

Parton propagation through Strongly interacting Systems - ECT*, Trento, September 2005 -

Collisional energy loss in the sQGP

André Peshier

Institute for Theoretical Physics, Giessen University, Germany

Bjorken's estimate
 Strongly coupled (Q)GP
 = 1 + 2

Why collisional energy-loss?

AIP Bulletin, April 20 2005:

Now, for the first time since starting nuclear collisions at RHIC in the year 2000 and with plenty of data in hand, all four detector groups operating at the lab [BNL] ... believe that the fireball is a liquid of strongly interacting quarks and gluons rather than a gas of weakly interacting quarks and gluons.

Why collisional energy-loss?

paradigm: radiative energy-loss [BDMPS] dominates collisional energy-loss

- How realistic are commonly used (pQCD based) input parameters for e-loss estimates?
- 'observed' at RHIC: strongly coupled QGP (sQGP)
 - collective phenomena, in line with hydrodynamics
 - fast equilibration, low viscosity
 - large Xsections, large coupling
 ↓

dense liquid \Leftrightarrow collisional e-loss

• Fokker-Planck eqn. with drag and diffusion parameters related to dE_{coll}/dx [Mustafa, Thoma]

 \Rightarrow compatible quenching factors

Framework

things are involved \Rightarrow simplify

- consider energy-loss of hard jet in static infinite thermalized medium (QGP)
- consider mostly quenched QCD; pQCD expectation quarks and gluons differ by group factors (coupling Casimirs, d.o.f.) seen also for large coupling (lattice)

rescale:

 $T_c^{quench} = 260 \,\mathrm{MeV}
ightarrow 170 \,\mathrm{MeV}$

'Universality' in QCD

Bjorken's formula

[Bjorken '82] considers energy-loss per length due to elastic collisions

$$\frac{dE}{dx} = \int_{k^3} \underbrace{\rho(k) \Phi}_{\text{flux}} \int dt \frac{d\sigma}{dt} \Delta E$$
small *t* dominate: $\frac{d\sigma}{dt} = 2\pi C_{gg} \frac{\alpha^2}{t^2}$
 $E, E' \gg k \sim T$: $t = -2(1 - \cos\theta)k\Delta E$
 $\Phi = 1 - \cos\theta$
ivergences - cut-offs: $\int_{t_1}^{t_2} dt \frac{d\sigma}{dt} \Delta E = \frac{\frac{9}{4}\pi\alpha^2}{k(1 - \cos\theta)} \ln \frac{t_1}{t_2}$
screening: $t_2 = -\mu^2$
 $\Delta E < \Delta E_{max}$: $t_1 = -2(1 - \cos\theta)k\Delta E_{max}$
jet persist: $\Delta E_{max} \approx 0.5E$

d

Bjorken's formula

$$\frac{dE}{dx} = \frac{9\pi}{4} \alpha^2 \int_{k^3} \frac{\rho(k)}{k} \ln \frac{(1 - \cos \theta)kE}{\mu^2}$$

pragmatically: $(1 - \cos \theta) \rightarrow 2$ $\int dk \, k \rho(k) \ln k \rightarrow \ln \langle k \rangle \int dk \, k \rho(k)$ $\langle k \rangle \rightarrow 2T$ with $\rho(k) = 16n_b$: $\frac{dE_B}{dx} = 3\pi \alpha^2 T^2 \ln \frac{4TE}{\mu^2} \qquad \mu^2 \rightarrow m_D^2 = 4\pi \alpha T^2$

shortcomings:

- **1** sloppy *k*-integral $\leftrightarrow dE/dx < 0$??
- phenomenological IR cut-off
- Interpretending of the second state of the

Bjorken's estimate

collisional energy-loss of hard gluons(+1) and quarks (-1)

$$\frac{dE_B}{dx} = \left(\frac{3}{2}\right)^{\pm 1} \left(1 + \frac{1}{6}n_f\right) 2\pi\alpha^2 T^2 \ln\frac{4TE}{\mu^2}$$

$$T = 300 \text{ MeV}$$

$$\alpha = 0.2$$

$$\mu = 0.5...1 \text{ GeV}$$

$$\sim m_D = \sqrt{4\pi\alpha} T$$

compare to

- 'cold' e-loss $\sim 1\,\text{GeV}/\text{fm}$
- radiative e-loss $\Delta E_{rad} \sim E^{\beta}$, $\beta = 0, \frac{1}{2}, 1$

NB: conform with general form of collisional energy loss, in leading-log approximation, related to cut *dressed* 1-loop diagrams [Thoma]

Bjorken's formula – improvements

running coupling

$$lpha^{
m pert}(\mathcal{Q}) = rac{4\pi}{11\ln(\mathcal{Q}^2/\Lambda^2)}$$

often: $Q\sim 2\pi T$, $\Lambda=T_c/1.14$

NB: even conservative $\alpha(T)$: $m_D > T$ (pQCD: $m_D = gT \ll T$)

what is relevant scale for α ? how reliable is extrapolated pQCD?

A. Peshier, Collisional energy loss

Quasiparticle perspective of s(Q)GP

• 2PI formalism: thermodynamic potential in terms of full propagator

$$\Omega = \frac{1}{2} \operatorname{Tr} \left(\ln(-\Delta^{-1}) + \Pi \Delta \right) - \Phi, \quad \Phi = \bigoplus + \bigoplus + \bigcirc + \cdots$$
$$\Pi = 2 \frac{\delta \Phi}{\delta \Delta} = -\bigcirc + - \bigcirc + \bigcirc + \cdots$$

 truncation ⇒ thermodyn. consistent resummed approximations entropy functional of dressed (=quasiparticle) propagator [Riedel, ...]

$$s[\Delta] = -\sum_{i=T,L} d_i \int_{p^4} \frac{\partial n_b}{\partial T} \left(\operatorname{Im} \ln(-\Delta_i^{-1}) + \operatorname{Im} \Pi_i \operatorname{Re} \Delta_i \right)$$

(in Fermi liquid theory: dynamical quasiparticle entropy)

Quasiparticle perspective of s(Q)GP

- dressed propagator for momenta $p \sim T~(d_g = 16~{
 m transverse}~{
 m d.o.f.})$
 - Ansatz: Lorentzian spectral function corresponds to self-energy

$$\Pi = m^2 - 2i\gamma\omega$$

 $\gamma \rightarrow {\rm transport \ properties}$

 quasiparticle mass and (collisional) width parameterized in form of pQCD results (gauge invariant, momentum-independent)

$$m^2 = 2\pi lpha T^2$$
, $\gamma = \frac{3}{2\pi} \, lpha \, T \ln \frac{c}{lpha}$

• to extrapolate to $T \sim T_c$ use effective coupling

$$\alpha(T) = \frac{4\pi}{11\ln(\lambda(T-T_s)/T_c)^2}$$

Quasiparticle perspective of s(Q)GP

• QP model [AP] vs. lattice data [Okamoto et al.]

non-perturbative 'quasiparticles'

- *m* ~ *T* heavy excitations
- $\gamma \sim T$ short mean free path except very near T_c (crit. slow down)

s(Q)GP: coupling $\alpha(T)$

pQCD

$$lpha^{
m pert}(Q) = rac{4\pi}{11\ln(Q^2/\Lambda^2)}$$

with
$$\mathit{Q}\sim 2\pi \mathit{T}$$
, $\Lambda\sim \mathit{T_c}$

- analyze lattice data
 - entropy within QP model
 - 2 static $q\bar{q}$ free energy

$$F(r, T)
ightarrow C_r rac{lpha}{r} exp(-m_D r)$$

[Kaczmarek et al.]

for
$$T \sim \mathcal{O}(T_c)$$

IR enhancement of α

s(Q)GP: cross section

• pQCD & cut-off
$$m_D^2 = 4\pi \alpha T^2$$

$$\sigma_{pert} = \int dt \frac{\frac{9}{2}\pi\alpha^2}{t^2} = \frac{9}{8}\frac{\alpha}{T^2}$$
$$\rightarrow \frac{9}{8}\frac{\alpha(2\pi T)}{T^2} \sim \mathcal{O}(1 \text{ mb})$$

 $\sigma_{\it RHIC} \sim {\cal O}(10\,{
m mb})$

 T/T_c

• QP model, from $2 \rightarrow m$ interaction rate d^4N/dx^4 [AP, Cassing]

$$\operatorname{Tr}_{p_1,p_2}\left[\frac{2\sqrt{\lambda}}{2\omega_1 2\omega_2} n_b(\omega_1)n_b(\omega_2) \,\sigma \,\Theta(P_1^2)\Theta(P_2^2)\right] = \operatorname{Tr}_p\left[\frac{1}{2\omega} \,\gamma \,n_b(\omega)\Theta(P^2)\right]$$

average σ and $\gamma \quad \Rightarrow \quad \sigma_{eff} = \gamma \,\frac{N_+}{I_2} \sim \mathcal{O}(10 \,\mathrm{mb})$

A. Peshier, Collisional energy loss

Interlude: quasiparticle model – implications

QP-model indicates an almost ideal liquid^(\star) [AP, Cassing]

• large plasma parameter

$$^{(\star)} \neq ideal gas!!!$$

• large percolation measure

$$\kappa_2 = \sigma_{eff} N^{2/3}$$

very low shear viscosity

$$\frac{\eta}{s} \approx 0.2$$
 near T_c

A. Peshier, Collisional energy loss

Interlude: quasiparticle model – implications

quantities relevant for radiative energy-loss

• mean free path $\lambda = \gamma^{-1}$

• transport coefficient $\hat{q} = m_D^2/\lambda$

NB: $\gamma^{-1}(p \sim T)$ as a lower estimate for mean free path of hard jet

Can pQCD, by using appropriate scales, be extrapolated to 'near' T_c ?

З

$$\alpha^{\text{pert}}(Q) = \frac{4\pi}{11 \ln(Q^2/\Lambda^2)}$$
• pQCD: $\frac{Q}{\Lambda} \sim \frac{2\pi T}{T_c}$

• non-pert. parameterization (aim at $T \gtrsim 1.3 T_c$):

$$\frac{Q}{\Lambda} \rightarrow \mathbf{1.7} \frac{T}{T_c}$$

IQCD data [Kaczmarek et al.]

Non-perturbative parameterization: Debye mass

Can pQCD be consistently extrapolated to 'near' T_c ?

 $m_D^2 = 4\pi\alpha T^2$

pQCD:

$$lpha
ightarrow lpha^{
m pert} (Q \sim 2 \pi T)$$

• non-pert. parameterization:

 $\alpha \to \alpha^{\rm NP}(T)$

• observation within QP model:

$$m_D \approx 2.7\gamma$$

IQCD data [Nakamura et al.], [Kaczmarek et al.]

Non-perturbative parameterization: cross section

Can pQCD be consistently extrapolated to 'near' T_c ?

Non-perturbative parameterization

Indeed, pQCD can consistently be extrapolated to 'near' T_c .

• lattice results for $\alpha(T)$, $m_D(T)$, for $T/T_c \in [1.3, 4]$, consistent with

$$\alpha^{NP}(T) = \frac{4\pi}{11\ln(1.7T/T_c)^2}$$

cross section (×10) enhancement consistent with

pert. Xsection
$$d\sigma/dt \sim \alpha^2/t^2$$

running coupling $\alpha(t) = \frac{4\pi}{11 \ln(-t/\Lambda_{NP}^2)}$, $\Lambda_{NP} = 420 \text{ MeV}$
cut-off $\mu = 0.6m_D$ (compare to $\mu_{\star} = 0.7m_D$)

• relation between $\alpha^{NP}(T)$ and $\alpha(t)$, assuming $\sqrt{|\overline{t}|} = \kappa T$,

$$\kappa = 1.7 \frac{\Lambda_{NP}}{T_c} \approx 2.74 \text{ (compare to } \langle k \rangle = \frac{\int_{k^3} k \rho(k)}{\int_{k^3} \rho(k)} \approx 2.70 T \text{)}$$

Interlude: Cut-off and running coupling

running important when $m_D \sim gT \sim \Lambda$ (non-pert. regime)

ſ

Collisional e-loss with running coupling

Bjorken:

$$\frac{dE}{dx} = \int_{k^3} \rho(k) \Phi \int dt \, \frac{d\sigma}{dt} \, \Delta E$$

t-integral, with $\alpha(t) = A/\ln(-t/\Lambda^2)$

$$\Phi \int_{t_1}^{t_2} dt \, \frac{d\sigma}{dt} \, \Delta E \quad = \quad -\frac{\frac{9}{4}\pi A^2}{k} \int_{t_1}^{t_2} \frac{dt}{t} \frac{1}{\ln^2(-t/\Lambda^2)}$$
$$= \quad \begin{cases} \frac{\frac{9}{4}\pi A}{k} \left[\alpha(\mu^2) - \alpha((1-\cos\theta)kE)\right] \\ \text{constraint} \quad (1-\cos\theta)k \ge \mu^2/E \end{cases}$$

 θ -integration leads to logarithmic integrals, $li(x) = \mathcal{P} \int_0^x dt / ln(t)$

$$\begin{aligned} \frac{dE}{dx} &= \frac{9A^2}{8\pi} \int_{\bar{k}}^{\infty} dk k \rho(k) \left[\frac{1 - \mu^2 / (2Ek)}{\ln(\mu^2 / \Lambda^2)} + \frac{\Lambda^2}{2Ek} \left(li \frac{\mu^2}{\Lambda^2} - li \frac{2Ek}{\Lambda^2} \right) \right], \quad \bar{k} = \frac{\mu^2}{2E} \\ &= T^2 F(\frac{\mu^2}{2TE}, \frac{\mu^2}{\Lambda^2}) \rightarrow \left. \frac{dE_B}{dx} \right|_{\alpha(\mu)} [1 + \mathcal{O}(\alpha)] \end{aligned}$$

• non-perturbative parameterization $(T \gtrsim 1.3T_c)$

IQCD/QP parameterization of Debye mass: m_D ≈ 2.7γ
 small m_D(T_c) (~ phase transition) → increased energy loss

• unquenching: energy-loss of a quark in the sQGP

0.3

0.2

0.1

 $Q(p_T)$

Is $dE/dx \sim 1 \,\text{GeV/fm}$ enough?

assume

- constant dE/dx
- Bjorken dynamics
- quenching factor

comparable to [Müller]: BDMPS + transv. profile + Bjorken dynamics

15

dE/dx = 0.8GeV/fm dE/dx = 1.0GeV/fm dE/dx = 1.2GeV/fm Mueller (BDMPS)

Resumé

- realistic parameters for sQGP \Rightarrow enhanced $\frac{dE_{coll}}{dx}$
- (quasi) critical screening $\Rightarrow T_c$ quenching
- does sQGP^(*) quench too much?
 - far/near side jets vs. geometry+delay (talk Cassing)
 - retardation (talk Gossiaux)

 $^{(\star)}$ strongly **Quenching** (Q)GP

