\frac{1}{Q} \ll 2R \sim \text{fm}$$

□ But, it might be larger than a Lorentz contracted hadron:

$$\frac{1}{Q} \sim \frac{1}{xp} \gg 2R\left(\frac{m}{p}\right)$$
 or equivalently $x \ll x_c \equiv \frac{1}{2mR} \sim 0.1$

If an active parton **x** is small enough the hard probe could cover several nucleons In a Lorentz contracted large nucleus!

7

Coherence length in different frames

- Use DIS as an example in target rest frame: virtual photon fluctuates into a q-qbar pair
 - Lifetime of the $q\bar{q}$ state:

$$\Delta E_{q\bar{q}} \sim \nu - E_{q\bar{q}} \sim \frac{Q^2}{2\nu} \left[1 + \mathcal{O}\left(\frac{m_{q\bar{q}}^2}{Q^2}\right) \right]$$
$$\Delta z_{q\bar{q}} \sim \frac{1}{\Delta E_{q\bar{q}}} \sim \frac{2\nu}{Q^2} = \frac{1}{mx_B}$$

- $\Delta z_{q\bar{q}} \gg 2$ fm, inter-nuclear distance, if $x_B \ll 0.1$
- □ If $x_B \ll 0.1$, the probe q-qbar state of the virtual can interact with who hadron/nucleus coherently.

The conclusion is frame independent

In Breit frame:

coherent final-state rescattering

October 3, 2005

Jianwei Qiu, ISU

Dynamical power corrections

□ Coherent multiple scattering leads to dynamical power corrections:

$$\frac{d\sigma^{(D)}}{d\sigma^{(S)}} \sim \alpha_s \frac{1/Q^2}{R^2} \langle F^{+\alpha} F_{\alpha}^+ \rangle A^{1/3}$$
$$d\sigma \approx d\sigma^{(S)} + d\sigma^{(D)} + \dots$$

Characteristic scale for the power corrections: $\langle F^{+\alpha} F_{\alpha}^{+} \rangle$

□ For a hard probe:

$$\frac{\alpha_s}{Q^2 R^2} \ll 1$$

To extract the universal matrix element, we need new observables more sensitive to

$$\left\langle F^{\,\scriptscriptstyle +\,lpha}\,F^{\,\scriptscriptstyle +}_{lpha}\,
ight
angle$$

Total Q_T broadening

❑ Direct Q_T from multiple scattering is not perturbative:

$$\frac{d\sigma}{dQ^2 dQ_T^2} \left/ \frac{d\sigma}{dQ^2} \propto \frac{\alpha_s}{Q_T^2} T_q(x, A) \right|$$

Drell-Yan Q_T average is perturbative:

$$\left\langle Q_T^2 \right\rangle \equiv \int dQ_T^2 \left(Q_T^2 \right) \left(\frac{d\sigma}{dQ^2 dQ_T^2} \right) / \int dQ_T^2 \left(\frac{d\sigma}{dQ^2 dQ_T^2} \right)$$
 Single scale Q

Drell-Yan Q_T broadening: $\Delta \langle Q_T^2 \rangle \equiv \langle Q_T^2 \rangle^{hA} - A \langle Q_T^2 \rangle^{hN} \propto \sigma^{(D)}$

□ Four-parton correlation:

$$T_{q}(x,A) = \int \frac{dy^{-}}{2\pi} e^{ixp^{+}y^{-}} \int dy_{1}^{-} dy_{2}^{-} \theta\left(y^{-} - y_{1}^{-}\right) \theta\left(-y_{2}^{-}\right)$$
$$\times \left\langle p_{A} \left| F_{\alpha}^{+}\left(y_{2}^{-}\right) \overline{\psi}\left(0\right) \frac{\gamma^{+}}{2} \psi\left(y^{-}\right) F^{+\alpha}\left(y_{1}^{-}\right) \right| p_{A} \right\rangle \approx \frac{9A^{1/3}}{16\pi R^{2}} \left\langle F^{+\alpha} F_{\alpha}^{+} \right\rangle q_{A}(x)$$

□ Characteristic scale:

$$\left\langle F^{+\alpha}F_{\alpha}^{+}\right\rangle \equiv \frac{1}{p^{+}}\int dy_{1}^{-}\left\langle N\left|F^{+\alpha}\left(0\right)F_{\alpha}^{+}\left(y_{1}^{-}\right)\right|N\right\rangle\theta\left(y_{1}^{-}\right) \qquad \text{Guo, PRD 58 (1998)}$$

October 3, 2005

Jianwei Qiu, ISU

$\langle F^{+\alpha}F_{\alpha}^{+}\rangle$ from Drell-Yan Q_{T} broadening

□ Drell-Yan Q_T broadening:

$$\Delta \left\langle Q_T^2 \right\rangle \equiv \left\langle Q_T^2 \right\rangle^{hA} - A \left\langle Q_T^2 \right\rangle^{hN} = \left(\frac{3\pi\alpha_s}{4R^2}\right) \left\langle F^{+\alpha}F_{\alpha}^+ \right\rangle A^{1/3}$$

E772 and NA10 data:

$$\langle F^{+lpha}F^{+}_{lpha}
angle\sim 3$$
 Guo, PRD 58 (1998)

In cold nuclear matter

 \Box Di-jet momentum imbalance in $\gamma + A$ collisions

Need more independent measurements to test the universality!

Inclusive deep inelastic scattering

Nuclear shadowing data are available for $x_B < 0.1$

At small x, the hard probe covers several nucleons, coherent multiple scattering could be equally important at relatively low Q

To take care of the coherence, we need to sum over all cuts for a given forward scattering amplitude

Summing over all cuts is also necessary for IR cancellation

Factorization beyond leading power

□ Collinear factorization to DIS cross section:

Leading twist

$$d\sigma_{DIS}^{\gamma^*h} = d\hat{\sigma}_2^i \otimes [1 + C^{(1,2)}\alpha_s + C^{(2,2)}\alpha_s^2 + ...] \otimes T_2^{i/h}(x)$$

$$\left\{ \begin{array}{l} + \frac{d\hat{\sigma}_4^i}{Q^2} \otimes [1 + C^{(1,4)}\alpha_s + C^{(2,4)}\alpha_s^2 + ...] \otimes T_4^{i/h}(x) \\ + \frac{d\hat{\sigma}_6^i}{Q^4} \otimes [1 + C^{(1,6)}\alpha_s + C^{(2,6)}\alpha_s^2 + ...] \otimes T_6^{i/h}(x) \end{array} \right\}$$
Factorization breaks in hadronic collisions beyond 1/Q² terms
Power corrections
$$T_{4,...}^{i/h}(x) \text{ should include both } \left\langle k_T^2 \right\rangle \text{ and} \\ \text{multiple scattering effect } \left\langle F^{+\alpha}F_{\alpha}^{+} \right\rangle$$

Resummation of leading power corrections: $\sum_{N} \left(\frac{\alpha_s}{Q^2 R^2} \left\langle F^{+\alpha} F_{\alpha}^{+} \right\rangle A^{1/3} \right)$

Jianwei Qiu, ISU

Collinear approximation is important

With collinear approximation:

Different cuts for matrix elements of partons with k_T are not equal:

Multiparton correlation functions

□ Parton momentum convolution:

$$\propto \int \prod_{i} dy_{i}^{-} e^{ix_{i}p^{+}y_{i}^{-}} \left\langle P_{A} \left| \prod_{i} F^{+\perp} \left(y_{i}^{-} \right) \right| P_{A} \right\rangle$$

All coordinate space integrals are localized if x is large

□ Leading pole approximation for *dx_i* integrals :

 \Box dx_i integrals are fixed by the poles (no pinched poles)

 $\Box x_i=0$ removes the exponentials

dy integrals can be extended to the size of nuclear matter

Leading pole leads to highest powers in medium length, a much small number of diagrams to worry about

Resummation of multiple scattering

Contributions to DIS structure functions

□ Transverse structure function:

Qiu and Vitev, PRL (2004)

□ Similar result for longitudinal structure function

October 3, 2005

Jianwei Qiu, ISU

Leading twist shadowing

Power corrections complement to the leading twist shadowing:

- Leading twist shadowing changes the x- and Q-dependence of the parton distributions
- Power corrections to the DIS structure functions (or cross sections) are effectively equivalent to a shift in x
- Power corrections vanish quickly as hard scale Q increases while the leading twist shadowing goes away much slower

 If leading twist shadowing is so strong that x-dependence of parton distributions saturates for x< x_c,
 additional power corrections, the shift in x, should have

no effect to the cross section!

October 3, 2005

Jianwei Qiu, ISU

Upper limit of $\langle F^{+\alpha}F^{+}_{\alpha}\rangle$ from DIS data

□ Drell-Yan Q_T-broadening data:

$$\implies \langle F^{+\alpha} F_{\alpha}^{+} \rangle_{DY} \sim 3 \implies \xi^{2} \approx 0.05 \text{ GeV}^{-2}$$

Upper limit from the shadowing data:

$$\Longrightarrow \xi_{Max}^2 \approx 0.09 - 0.12 \text{ GeV}^{-2} \Longrightarrow \left\langle F^{+\alpha} F_{\alpha}^+ \right\rangle_{DIS} < 5 - 6$$

□ Physical meaning of these numbers:

$$\left\langle F^{+\alpha}F_{\alpha}^{+}\right\rangle \equiv \frac{1}{p^{+}}\int dy_{1}^{-}\left\langle N\right|F^{+\alpha}\left(0\right)F_{\alpha}^{+}\left(y_{1}^{-}\right)\left|N\right\rangle\theta\left(y_{1}^{-}\right) \approx \frac{1}{2}\lim_{x\to 0} xG(x,Q^{2})$$

 $\implies \left\langle xG(x \to 0, Q_s^2) \right\rangle < 10 \text{ in cold nuclear matter}(?)$

Negative gluon distribution at low Q

ZEUS

□ NLO global fitting $O^2 = 1 GeV^2$ 6 2.5 GeV^2 based on leading twist ZEUS NLO QCD fit 4 xg **DGLAP** evolution xS 2 leads to negative хS A gluon distribution xg -2 7 GeV^2 20 GeV^2 20 □ MRST PDF's tot. error tot. error $(\alpha_s \text{ free})$ (a fixed) have the same uncorr. error xf $(\alpha, fixed)$ 10 features xg xg xS xS 0 Does it mean that we 200 GeV^2 2000 GeV^2 have no gluon for 30 x < 10⁻³ at 1 GeV? 20 xg xg 10 No! xS xS 0 10 -2 10 -1 10⁻³ 10 -2 10 -1 10 -4 10 ⁻³ 1 10 -4 1 х

Recombination prevents negative gluon

- In order to fit new HERA data, like
 MRST PDF's, CTEQ6
 gluon has to be much
 smaller than CTEQ5,
 even negative at
 Q = 1 GeV
- The power correction to the evolution equation slows down the Q²dependence, prevents PDF's to be negative

$$\langle xG(x \rightarrow 10^{-5}) \rangle \sim 3$$

Eskola et al. NPB660 (2003)

October 3, 2005

Jianwei Qiu, ISU

LT shadowing vs power corrections

Factorization is an approximation

□ Drell-Yan cross section is **NOT** completely factorized!

 There is always soft gluon interaction between two hadrons!
 Gluon field strength is one power more Lorentz contracted than ruler

$$f^{(2)} \propto \langle p | \overline{\psi}(0) \gamma^{+} \psi(\mathbf{y}^{-}) | p \rangle,$$
$$\langle p | F^{+\alpha}(0) F_{\alpha}^{+}(\mathbf{y}^{-}) | p \rangle$$

$$p \qquad p \qquad p$$

$$(4) \propto \langle p | \overline{\psi}(0) \gamma^{+} F^{+\alpha}(y_{1}^{-}) F_{\alpha}^{+}(y_{2}^{-}) \psi(y^{-}) | p \rangle$$

Observables sensitive to parton k_T

October 3, 2005

Jianwei Qiu, ISU

Parton k_T is important

QCD resummation

□ For processes with <u>two</u> large observed scales,

$$Q_1^2 \gg Q_2^2 \gg \Lambda_{\text{QCD}}^2$$
 e.g. p_T -distribution of Z^0

we could choose: $\mu = Q_1$ or Q_2 , or somewhere between

 $\implies \alpha_s(Q_1^2) \text{ is small, } \alpha_s(Q_1^2) \ell n(Q_1^2/Q_2^2) \text{ is not necessary small}$

Cannot remove the logarithms by choosing a proper μ

- Resummation of the logarithms is needed – the virtual photon fragmentation functions
- □ For a massless theory, we can get <u>two</u> powers of the logarithms at each order in perturbation theory: $\alpha_s (Q_1^2) \ell n^2 (Q_1^2 / Q_2^2)$

because of an overlap region of IR and CO divergences

Double log resummation

LO Differential Q_T -distribution as $Q_T \rightarrow 0$:

$$\frac{d\sigma}{dydQ_T^2} \approx \left(\frac{d\sigma}{dy}\right)_{\text{Born}} \times 2C_F\left(\frac{\alpha_s}{\pi}\right) \frac{\ell n \left(Q^2/Q_T^2\right)}{Q_T^2} \implies \infty$$

Resum the double leading logarithms – DDT formula:

$$\frac{d\sigma}{dydQ_T^2} \approx \left(\frac{d\sigma}{dy}\right)_{Born} \times 2C_F\left(\frac{\alpha_s}{\pi}\right) \frac{\ell n \left(Q^2/Q_T^2\right)}{Q_T^2} \times \exp\left[-C_F\left(\frac{\alpha_s}{\pi}\right) \ell n^2 \left(Q^2/Q_T^2\right)\right] \Rightarrow 0$$

$$as Q_T \to 0$$

$$as Q_T \to 0$$

$$as Q_T \to 0$$

Double leading logarithm approximation (DLLA) over constrains phase space of radiated gluons (strong ordering in transverse momenta)

Ignore overall transverse momentum conservation

CSS b-space resummation formalism

\Box Leading order K_T-factorized cross section:

The Q_T -distribution is determined by the b-space function: $b\tilde{W}_{AB}(b,Q)$

The b-space resummation

- The b-space distribution: $\tilde{W}_{AB}(b,Q) \equiv \sum_{i=i} \tilde{W}_{ij}(b,Q) \hat{\sigma}_{ij}(Q)$
- The $\tilde{W}_{ij}(b, Q)$ obeys the evolution equation $\frac{\partial}{\partial \ln Q^2} \tilde{W}_{ij}(b, Q) = [K(b\mu, \alpha_s) + G(Q/\mu, \alpha_s)] \tilde{W}_{ij}(b, Q) \quad (1)$
- Evolution kernels satisfy RG equations

$$\frac{\partial}{\partial \ln \mu^2} K(b\mu, \alpha_s) = -\frac{1}{2} \gamma_K(\alpha_s(\mu)) \tag{2}$$

$$\frac{\partial}{\partial \ln \mu^2} G(Q/\mu, \alpha_s) = \frac{1}{2} \gamma_K(\alpha_s(\mu))$$
(3)

- ullet CSS Resummation of the large logarithms \iff
 - Integrate $\ln\mu^2$ in Eq.(2) from $\lnrac{c^2}{b^2}$ to $\ln\mu^2$
 - Integrate $\ln\mu^2$ in Eq.(3) from $\ln Q^2$ to $\ln\mu^2$
 - Integrate $\ln Q^2$ in Eq.(1) from $\ln rac{c^2}{b^2}$ to $\ln Q^2$

$$-c = 2\mathrm{e}^{-\gamma_E} \sim 1$$

October 3, 2005

Jianwei Qiu, ISU

Leading

Power corrections

homogeneous evolution equation
 ⇒ solution proportional to boundary condition

$$W_{ij}(b,Q) = W_{ij}(b,\frac{1}{b}) e^{-S_{ij}(b,Q)}$$

- if $b \ll 1/\Lambda_{\rm QCD}$, boundary condition $W_{ij}(b,1/b)$
 - depends only on one perturbative scale $\sim 1/b$
 - should be fully perturbative, and
 - have no large logarithms
 - \Rightarrow perturbative *b*-distribution

$$W^{\text{pert}}(b,Q) = \sum_{a,b,i,j} \sigma_{ij \to C}^{(LO)} \left[\phi_{a/A} \otimes C_{a \to i} \right]$$
$$\otimes \left[\phi_{b/B} \otimes C_{b \to j} \right] \times e^{-S(b,Q)}$$

Sudakov form factor:

$$S(b,Q) = \int_{c^2/b^2}^{Q^2} \frac{d\mu^2}{\mu^2} \left[A\left(\alpha_s\left(\mu^2\right)\right) \ell n\left(\frac{Q^2}{\mu^2}\right) + B\left(\alpha_s\left(\mu^2\right)\right) \right]$$

- all large logarithms are summed into S(b,Q), and S(b,Q) is perturbative for b not too large

- functions: $C_{a \rightarrow i}$ and $C_{b \rightarrow j}$ are perturbative

Predictive power of the formalism

• *b*-space distribution:

$$\int_0^\infty db \, J_0(q_T b) \, b \, \mathrm{e}^{-S(b,Q)} \, \left[\phi_{a/A} \otimes C_{a \to j} \right] \otimes \left[\phi_{b/B} \otimes C_{b \to \bar{j}} \right]$$

- pQCD dominates if $\int_0^{b_{max}} db(...) \gg \int_{b_{max}}^\infty db(...)$
- or saddle point $b_{sp} \ll b_{max}$:
 - b-dep of $b \mathrm{e}^{-S(b,Q)}
 ightarrow b_{sp} \propto (rac{\Lambda_{\mathrm{QCD}}}{Q})^{\lambda}$, $\lambda \sim 0.4$
 - *b*-dep of $\phi_{a/A}(x, \frac{1}{b})$ and $\phi_{b/B}(x', \frac{1}{b})$ \Leftrightarrow DGLAP evolution

$$\frac{d}{db}\phi(x,\frac{1}{b}) = -\frac{1}{b}\frac{d}{d\ln\frac{1}{b}}\phi(x,\frac{1}{b}) < 0 \quad \text{for } x < x_c \sim 0.1$$

 \Rightarrow larger \sqrt{S} , smaller x, and smaller b_{sp}

Location of the saddle point

Z production (collision energy dependence):

Higher collision energy = larger phase space = more gluon shower = larger parton k_τ

Shift of the peak is calculated perturbatively!

Qiu, Zhang

October 3, 2005

Jianwei Qiu, ISU

• Fermilab CDF data on Z at $\sqrt{S} = 1.8$ TeV

Power correction is very small, excellent prediction!

```
Qiu, Zhang
Jianwei Qiu, ISU
```

• Fermilab D0 data on W at $\sqrt{S}=1.8~{\rm TeV}$

No free fitting parameter!

October 3, 2005

Qiu, Zhang Jianwei Qiu, ISU

Dominated by gluon-gluon fusion Narrow b-distribution = reliable perturbative calculation Berger, Qiu, Wang

Jianwei Qiu, ISU

CDF Run – I Upsilon data

Berger, Qiu, Wang

D0 Run – II Upsilon data

Berger, Qiu, Wang Jianwei Qiu, ISU Shadowing alone leads to suppression and enhancement in p_{τ} distributions

□ W/Z production is dominated by low p_T region □ the shape is controlled by the gluon shower

October 3, 2005

Jianwei Qiu, ISU

QCD vs QED parton shower

□ Photon does not directly interact with another photon:

Gluon does directly interact with another gluon:

❑ Make a general hadronic k_T factorization difficult – there is none so far

Summary and outlook

- Coherent hard multiple scattering is always there in physical observables
- □ Leading medium size enhanced nuclear effects due to power corrections can be systematically calculated, and they complement to the leading twist (universal) nuclear effects
- Two-scale observables and one-scale observables with a steep distribution are potentially good probes for medium properties of strongly interacting matter
- □ Parton k_T is important for less inclusive observables
 - No k_{T} factorization proved for hadronic observables
- QCD parton shower differs from QED case
 b-space resummation might help