

Jet Physics in Heavy Ion Collisions at the LHC

Andreas Morsch (CERN)

- LHC Heavy Ion Program
- Jet Physics at LHC: Introduction and motivation
- Emphasis on expectations and requirements
 - Jet rates at the LHC
 - Energy resolution
 - Jet structure observables
- In short: The experiments.

ECT Workshop on Parton Propagation through Strongly Interacting Systems

Nuclear collisions at the LHC

- LHC on track for start-up of pp operations in April 2007
- Pb-Pb scheduled for 2008
 - Each year several weeks of HI beams (10⁶ s effective running time)
- Future includes other ion species and pA collisions.
 - LHC is equipped with two separate timing systems.

System	L_0 [cm ⁻² s ⁻¹]	√s _{NN max} [TeV]	Δy
Pb+Pb	1 1027	5.5	0
Ar+Ar	6 1028	6.3	0
O+O	2 1029	7.0	0
pPb	1 10 ³⁰	8.8	0.5
pp	1 10 ³⁴	14	0

First 5-6 years

2-3y	Pb-Pb
2y	Ar-Ar
1y	p-Pb

(highest energy density)(vary energy density)(nucl. pdf, ref. data)

Pb-Pb Collisions at LHC

- As compared to RHIC
 - Energy density 4-10 higher
 - Larger volume (x 3)
 - Longer life-time (2.5 x)
- High rate of hard processes
 - Produced in on year of running for |y| < 1</p>
 - $5 \ 10^{10}$ Open charm pairs
 - 2 10⁹ Open beauty pairs
 - $1 \ 10^9$ Jets (E_T > 20 GeV)

Central collisions	SPS	RHIC	LHC
s ^{1/2} (GeV)	17	200	5500
dN _{eh} /dy	500	650	3-8 x10 ³
ε (GeV/fm ³)	2.5	3.5	15-40
V _f (fm ³)	103	7x10 ³	2x10 ⁴
$ au_{ m QGP}(m fm/c)$	<1	1.5-4.0	4-10
$\tau_0 (fm/c)$	~1	~0.5	<0.2

High rates, however challenging ...

From RHIC to LHC

- Evidence for energy loss in nuclear collisions has been seen at RHIC.
 - Measurements are consistent with pQCDbased energy loss simulations and provide a lower bound to initial color charge density.
 - However, more detailed studies at higher $p_{\rm T}$ at RHIC and higher energies (LHC) are necessary to further constrain model parameters.
 - This has triggered substantial interest in Jet Physics in nuclear collisions at the LHC at which
 - Medium and low- $p_{\rm T}$
 - Dominated by hard processes
 - Several Jets $E_{\rm T} < 20$ GeV / central PbPb collision
 - At high- $p_{\rm T}$
 - Jet rates are high at energies at which jets can be identified over the background of the underlying event.

Naturally the next step: Reconstructed jets ...

Reconstructed Jet

Ideally, the analysis of reconstructed jets will allow us to measure the original parton 4-momentum and the jet structure (longitudinal and transverse). From this analysis a higher sensitivity to the medium parameters (transport coefficient) is expected.

Part II

- What are the expected jet production rates at the LHC ?
- How to identify jets knowing that a typical jet cone contains 1 TeV of energy from the underlying event ?
- What are the intrinsic limitations on the energy resolution ?

NLO by N. Arnesto

Jet rates at LHC

Copious production:

Several jets per central PbPb collisions for $E_{T} > 20$ GeV

However, for measuring the jet fragmentation function close to z = 1, >10⁴ jets are needed. In addition you want to bin, i.e. perform studies relative to reaction plane to map out *L* dependence.

It has been shown (by embedding Pythia jets into HIJING) that even jets of moderate energies ($E_T > 50$ GeV) can be identified over the huge background energy of the underlying HIJING event of central PbPb.

Reasons:

- Angular ordering: Sizable fraction (~50%) of the jet energy is concentrated around jet axis (R< 0.1).</p>
- Background energy in cone of size R is ~
 R² and background fluctuations ~ R.

For $dN_{ch}/dy = 5000$: Energy in $R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)} < 0.7$: 1 TeV !

Jet Reconstruction with reduced cone-size

- Identify and reconstruct jets using small cone sizes R = 0.3 - 0.4subtract energy from underlying event and correct using measured jet profiles.
- Reconstruction possible for $E_{jet} >> \Delta E_{Bg}$
 - Caveat:
 - The fact that energy is carried by a small number of particles and some is carried by hard final state radiation leads to out-of-cone fluctuation.
 - Reconstructed energy decreased.
 - Hence increase of $\Delta E/E$
 - Additional out-of-cone radiation due to medium induced radiation possible.

Jet profiles as measured by D0

In analogy with heavy flavor physics:

Intrinsic resolution: Effect of cuts

Intrinsic resolution

More quantitatively ...

Intrinsic resolution limit for E_{T} = 100 GeV

Production rate weighted resolution function

- Intrinsic resolution limited to $\Delta E/E \sim (15-20)\%$
- Production rate changes factor of 3 within ΔE
- Production rate weighted resolution function has to be studied.

Production spectrum induced bias

Part III

- The transverse structure
 - Do jets survive ?
 - Transverse Heating.
- Longitudinal structure
 - Leading parton remnant
 - Radiated energy

Transverse structure

Central question

- Does the collimated structure of the jets survive so that they can be reconstructed event by event ?
 - Study nuclear suppression factor $R_{AA}^{Jet}(E_T, R)$
 - Total suppression (i.e. surface emission only) or do we reconstruct modified jets ?
- Have the observed jets a modified transverse structure ?
 - Measure jet shape dE/dR
 - Measure momentum distribution perpendicular to the jet axis dN/dk_T ("Transverse Heating")

Transverse Structure

Longitudinal structure

- Measure parton energy as the energy of the reconstructed jet
- Measure energy loss
 - Remnant of leading partons in the high-z part of the fragmentation function
- Measure radiated energy
 - Additional low-z particles

Longitudinal structure

- No trivial relation between energy loss and jet observables
 - Intrinsic to the system
 - Path length is not constant
 - Need measurements relative to reaction plane and as a function of *b*.
 - More importantly: Intrinsic to the physics
 - Finite probability to have no loss or on the contrary complete loss
 - Reduced cone size

- Out-of-cone fluctuations and radiation
- To relate observables to energy loss we need shower MC combining consistently parton shower evolution and in-medium gluon radiation.

Toy Models

Two extreme approaches

- Quenching of the final jet system and radiation of 1-5 gluons. (AliPythia::Quench + Salgado/Wiedemann Quenching weights with q= 1.5 GeV²/fm)
- Quenching of all final state partons and radiation of many (~40) gluons (I. Lokhtin: Pyquen)*

)*I.P. Lokhtin et al., Eur. Phys. J C16 (2000) 527-536 I.P.Lokhtin et al., e-print hep-ph/0406038 http://lokhtin.home.cern.ch/lokhtin/pyquen/

Example: Hump-backed Plateau

Transverse Heating: $k_{\rm T}$ - Broadening

- Unmodified jets characterized by $\langle k_T \rangle =$ 600 MeV ~ const(R).
- Partonic energy loss alone would lead to no effect or even a decrease of $\langle k_T \rangle$.
 - Transverse heating is an important signal on its own.

hep-

Suppression of large $k_{\rm T}$?

- Relation between *R* and formation time of hard final state radiation.
 - Early emitted final state radiation will also suffer energy loss.
 - Look for R dependence of $\langle j_T \rangle$!

Interpretation of Fragmentation Functions

0.2

0.4

0.6

0.8

$$z_{\rm rec} = p/E_{\rm rec} > z_{\rm hadron}$$

Limit experimental bias ...

By measuring the jet profile inclusively.

Low- $p_{\rm T}$ capabilities are important since for quenched jets sizeable fraction of energy will be carried by particles with $p_{\rm T} < 2$ GeV.

Exploit γ-jet correlation

γ, Z

- $\bullet E_{\gamma} = E_{jet}$
- Caveat: limited statistics
 - O(10³) smaller than jet production
- Does the decreased systematic error compensate the increased statistical error ?
- Certainly important in the intermediate energy region $20 < E_T < 50$ GeV.

 p_{τ} -cut.

outside core

Quenched (AliPythia)

ALICE Jet Data Challenge

- Embed Pythia jets in central Pb-Pb HIJING events
- Pass through full detector simulation
 - Geant3 transport and detailed detector simulation
- Reconstruct tracks in central detectors
- Reconstruct charged jets ($E_T > 10 \text{GeV}$)
 - Statistics: ~ 3000 jets for $E_T > 100 \text{ GeV}$
 - ~1 month, un-triggered
- Study jet structure

ALICE Jet Data Challenge

Hump-backed plateau

High z (low ξ): Low z (high ξ): Needs good resolution Systematics is a challenge, needs reliable tracking. Also good statistics (trigger is needed)

EMCAL for ALICE

- •EM Sampling Calorimeter (STAR Design) •Pb-scintillator linear response
 - -0.7 < η < 0.7
 - $\pi/3 < \Phi < \pi$
- 12 super-modules
- 19152 towers
- Energy resolution ~15%/√E

Complementarities and Redundancy

- ATLAS, CMS
 - Full calorimetry
 - Large coverage (hermeticity)
 - Optimized for high- $p_{\rm T}$
- ALICE
 - TPC + proposed EMCAL
 - Low- and high- $p_{\rm T}$ capability
 - 100 MeV 100 GeV
 - Particle identification

Conclusions

- Copious production of jets in PbPb collisions at the LHC
 - < 20 GeV many overlapping jets/event</p>
 - Inclusive leading particle correlation
- Background conditions require jet identification and reconstruction in reduced cone R < 0.3-0.5
- At LHC we will measure jet structure observables (k_T , fragmentation function, jet-shape) for reconstructed jets.
 - High- $p_{\rm T}$ capabilities (calorimetry) needed to reconstruct parton energy
 - Good low- $p_{\rm T}$ capabilities are needed to measure particles from medium induced radiation.
- ALICE needs calorimetry (EMCAL) for triggering and jet reconstruction
 - ... and this would make it the ideal detector for jet physics at the LHC covering the needed low and high-p_T capabilities + particle ID.
- Community needs MC combining consistently in medium energy loss and parton showers.