Proton production in deep inelastic lepton nucleus scattering

#### H.J. Pirner, D. Grünewald, Universität Heidelberg

A. Accardi, V. Muccifora and H.J. Pirner, Nucl.Phys. A720 (2003) 131, and the same authors with D. Grünewald, **hep-ph/0502072** 

## Outline

- What is special about proton production?
- The absorption model
- Rescaling of PDF and FF
- String fragmentation
- Comparison with HERMES data
- Higher twist diquark scattering for high z
- String branching for protons at low z
- Conclusions

## Motivation

- Absorption of prehadron describes meson production at Hermes well
- Z-distribution of proton production at Hermes is anomalous
- Also at RHIC, proton production is high compared with meson production

# Proton to Pion Ratiounpredicted

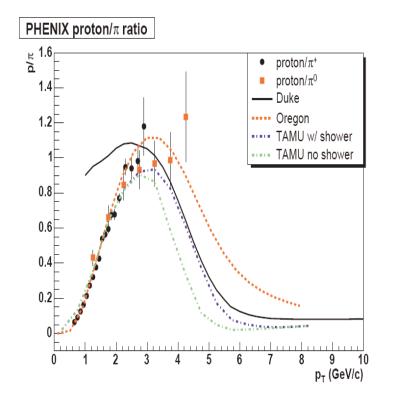
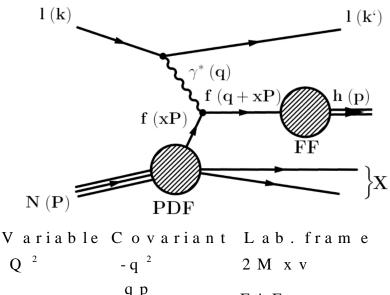



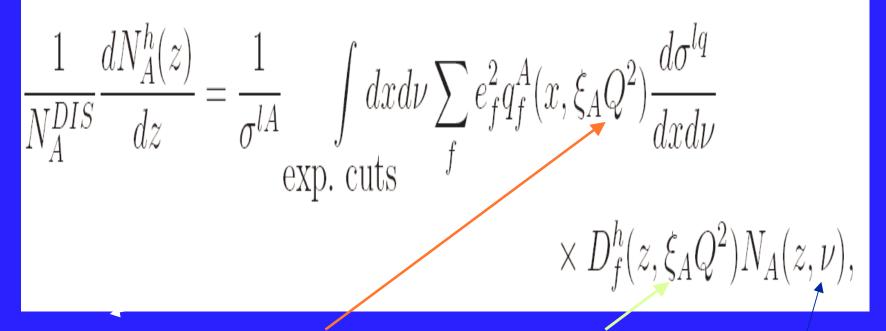

Fig. 53. The proton to pion ratio measured by PHENIX for Au+Au collisions at  $\sqrt{s_{NN}} = 200 \text{ GeV}[52]$ . Several comparisons to recombination models as mentioned in the text are shown.

- Figure shows several recombination models
- At higher pt other baryons?
- Protons are also exceptionally numerous at Hermes at low z- puzzle

# Semi-inclusive deep inelastic scattering

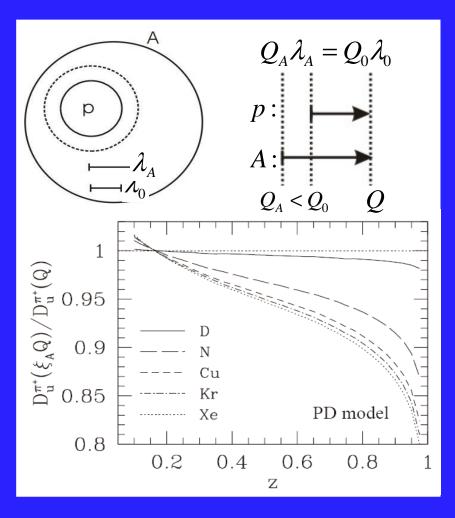


 $v \qquad \frac{q p}{\sqrt{P^2}} \qquad E = M v$   $v \qquad \frac{q p}{\sqrt{P^2}} \qquad E' = E$   $x \qquad \frac{-q^2}{2 P q} \qquad \frac{Q^2}{2 M v}$   $z \qquad \frac{p P}{q P} \qquad \frac{E_h}{v}$   $y \qquad \frac{q P}{k P} \qquad \frac{v}{E}$   $W^2 \qquad (P + q)^2 \qquad M^2 + 2 M v - q^2$ 


 Factorization theorem in QCD:

| $\left. \frac{d^2 \sigma}{dx d\nu dz} \right _{SIDIS} =$ | $\sum_{f} e_f^2 q_f(x, Q^2) \frac{d^2 \sigma^{lq}}{dx d\nu} D_f^h(z, Q^2)$ |
|----------------------------------------------------------|----------------------------------------------------------------------------|
|----------------------------------------------------------|----------------------------------------------------------------------------|

#### • Multiplicity:


$$M^{h}(z) = \frac{1}{N_{A}^{DIS}} \frac{dN_{A}^{h}(z)}{dz}$$
  
$$\frac{1}{N^{DIS}} \frac{dN^{h}(z)}{dz} = \frac{1}{\sigma^{lp}} \int dx d\nu \sum_{f} e_{f}^{2} q_{f}(x, Q^{2}) \frac{d\sigma^{lq}}{dx d\nu}$$
  
$$\times D_{f}^{h}(z, Q^{2})$$
  
$$\sigma^{lp} = \int dx d\nu \sum_{f} e_{f}^{2} q_{f}(x, \xi_{A}(Q^{2})Q^{2}) \frac{d\sigma^{lq}}{dx d\nu}$$

#### The Calculation of Absorption



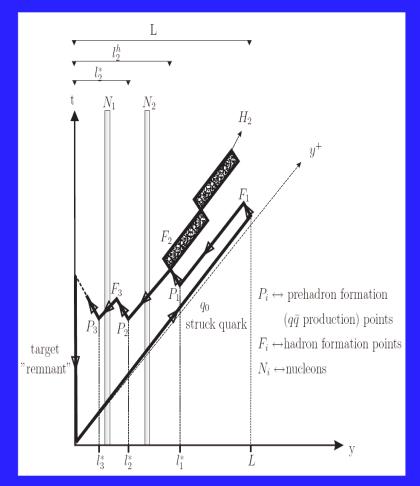
Rescaling of Parton Distribution, Rescaling of Fragmentation Function Calculation of the mean formation times of the prehadron and hadron Calculation of the Nuclear Absorption Factor N\_A, using formation times

## Rescaling of PDF and FF



- Assume change of confinement scale in bound nucleons  $\lambda_A > \lambda_0$
- Two consequences:

.) 
$$\frac{1}{A}q_f^{N_{|A}}(x,Q^2) = q_f^N(x,\xi_A(Q^2)Q^2)$$
$$D_f^{h|A}(z,Q^2) = D_f^h(z,\xi_A(Q^2)Q^2)$$
$$\xi_A(Q^2) = \left(\frac{\lambda_A}{\lambda_0}\right)^{\frac{\bar{\alpha}_s}{\alpha_s(Q^2)}}$$


$$\textbf{2.)} \quad \kappa_A \lambda_A^2 = \kappa \lambda_0^2$$

 Rescaling implies a longer DGLAP evolution (increased gluon shower)

# Why should the Fragmentation Function be rescaled?

- Fragmentation starts immediately after the quark has been struck, i.e. at Hermes in the cold nucleus - at RHIC in deconfined quark matter
- The emitted gluons can have lower frequencies than in the vacuum because of partial (Hermes) or full deconfinement (RHIC)
- There is also the possibility that induced scattering increases the factorization scale by the amount of enhanced transverse momentum squared (c.f. B. Kopeliovich)

#### **String Fragmentation**



 First rank particle contains struck quark -> flavor dependent formation length

exp (

 $D_q = 0.3$  and  $D_{qq} = 1.3$ 

• String fragmentation function:

-> dominantly quark production
-> diquark production is suppressed

 $L = \frac{\nu}{\kappa}$   $\kappa = 1 GeV/fm$ 

 $f(u) \propto (1\!-\!u)^{D_a}$ 

proportional to

#### **Turning point of struck quark:**



# Calculation of Prehadron Formation Lengths

$$\begin{aligned} \langle l_{\geq 1}^* \rangle &= \frac{1 + D_a}{1 + C + (D_a - C)z} (1 - z) z L \\ \times \left[ 1 + \frac{1 + C}{2 + D_a} \frac{(1 - z)}{z^{2 + D_a}} {}_2F_1 \left( 2 + D_a, 2 + D_a; 3 + D_a; \frac{z - 1}{z} \right) \right] \end{aligned}$$

F- Hypergeometric Function, C=0.3, D arise from the string fragmentation  $f(u)=(1-u)^D$ Dq=0.3 for producing a quark and Dqq=1.3 for producing a diquark

#### **Prehadron Formation Lengths**

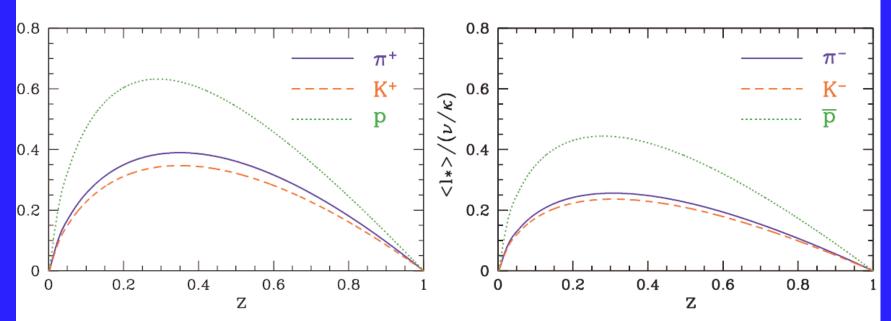
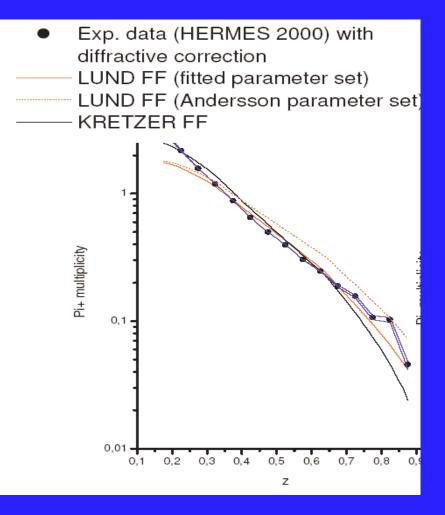
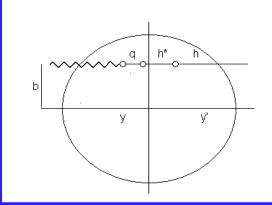




Fig. 3. Computed prehadron formation lengths when an up quark is struck by the virtual photon. Left: When a  $\pi^+$ ,  $K^+$  or p is observed, the corresponding prehadron can be created at rank  $n \ge 1$ . Right: When a  $\pi^-$ ,  $K^-$  or  $\bar{p}$  is observed, the corresponding prehadron can be created only at rank  $n \ge 2$ .

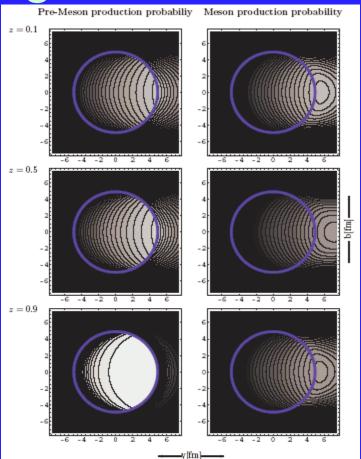
Scaled Hadron f.l.=p.f.l.+z

#### Pion Multiplicity on the Proton

- D. Grünewald (Diploma Thesis) has calculated meson and baryon multiplicities in this Lund picture
- Unfortunately experimental baryon multiplicities are not available to compare with




#### Absorption model


 Inelastic scattering of (pre)hadrons on nucleons removes them from the considered (z,nu) bin, absorption rate is determined by the fitted prehadron mean free path

$$\begin{aligned} \frac{\partial P_q(y,y^{\prime})}{\partial y^{\prime}} &= -\frac{P_q(y,y^{\prime})}{\langle l^* \rangle} &, P_q(y,y^{\prime}=y) = 1\\ \frac{\partial P_*(y,y^{\prime})}{\partial y^{\prime}} &= \frac{P_q(y,y^{\prime})}{\langle l^* \rangle} - \frac{P_*(y,y^{\prime})}{\langle \Delta l \rangle} - \frac{P_*(y,y^{\prime})}{\lambda_*(y^{\prime})} &, P_*(y,y^{\prime}=y) = 0\\ \frac{\partial P_h(y,y^{\prime})}{\partial y^{\prime}} &= \frac{P_*(y,y^{\prime})}{\langle \Delta l \rangle} - \frac{P_h(y,y^{\prime})}{\lambda_h(y^{\prime})} &, P_h(y,y^{\prime}=y) = 0 \end{aligned}$$

Absorption factor:



## Prehadron und Hadron-Production probabilities at HERMES energies for Kr target without absorption



#### Comparison with HERMES data Hermes Coll. A.Airapetian et al. Phys. Lett. B577 (2003) 37-Xe,Kr,Ne,He target



## **Result of Absorption Model**

- Rescaling + absorption are able to describe the data
- Flavor dependence is reproduced in accordance with the first and second rank description
- Proton multiplicities are not reproduced well

## 1) Higher Twist Effect

#### Virtual Photon can interact with a diquark

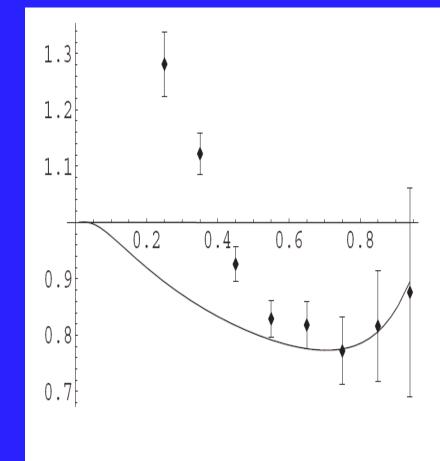
Let us consider here the unpolarized structure function  $F_2(x, Q^2)$  only. It is straightforward to extract from the full contribution of the quark-diquark model to  $F_2$  all terms which are proportional to the diquark form factors [8]. These terms vanish at large  $Q^2$ values, but at moderate  $Q^2$  values they give non negligible contributions. These are the terms which we assume to model higher-twist effects in DIS. Explicitly – following the notations of Refs. [7,8] – they are given by

 $q_{\nu}$ 

$$F_{2}^{HT} = \sum_{S} e_{S}^{2} S(x) x D_{S}^{2} + \sum_{V} \frac{1}{3} e_{V}^{2} V(x) x \left\{ \left[ \left( 1 + \frac{Q^{2}}{2m_{N}^{2}x^{2}} \right) D_{1} + \frac{Q^{2}}{2m_{N}^{2}x^{2}} D_{2} + Q^{2} \left( 1 + \frac{Q^{2}}{4m_{N}^{2}x^{2}} \right) D_{3} \right]^{2} + 2 \left[ D_{1}^{2} + \frac{Q^{2}}{4m_{N}^{2}x^{2}} D_{2}^{2} \right] \right\} \\ + \frac{1}{4} \sum_{S} e_{S}^{2} S(x) x Q^{2} D_{T}^{2} + \frac{1}{12} \sum_{V} e_{S}^{2} V(x) x Q^{2} D_{T}^{2}$$
(2)  
$$- \sum_{s} e_{as}^{2} x q_{s}(x, Q^{2}) D_{S}^{2} - \sum_{s} e_{as}^{2} x q_{v}(x, Q^{2}) D_{V}^{2} \right]$$

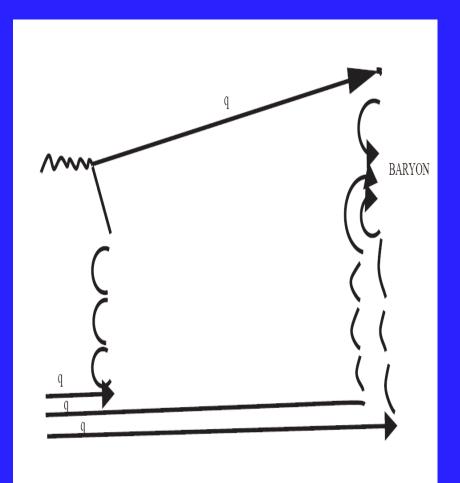
Z.Phys.C71:625-630,1996

Trento 2005


Q0^2=2 GeV^2

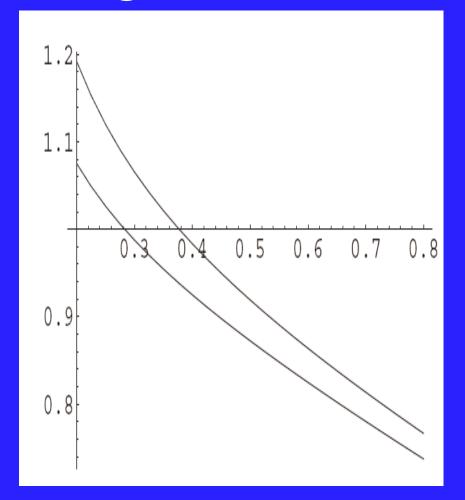
## **New Transport Equations**

- Diquark can become prebaryon or lose one quark by stripping reaction on a nucleon
- Quark distribution is symmetric after stripping z(1-z)
- Stripping cross section is assumed to be pion-nucleon cross section
- Diquark fragmentation favours faster baryon


# Multiplicity ratio in Krypton with Higher Twist Diquark Scattering

- Diquark scattering can increase the ratio at large z
- Only if we switch off nucleon absorption
- Needs further work
- At low z additional mechanism required




# 2) String branching

- Cut off (4 Gev) excludes target fragmentation at low z
- But string cannot only break, but also branch into two strings (cf.X.N. Wang et al., nuclth/0407095)
- Main mechanism of baryon flow(Garvey, Kopeliovich,Povh, hepph/ 0006325)



# Multiplicity ratio with String Branching

- At low energies (Hermes) one of the quarks in the proton will shorten the string
- Multiplicity increases with number of rescattering centers
- Additional term proportional to C A^(1/3) exp[-1/2 yB] (Upper curve Kr,lower curve Ne)



#### **Preliminary Conclusions:**

- Absorption model describes data, besides p-production
- Reasonable prehadron (=2/3 of hadron) cross section
- Proton production at large z may get enhanced by higher twist effect
- String branching makes the baryon number flow away from the target fragmentation z values